
Simulating Physics, Generating
2D terrains

CS134

Chris Pollett

Sep. 20, 2004

Introduction
• Physics

• Parallelism

• The Laws of Motion

• Force and acceleration

• Implementing Forces

• Preserving Physics

• Terrain Generation

Physics

• Games are more successful if objects move at least
loosely like in the real world. Motion in the real
world has been well-studied by physicists.

• As far as computer simulation goes there are three
important characteristics to consider with regard to
physics: (a) parallelism -- many things happen at
same time, (b)homogeneity -- assume physics on
Mars just like on Earth, (c) local -- things far
apart do not influence each other much.

Parallelism

• Pop does not use threads to simulate many things
happening at same time. Reason: why threads
grant priority and real world parallelism are
different.

• Objects are store in arrays and for loop used to
cycle through these arrays to compute updates.

• Objects (mainly critters) in Pop have two
functions used in this process update() and
move(dt).

Why update and move?

• Update is supposed to look at all the forces,
collisions,etc and figure out what will be new
aggregate force vector on the object.

• Move actually moves object to a new position
• We calculate each object’s update first
• Then we move each object
• This avoids issues of whose value getting changed

first affecting outcomes of events.
• Gives actions the appearance of occurring in

parallel.

The Laws of Motion

• The laws of motion are homogeneous -- the same
everywhere.

• This is implemented in Pop by having all critters
derive from the same base class and by making
move(dt) non-virtual.

• Thus, after all the forces have been calculated on
the object in an update, the actual motion can then
be determined by Newton’s Laws.

Motion Refresher

• position -- where object is
• velocity -- rate of change of position
• acceleration -- rate of change in velocity
• Force = mass * acceleration. Force on object is

vector sum of individual forces applied.
So…
acceleration = Force/mass
velocity = velocity + dt*acceleration
position = position + dt * velocity

Pop Mass

• Critters each have _mass, _density, and
_radius fields.

• Internally, critters ensure that _mass is
proportional to the product of the
_density*_radius^3.

• We’ll talk latter about changing density.
Default is 1.

Force and Acceleration

• Each critter has a number of cForce *_pforce
objects on it.

• To make a critter feel a force we call _pforce-
>force(this). I.e., we’re using the Strategy pattern.
This returns a numerical vector which we can
think of as the quantity of this particular force
applied to this critter at this time.

• We store all of these forces in an MFC
CTypedPtrArray(CObArray, cForce*)
_forceArray.

• To determine all the forces acting on a critter
update calls feelforce()

feelforce
void cCritter::feelforce()
{

cVector forcesum;
for(int i=0; i<_forcearray.GetSize(); i++)
{

forcesum += _forcearray.GetAt(i)->force(this);
}
_acceleration = forcesum/mass();

}
Can override this method. Might do if want to simulate steering forces.

There is also a feellistener() method which figures out keyboard
inputs’ effects on velocity and acceleration

Implementing Forces

• cForce::force() just returns the zero vector.
• Other forces that inherit from cForce are:

cForceGravity, cForceDrag (has subclass:
cForceVortex), cForceObject (cForceObjectSeek,
cForceObjectSpringRod), cForceClass
(cForceClassEvade, cForceEvadeBullet)

• Let’s look at how some of these might be
implemented.

Gravity

• F = G *m1*m2/ D^2 where G is a constant.
When m2 is Earth and when D doesn’t
change much (I.e., stays close to radius of
earth) G*m2*D^2 is constant and we get:

• F= g*m.
• So to specify g class cForceGravity has a

_pulldirection and an _intensity.

cForceGravity::force

cVector cForceGravity::force(cCritter
*pCritter)

{
return _intensity*pcritter->mass() *

_pulldirection;
}

Drag

This is a force in a resistive media (water/air).
_windvector is used to hold the wind
velocity/current. Again we have an _intensity. The
force method looks like:

cVector cForceDrag::force(cCritter *pCritter)
{

Real area = pcritter->radius()*pcritter->radius();
return cVector(area*_intensity*(_windvector - pcritter-

>velocity()));
}

cForceObject
• Used to model a critter’s reactions to some other critter.
• Has a cCritter *_pnode reference
• Can use this reference to compute distance between two

critter and use to model spring forces. This is done in
cForceObjectSpringRod.

• Can also use to get one critter to chase/evade another
critter. this is done in cForceObjectSeek and
cForceClassEvade.

• If want to reference more than one critter than use
cForceClass.

• Another interesting force is cForceWaypoint. (see 7.8 in
book).

Preserving Physics

• You should be able to make any change you
want to the critters motion without having
to override move(dt). For example,
– Can create steady cForces to simulate constant

acceleration
– to apply an impulse change the critter’s velocity

using setVelocity.
– to teleport the critter can use moveTo()

Terrain Generation

• Algorithms depend on types of terrain.
• Today will consider random dungeon

generation
• Random topography.

Random dungeons

• Imagine world lives on some flat playing field
with a given x and y size.

• Pick several random x values (vertical lines) less
than the x size.

• Pick several random y values (horizontal line) less
than the y size.

• These line induce a set of rectangles on the world.
Can choose among these, randomly discarding the
ones that are too small. These are the rooms.

More Random Dungeons

• For each room choose at random whether or not a
given wall has a door. Then choose at random
along the wall where the door is.

• Starting from one room. Connect an as yet non
connected room to those already connected.

• To do this view the corners of each room as well
as the doors as vertices in a graph. Let there be an
edge between any two vertices if there is not a
room in-between.

• Using this graph and path finding algorithms
connect doors.

Random topography

• Again imagine world as a having some fixed x and
y extents.

• Pick some random point on this world as well as
how high they are.

• Now iteratively erode these spikes unto
neighboring points.

• Good for generating volcano like topography.
• Can also use random line techniques for more

``plate tectonic’’ like scenery.

	Simulating Physics, Generating 2D terrains
	Introduction
	Physics
	Parallelism
	Why update and move?
	The Laws of Motion
	Motion Refresher
	Pop Mass
	Force and Acceleration
	feelforce
	Implementing Forces
	Gravity
	cForceGravity::force
	Drag
	cForceObject
	Preserving Physics
	Terrain Generation
	Random dungeons
	More Random Dungeons
	Random topography

