2D Shooting Games

CS134
Chris Pollett
Oct 20, 2004.

Outline

 The Spacewar game
— Specification
— Design
— Spacewar code

e The 2D Game Stub

e The Worms games

The Spacewar game

e Spacewar was the first computer game
— Real version was 2-player, written in 1962 for a
PDP1
* Pop framework game 1s more like
Asteroids.

Specification

Concept

Player tries to shoot and avoid asteroids. Occasionally, UFOs shoot at player.
Asteroids try to avoid bullets.

Appearance

This should be some doodled drawings of what game should look like

Controls

Game uses Spaceship listener. Up and down accelerate ship, left and right rotate it.

Game Play

When all asteroids killed a fresh wave appears which is faster.
You lose health when you hit an asteroid or get hit by a UFO
Your own bullets can’t hurt you

Get points when an asteroid disappears from the screen.

The point break down for killing things is: asteroid 4, UFO 6, green enemy bullet 4,
blue missile 8

Player health goes up by one point for every 100 point increase in score
Every 40 points a UFO appears

Desi

e UML diagram

— Should be simple reasonably but not too

£1

detailed:

cCritterArmedRobot

. cCritterArmedPlayer 7

cCritter
. !
%
cCritterArmedPlayerSpacewar>— cCritterBullet
cCritterAsteroid T
3k
cCritterBulletSilver cCritterUFO

A N A

cCritterBulletSilverMissile QF cCritterUFOSmart
cForceObjectSeek

cForceClassEvade

Draft of Header

e Useful to get some idea on what things to override,etc:
class cCritterArmedPlayerSpacewar : public cCritterArmedPlayer

{
public:
cCritterArmedPlayerSpacewar(cGame *pownergame = NULL);
void reset();
X
class cCritterAsteroid : public cCritter
{
public:
cCritterAsteroid(cGame *pownergame = NULL);
virtual int damage(int hitstrength);
}; /letc

Code

* Once have gotten this far then could try to code things.
e Here are some highlights about the spacewar game

— cGameSpacewar constructor makes the _border square and gives it a black
background

— cCritterArmedSpacewar critter is implemented so can adjust player’s
_health, _newlevelscorestep, _newlevelreward, etc. It sets the color for
player sprite and sets _lastinvasionscore to 0.

— seedCeritters gets rid of any asteroid or bullets, but leaves UFOs alone. It
adds back in _seedCount asteroids with the code:

for(int1=0 ;1 < _seedcount; 1++)

{

new cCritterAsteroid(this);

¥

— Idea on leaving UFOs alone 1s that if clearing level
causes a UFO want to let that one alive

More on code

e cGameSpacewar’s adjustGameParams:
— Ends the game if the player’s health 1s gone

— Reseeds the screen with asteroids if all the asteroids and
UFOs are dead; also speeds game up

— Adds a new UFO every fixed increase in score.

* To generically make critters move faster at the end
of a level the cCritter::MAXSPEED value 1s
increased

Yet more on code

* Except for some 1nitialization
cCritterArmedPlayerSpacewar 1s almost the
same as cCritterArmedPlayer.

e cCritterAsteroid, cCritterUFO, and
cCritterUFOSmart require more work

* They use respectively the sprites: cPolygon,
cPolyPolygon and cSpritelcon.

Asteroid constructor

cCritterAsteroid::cCritterAsteroid(cGame *pownergame): cCritter(pownergame)
{
setHealth(cCritterAsteroid::HEALTH);
setValue(cCritterAsteroid:: VALUE);
if(pownergame)
setSprite(pgame()->randomSprite(pownergame->spritetype()));
randomize(cCritter::MF_VELOCITY [cSprite:: MF_RADIUS);
psprite()->setLineColor(cColorStyle::CN_WHITE);

addForce(new
cForceClassEvade(cCritterAsteroid:: DARTACCELERATION,
cCritterAsteroid::DARTSPEEDUP, RUNTIME(cCritterBullet), FALSE));

moveToMoveBoxEdge();
if(pownergame)

addForce(new cForceObjectSeek(pplaye(),
cCritterAsteroid:: CHASEACCELERATION));

Even more code

The only differences between UFOs and UFOSmart are: the latter have different sprites,
the latter are twice as fast, and the missiles of the latter steer toward player and bounce
off edge of screen.

The code for splitting asteroids that are hit is in damage:
int cCritterAsteroid::damage(int hitstrength)
{
if(_shieldfield Il recentlyDamaged()) return O;
int deathreward = cCritter::damage(hitstrength);
playSound(“Ding”);
if(_health)
{
setRadius(radius()/sqrt(2.0));
mutate(cCritter::MF_NUDGE);

if(pownerpiota()->count(RUNTIME_CLASS(cCritterAsteroid))<
cCritterAsteroid::OVERPOPULATIONCOUNT)

replicate();
¥

return deathreward;}

2D Game Stub

 Gamestubs are meant to be possible starting
points for your games

* Idea is to have five kinds of critters: the
player, the player’s bullets, a rival armed
critter, its bullets, and a prop critter that
might act as food.

e cGameStub has a rivalcount in addition to
a seedcount from cGame

Stub’s seedcritters

vold cGameStub::seedCritters()

1
pbiota()->purgeNonPlayerWallCritter();

for(int 1=0; 1 < _seedcount; 1++)
new cCritterStubProp(this);

for (1=0; 1<_r1valcount; 1++)
new cCritterStubRival(this);

Making Prop’s Healthy

BOOL cCritterStubPlayer::collide(cCritter *pcritter)
1

BOOL collidetlag = cCritter::collide(pcritter);
if(collideflag & & pcritter-
>[sKindOf(RUNTIME_CLASS(cCritterStubProp)))

{

setHealth(health()+1);
pcritter->die();

¥

return collideflag;

The Worms Game

Worms is a test game for a bunch of different things in Pop.

Worms are made up of cCritterWormSegments that use
cForceObjectSpringRod forces to stay together.

The player’s sprite illustrates animation loops with cSpriteLoop.

Worm bullet’s run away from the player and never notice any other
critter

Eating these bullets is healthy
These bullets have a lower priority than player’s

Rivals get smaller when bump into worm segments and grow when hit
by player bullets

