
Basics of Software Engineering

CS134

Chris Pollett

Aug. 30, 2004

Outline

• The Constraint Triangle
• Requirements and Specification
• Software Engineering Process
• The Software Lifecycle
• Managing a project
• Teams

The Constraint Triangle

• Cost -- number of programmer on team
• Time -- how long until project is finished
• Quality -- number of features and how

extensively they are tested
• Usually can decrease two out of three

Requirements and Specification

• To start a project need the requirements of the
program needed. Can think of requirements like
requests for features

• Given these requirements we need to then
produce a brief description or specification of
what the software will be.

• Often communicate between various interested
parties in a software project using some
diagramming language. Ex UML. Use case
diagrams.

What is a use case diagram?

• Program is a rectangle. Have actors who
want to do things with this program.
Represented as stick figure. Each of these
stick figures activities with the program is
drawn with a bubble with a word in it and is
called a use-case.

Software Engineering Process

• Requirement and Specification (already
talked about)

• Schedule
• Design
• Project document

Schedule

Some components of this include:
Lifecycle -what to do when
Milestones - some definite tangible goals which should
be reached by some fixed date. Ex. Specification sketch
by Sept 6. (Dates can be revised.) Often have sub-
milestones or task lists.
QA plan -- quality assurance. How things will be tested.
Risk Management -- trying to anticipate how things
might cause you to go off schedule. Need to monitor
progress to know if going off schedule and need to have
a mechanism for recovery if this happens

Design

High level design -- the architecture of your
project (might model the way the different classes
are organized using UML)
Detailed design -describes the order in which
specific things happens. Ex: Sequence of events to
update a character.

Project Documents

• Written specification
• Scheduling -- milestone list, risk list
• Design -- class diagrams, sequence

diagrams, class headers
• User’s guide for your software

The Software Lifecycle

Model of what happens as project develops
Classic model called Waterfall lifecycle - Requirement
-> Specification -> Architecture-> Detailed Design ->
Coding -> Testing and Debugging -> Ship
Stage Delivery lifecycle Software concept ->
requirement dev (n stages) -> Architecture and high
level design-> Stage 1 design code test debug-> Stage n
design code test debug ->Final release

More Lifecycles

• Inventor Lifecycle -- Requirements
gathering -> architecture -> Spec n and
Detailed design n -> Alpha n program and
user’s guide -> final design and feature
freeze -> beta N program and user guide ->
test and debug beta n ->Ship

Managing Projects

• Need to be able to track builds so know what
version you are working with and what version
things have been tested for. Try using a revision
control system if that’s possible

• Code should be easy to read and follow some
common conventions for everyone on the project.

• Hard algorithms or subtle points about sections of
code should be commented

Teams

• Each person should have contact info for other
team members (phone and email addresses)

• Should practice merging each other code, so
people will know what will happen during a
merge/build

• Member roles should be decided upon.
• Meetings should be held where demos of things

are done

	Basics of Software Engineering
	Outline
	The Constraint Triangle
	Requirements and Specification
	What is a use case diagram?
	Software Engineering Process
	Schedule
	Design
	Project Documents
	The Software Lifecycle
	More Lifecycles
	Managing Projects
	Teams

