
Critters in Pop

CS134

Chris Pollett

Sep. 22, 2004

Introduction

• Kinds of critters

• Critter class fields

• Critter reference fields

• Critter methods

• Critter initialization

Kinds of critters

To understand why cCritter is important in Pop it is
useful to look at the purpose of its various child
classes (for example, in Spacewar):

– cCritterArmedPlayer: used for players in the game

– cCritterArmedRobot: used for UFOs

– cCritterBullets: used for bullets

In other games such as DamBuster, cCritterWall is
used and in HW1 we used cCritterProp.

Organizing Your Projects

• For your games you will probably want to create
your own critters.

• For small games, might just have one new header
and one new cpp file for the whole game. Put the
prototypes and class definitions in the header file
and put the implementations in the CPP file.

• For larger games, have separate .h and .cpp pairs
for each new critter define.

What do you want to override?

• Common methods to override are:

– update

– reset

– touch

– collide

– die

– damage

Critter class fields

What are the properties of critters?

• Most fields are of type int, Real, or cVector.

• Real is a typedef for a float (could be changed).

• Also, have several different kinds of references to
other classes in the Pop universe.

Groupings of Critter Fields

• State fields: Real _age and int _health
• Game field: int _score and cBiota* _pownerbiota
• Position fields: cVector _position
• Velocity fields: Real _speed, cVector _velocity,

and _tangent
• Acceleration, mass and force fields: Real

_acceleration, Real _density, and _forcearray
• Listener field: cListener* _plistener
• Attitude and display field: cMatrix _attitude, and

cSprite *_psprite

Basic Critter Fields

By thinking about what critters are for , we can come
up with some of the fields they consist of.

• In order to have critters that don’t stay on the
screen forever, each critter has an _age field which
stores how many seconds old the critter is.

• To decide whether a critter is alive or dead a
_health field is used. A value of 0 indicates dead,
>0 alive.

• Critters can be immortal or have a _fixedlifetime.
(Ex, bullets). There is also a BOOL
_usefixedlifetime to say which.

More basic fields

• To say how well a critter is doing, a _score field is
used.

• To say what other critters a given critter ``see’’ a
cBiota pointer field *pownerbiota is given. There
is a common such object for all the critters in the
game.

• To do physics, critter have a _position and
_velocity field and a move(dt) method that uses
them. These fields are given by cVector objects
which by default are 3D.

Yet more basic fields

• To be able to say where a critter can go in the
world, a cRealBox _movebox field is used. This
has a _locorner and a _hicorner to specify it.

• cGame has a cRealBox _border to specify size of
world. By default, _movebox is the same size. To
force a critter into its box could do
_movebox.clamp(_position);

• If wanted the critter to be able to go off one side of
its _movebox and wrap to other side could specify
the int _wrapflag.

Specifying Critter Coordinate
Systems

• Want to be able to give critters a maximum speed,
so have Real _maxspeed. So might as well have,
_velocity, _speed, and _tangent and require.
_velocity = _speed*_tangent. Also, might as well
store _acceleration.

• Using _tangent can create a coordinate system. Let
_normal be unit vector perdicular to _tangent and
in the plane given by _position, _tangent and
_acceleration. The cross product _tangent x
_normal gives the third coordinate directions
called the _binormal.

_attitude

• This field is a four column cMatrix object that
typically stores the_tangent, _normal, _binormal,
and position cVector’s as columns.

• can feed _attitude into the graphics pipeline so that
critter always orients into the direction of motion.
Ex: whales heel over when they turn.

• There is a BOOL _attitudemotionlock that turns
on and off this effect.

Critter Reference Fields UML
cGame

cBiota

cCritter

cSprite

1

*

cListener

cForce

cCritter

1

1

*

1

Reference Fields Discussion

• cCritter has one owner cBiota* field called
_pownerbiota. This is a back reference to a field of
cGame

• cSprite _pSprite says what a critter will look like.
Ex: disk-like cSpriteBubble, cPolygon, or
cSpriteIcon. cSprite has a draw method which is
called with _psprite->draw. Before it is called
cCritter draw sends the _attitude matrix to the
graphics pipeline.

