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Physics

• Games are more successful if objects move at least 
loosely like in the real world. Motion in the real 
world has been well-studied by physicists.

• As far as computer simulation goes there are three 
important characteristics to consider with regard to 
physics: (a) parallelism -- many things happen at 
same time, (b)homogeneity -- assume physics on 
Mars just like on Earth, ( c) local -- things far 
apart do not influence each other much.



Parallelism

• Pop does not use threads to simulate many things 
happening at same time. Reason: why threads 
grant priority and real world parallelism are 
different.

• Objects are store in arrays and for loop used to 
cycle through these arrays to compute updates.

• Objects (mainly critters) in Pop have two 
functions used in this process update() and 
move(dt).



Why update and move?

• Update is supposed to look at all the forces, 
collisions,etc and figure out what will be new 
aggregate force vector on the object.

• Move actually moves object to a new position
• We calculate each object’s update first
• Then we move each object
• This avoids issues of whose value getting changed 

first affecting outcomes of events.
• Gives actions the appearance of occurring in 

parallel.



The Laws of Motion

• The laws of motion are homogeneous -- the same 
everywhere.

• This is implemented in Pop by having all critters 
derive from the same base class and by making 
move(dt) non-virtual. 

• Thus, after all the forces have been calculated on 
the object in an update, the actual motion can then 
be determined by Newton’s Laws.



Motion Refresher

• position -- where object is
• velocity  -- rate of change of position
• acceleration -- rate of change in velocity
• Force = mass * acceleration. Force on object is 

vector sum of individual forces applied. 
So…
acceleration = Force/mass
velocity = velocity + dt*acceleration
position = position + dt * velocity



Pop Mass

• Critters each have _mass, _density, and 
_radius fields. 

• Internally, critters ensure that _mass is 
proportional to the product of the 
_density*_radius^3.

• We’ll talk latter about changing density. 
Default is 1.



Force and Acceleration

• Each critter has a number of cForce *_pforce 
objects on it.

• To make a critter feel a force we call _pforce-
>force(this). I.e., we’re using the Strategy pattern. 
This returns a numerical vector which we can 
think of as the quantity of this particular force 
applied to this critter at this time.

• We store all of these forces in an MFC 
CTypedPtrArray(CObArray, cForce*) 
_forceArray.

• To determine all the forces acting on a critter 
update calls feelforce()



feelforce
void cCritter::feelforce()
{

cVector forcesum;
for(int i=0; i<_forcearray.GetSize(); i++ )
{

forcesum += _forcearray.GetAt(i)->force(this);
}
_acceleration = forcesum/mass();

}
Can override this method. Might do if want to simulate steering forces.  

There is also a feellistener() method which figures out keyboard
inputs’ effects on velocity and acceleration 



Implementing Forces

• cForce::force() just returns the zero vector.
• Other forces that inherit from cForce are:

cForceGravity, cForceDrag (has subclass: 
cForceVortex), cForceObject (cForceObjectSeek, 
cForceObjectSpringRod), cForceClass 
(cForceClassEvade, cForceEvadeBullet)

• Let’s look at how some of these might be 
implemented.



Gravity

• F = G *m1*m2/ D^2 where G is a constant. 
When m2 is Earth and when D doesn’t 
change much (I.e., stays close to radius of 
earth) G*m2*D^2 is constant and we get:

• F= g*m. 
• So to specify g class cForceGravity has a 

_pulldirection and an _intensity.



cForceGravity::force

cVector cForceGravity::force(cCritter 
*pCritter)

{
return _intensity*pcritter->mass() * 

_pulldirection;
}



Drag

This is a force in a resistive media (water/air). 
_windvector is used to hold the wind 
velocity/current. Again we have an _intensity. The 
force method looks like:

cVector cForceDrag::force(cCritter *pCritter)
{

Real area = pcritter->radius()*pcritter->radius();
return  cVector(area*_intensity*(_windvector - pcritter-

>velocity()));
}



cForceObject
• Used to model a critter’s reactions to some other critter.
• Has a cCritter *_pnode reference
• Can use this reference to compute distance between two 

critter and use to model spring forces. This is done in 
cForceObjectSpringRod.

• Can also use to get one critter to chase/evade another 
critter. this is done in cForceObjectSeek and 
cForceClassEvade. 

• If want to reference more than one critter than use 
cForceClass. 

• Another interesting force is cForceWaypoint. (see 7.8 in 
book).



Preserving Physics

• You should be able to make any change you 
want to the critters motion without having 
to override move(dt). For example,
– Can create steady cForces to simulate constant 

acceleration
– to apply an impulse change the critter’s velocity 

using setVelocity.
– to teleport the critter can use moveTo()



Terrain Generation

• Algorithms depend on types of terrain.
• Today will consider random dungeon 

generation
• Random  topography.



Random dungeons

• Imagine world lives on some flat playing field 
with a given x and y size. 

• Pick several random x values (vertical lines)  less 
than the x size. 

• Pick several random y values (horizontal line) less 
than the y size.

• These line induce a set of rectangles on the world. 
Can choose among these, randomly discarding the 
ones that are too small. These are the rooms.



More Random Dungeons

• For each room choose at random whether or not a 
given wall has a door. Then choose at random 
along the wall where the door is.

• Starting from one room. Connect an as yet non 
connected room to those already connected.

• To do this view the corners of each room as well 
as the doors as vertices in a graph. Let there be an 
edge between any two vertices if there is not a 
room in-between.

• Using this graph and path finding algorithms 
connect doors.



Random topography

• Again imagine world as a having some fixed x and 
y extents.

• Pick some random point on this world as well as 
how high they are.

• Now iteratively erode these spikes unto 
neighboring points.

• Good for generating volcano like topography.
• Can also use random line techniques for more 

``plate tectonic’’ like scenery.
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