
2D Shooting Games

CS134
Chris Pollett
Oct 20, 2004.

Outline

• The Spacewar game
– Specification
– Design
– Spacewar code

• The 2D Game Stub
• The Worms games

The Spacewar game

• Spacewar was the first computer game
– Real version was 2-player, written in 1962 for a

PDP1
• Pop framework game is more like

Asteroids.

Specification
• Concept

– Player tries to shoot and avoid asteroids. Occasionally, UFOs shoot at player.
Asteroids try to avoid bullets.

• Appearance
– This should be some doodled drawings of what game should look like

• Controls
– Game uses Spaceship listener. Up and down accelerate ship, left and right rotate it.

• Game Play
– When all asteroids killed a fresh wave appears which is faster.
– You lose health when you hit an asteroid or get hit by a UFO
– Your own bullets can’t hurt you
– Get points when an asteroid disappears from the screen.
– The point break down for killing things is: asteroid 4, UFO 6, green enemy bullet 4,

blue missile 8
– Player health goes up by one point for every 100 point increase in score
– Every 40 points a UFO appears

Design

• UML diagram
– Should be simple reasonably but not too

detailed:

cCritter

cCritterAsteroid

cForceObjectSeek

cCritterArmedPlayer

cCritterArmedPlayerSpacewar cCritterBullet

cCritterBulletSilver

cCritterBulletSilverMissile

cForceClassEvade

cCritterArmedRobot

cCritterUFO

cCritterUFOSmart

*

*

*

Draft of Header
• Useful to get some idea on what things to override,etc:

class cCritterArmedPlayerSpacewar : public cCritterArmedPlayer
{

public:
cCritterArmedPlayerSpacewar(cGame *pownergame = NULL);

void reset();
};
class cCritterAsteroid : public cCritter
{

public:
cCritterAsteroid(cGame *pownergame = NULL);
virtual int damage(int hitstrength);

}; //etc

Code
• Once have gotten this far then could try to code things.
• Here are some highlights about the spacewar game

– cGameSpacewar constructor makes the _border square and gives it a black
background

– cCritterArmedSpacewar critter is implemented so can adjust player’s
_health, _newlevelscorestep, _newlevelreward, etc. It sets the color for
player sprite and sets _lastinvasionscore to 0.

– seedCritters gets rid of any asteroid or bullets, but leaves UFOs alone. It
adds back in _seedCount asteroids with the code:
for(int i = 0 ; i < _seedcount; i++)
{

new cCritterAsteroid(this);
}

– Idea on leaving UFOs alone is that if clearing level
causes a UFO want to let that one alive

More on code

• cGameSpacewar’s adjustGameParams:
– Ends the game if the player’s health is gone
– Reseeds the screen with asteroids if all the asteroids and

UFOs are dead; also speeds game up
– Adds a new UFO every fixed increase in score.

• To generically make critters move faster at the end
of a level the cCritter::MAXSPEED value is
increased

Yet more on code

• Except for some initialization
cCritterArmedPlayerSpacewar is almost the
same as cCritterArmedPlayer.

• cCritterAsteroid, cCritterUFO, and
cCritterUFOSmart require more work

• They use respectively the sprites: cPolygon,
cPolyPolygon and cSpriteIcon.

Asteroid constructor
cCritterAsteroid::cCritterAsteroid(cGame *pownergame): cCritter(pownergame)
{

setHealth(cCritterAsteroid::HEALTH);
setValue(cCritterAsteroid:: VALUE);
if(pownergame)

setSprite(pgame()->randomSprite(pownergame->spritetype()));
randomize(cCritter::MF_VELOCITY | cSprite::MF_RADIUS);
psprite()->setLineColor(cColorStyle::CN_WHITE);
addForce(new

cForceClassEvade(cCritterAsteroid::DARTACCELERATION,
cCritterAsteroid::DARTSPEEDUP, RUNTIME(cCritterBullet), FALSE));

moveToMoveBoxEdge();
if(pownergame)

addForce(new cForceObjectSeek(pplaye(),
cCritterAsteroid::CHASEACCELERATION));

}

Even more code
• The only differences between UFOs and UFOSmart are: the latter have different sprites,

the latter are twice as fast, and the missiles of the latter steer toward player and bounce
off edge of screen.

• The code for splitting asteroids that are hit is in damage:
int cCritterAsteroid::damage(int hitstrength)
{

if(_shieldfield || recentlyDamaged()) return 0;
int deathreward = cCritter::damage(hitstrength);
playSound(“Ding”);
if(_health)
{

setRadius(radius()/sqrt(2.0));
mutate(cCritter::MF_NUDGE);
if(pownerpiota()->count(RUNTIME_CLASS(cCritterAsteroid))<

cCritterAsteroid::OVERPOPULATIONCOUNT)
replicate();

}
return deathreward;}

2D Game Stub

• Gamestubs are meant to be possible starting
points for your games

• Idea is to have five kinds of critters: the
player, the player’s bullets, a rival armed
critter, its bullets, and a prop critter that
might act as food.

• cGameStub has a _rivalcount in addition to
a _seedcount from cGame

Stub’s seedcritters

void cGameStub::seedCritters()
{

pbiota()->purgeNonPlayerWallCritter();
for(int i=0; i < _seedcount; i++)

new cCritterStubProp(this);
for (i=0; i<_rivalcount; i++)

new cCritterStubRival(this);
}

Making Prop’s Healthy

BOOL cCritterStubPlayer::collide(cCritter *pcritter)
{

BOOL collideflag = cCritter::collide(pcritter);
if(collideflag && pcritter-

>IsKindOf(RUNTIME_CLASS(cCritterStubProp)))
{

setHealth(health()+1);
pcritter->die();

}
return collideflag;

}

The Worms Game
• Worms is a test game for a bunch of different things in Pop.
• Worms are made up of cCritterWormSegments that use

cForceObjectSpringRod forces to stay together.
• The player’s sprite illustrates animation loops with cSpriteLoop.
• Worm bullet’s run away from the player and never notice any other

critter
• Eating these bullets is healthy
• These bullets have a lower priority than player’s
• Rivals get smaller when bump into worm segments and grow when hit

by player bullets