More Reference Field Discussion

• Each cCritter has a cListener* _plistener.

• This allows critters to listen for events like mouse
clicks, etc.

• The critter listens by calling its
cCritter::feellistener method which in turn calls
_plistener->listen.

• This is an example of the strategy pattern.

Forces and Targets

• Last day already noted critters have a
CTypedPtrArray<CObArray, cForce*> field
_forcearray, and have a feelforce method.

• Since to calculate acceleration we need to estimate
mass, we have _mass, _density and radius field
and a mass() method, radius() methods. We ensure
_mass is _density *radius^3. And the radius()
method just calls _psprite to figure out value.

• cCritter *_ptarget is says which critter this one is
trying to get. Imposes a burden on destructor so
have a virtual fixPointerRef method to solve

Critter methods

• Basic order in which cGame::step(dt) calls a
cCritter’s methods
draw feellistener

move

update
collide

animate

feelforce

update, feelforce, and feellistener

• There is a basic update(CPopView *pactive, Real
dt) which determines the forces on the critter and
might cause critter to die of old age. CPopView
might be used to sniff the color of nearby pixels.

• Talked about feelforce last day
• feellistener(Real dt) just calls _plistener-

>listen(dt,this). The reference this is passed so
listener can change fields of the critter. Can also
get the pgame()’s cController

move

• Already know move(dt) does:
– _velocity += dt * acceleration
– _position += dt*velocity

• Also does:
– Age critter by dt seconds
– clamp the velocity to _maxspeed
– wrap, bounce, or clamp position into the _movebox.
– update _normal and _binormal
– set _outcode to whichever , if any, border the critter hit:

BOX_INSIDE, BOX_LOX, BOX_HIX, etc.

draw

void cCritter::draw(cGraphics *pgraphics, int
drawflags)

{
if(recentlyDamaged())

drawflags |= CPopView::DF_WIREFRAME;
pgraphics->pushMatrix();
pgraphics->multMatrix(_attitude);
_psprite->draw(pgraphics, drawflags);
pgraphics->popMatrix();

}

animate

• The attitude and sprite animation are
updated in this method:

void cCritter::animate(Real dt)
{

updateAttitude(dt); //ck _attitudemotionlock
_psprite->animate(dt,this);

}

Randomizing, die and damage

• Critter have randomizePosition and
randomizeVelocity methods. There is also a
mutate method.

• Each critter also has a cCritter::die method which
by default just deletes the critter. Could make play
a sound.

• Each critter has a cCritter:damage(int hitstrength)
method which by default reduces _health by
hitstrength.

collide

• Critters collide in pairs
BOOL::cCritter::collide(cCritter *pother)

• collide is supposed to specify the reaction to
a collision.

• collidesWith can be used to say which other
critter this critter can collide with.

Critter initialization

• Useful to know how cCritter does
initialization because when we define child
classes, the base class constructor is called
first.

Initialization code

cCritter::cCritter(cGame *pownergame):
_pownerbiota(NULL),
_age(0.0),
_lasthit_age(- cCritter::SAFEWAIT),
_oldrecentlydamages(FALSE),
_health(cCritter::STARTHEALTH),
_usefixedlifetime(FALSE),
_fixedlifetime(cCritter::FIXEDLIFETIME),
…/etc
{

_psprite = new cSprite();
…}

Comment

Notice how the fields are initialized outside of
the {…} and things that we do new for
inside {…} -- this is helpful when writing
the destructor so know what to destruct.

	Critters in Pop
	Introduction
	Kinds of critters
	Organizing Your Projects
	What do you want to override?
	Critter class fields
	Groupings of Critter Fields
	Basic Critter Fields
	More basic fields
	Yet more basic fields
	Specifying Critter Coordinate Systems
	_attitude
	Critter Reference Fields UML
	Reference Fields Discussion
	More Reference Field Discussion
	Forces and Targets
	Critter methods
	update, feelforce, and feellistener
	move
	draw
	animate
	Randomizing, die and damage
	collide
	Critter initialization
	Initialization code
	Comment

