
Shooters and bullets

CS134
Chris Pollett
Oct 18, 2004.

Outline

• High-level shooter design
• cCritterArmed
• cCritterBullet
• damage and draw
• Armed players and armed robots
• cCritterArmed/cCritterBullet association

High-level design of shooters

• A class cCritterArmed is used to encapsulate
shooting behavior
– Has new methods aimAt and shoot
– Overrides draw and update

• cCritterArmedPlayer and cCritterArmedRobot
inherit from it.

• A cCritterArmedRobot and a critter pointer
_ptarget that it tries to shoot at.

• Have a class cCritterBullet for what is shot.
– Has new methods initialize and target
– Overrides update, collide and collidesWith

cCritterArmed

• cCritterArmed::update is responsible for
whether shoot is called. It checks:
– if the critter’s _armed flag is on.
– if the critter’s _bshooting flag is on (so critter

is currently shooting).
• For robots/rivals the _bshooting flag is

continually on and _waitshoot is used to
control time between shots

Code for update
void cCritterArmed::update(CPopview *pactiveview)
{

cCritter::update(pactiveview);
if(_aimtoattitudelock)

setAimVector(attitudeTangle());
if(_armed && _bshooting && (_age - _ageshoot >_waitshoot))
{

shoot();
_ageshoot = _age;

}
}

More on cCritterArmed

• For the player class, to make the direction of the
gun visible, draw is overriden to draw a line
segment under cCritterArmed’s sprite

• There is a CRuntimeClass *_pbulletclass variable
to keep track of what kind of bullets to use.
– So don’t need to override shoot()

• shoot() does the following:
– if more than _maxbullets active, deletes oldest
– creates a pbullet with pbulletclass->CreateObject()
– calls pbullet->initialize(this) to set up bullet.

cCritterBullet

Has a no-argument constructor which:
– sets the bullet’s _collidepriority to

cCollide::CP_BULLET. (higher than normal critter)
– sets _usefixedlifetime to TRUE and sets duration of

lifetime to cCritterBullet::FIXEDLIFETIME (3sec’s)
– makes a yellow isosceles triangle the default sprite
– sets the bullet’s speed, _maxspeed, and _hitstrength

cCritterBullet::initialize

• matches the bullet’s attitude to the shooter’s
• positions the bullet at the tip of the shooter’s gun
• sets the direction of the bullet’s velocity to match

shooter’s _aimvector. Speed comes from the
constructor. (can view speed as muzzle velocity)

• attaches a copy of the shooter’s physics forces to
the bullet

• copies the shooter’s _movebox to the bullet
• gives the bullet the same _ptarget as the shooter

cBullet::update

void cCritterBullet(CPopView *pactiveview)
{

cCritter::update(pactiveview);
if(_outcode && _dieatedges) //die when close to edge of
//world. set _dieatedges false if want bullet’s to bounce
{

delete_me();
return;

}
}

cCritterBullet::collide

• collide is where bullet do damage
BOOL cCritterBullet::collide(cCritter *pcritter)
{

if(isTarget(pcritter)
{

if(!touch(pcritter))
return false;

int hitscore = pcritter->damage(_hitstrength);
delete_me();
if(_pshooter) _pshooter->addScore(histscore);
return TRUE;

}
else return cCritter::collide(pcritter);

}

cCritterBulletSilver

• Unlike other bullets, silver bullets override
isTarget to target only one critter rather than one
kind of critter:
BOOL cCritterBulletSilver::isTarget(cCritter* pcritter)
{

return pcritter == _ptarget;
}

• _collidepriority is slightly lower than normal
bullets -- allows one to shoot at these kind of
bullets in Spacewar

damage and draw
• The cCritter method damage looks like (might want to override to play

a sound):
int cCritter::damage(int hitstrength)
{

if(_shieldflag || recentlyDamaged())
 //recentlyDamaged require a safe amount of
 // time to pass before can be damage again

return 0;
_lasthit_age = _age;
_health -= hitstrength; //health usual starts 1 so this can kill
if(_health <= 0){_health =0; die(); return _value;}
return 0;

}
Useful to indicate critter temporarily can’t be damaged so override

draw

How draw indicates recently
damaged

void cCritter::draw(cGraphics *pgraphics, int
drawflags)

{
if(recentlyDamaged())
{

drawflags |= CPopView::DF_WIREFRAME;
//draw in wireframe if just damaged

}
//more code

}

Armed players

• player shoots when spacebar or left mouse clicked.
This is done by overriding feellistener(dt):
void cCritterArmedPlayer::feellistener(Real dt)
{

cCritter::feellistener(dt);
_bshooting = (pgame()->keystate(VK_SPACE) ==

cController::KEYON);
if(pgame()->keystate(VK_LBUTTON) ==

cController::KEYON)
{

_bshooting = TRUE;
aimAt(pgame()->cursorpos());

}
}

More on armed player’s

• shoot() in this case adds player speed of motion
(does it only if two are going same direction)

• Constructor calls:
– setAttitudeMotionLock(FALSE) so player can move

direction independently of motion
– sets sprite to be a red isosceles triangle
– overrides damage to play a sound
– overrides draw to draw a circle around the player

• Class has a _sensitive field used by collide to
cause damage to be called if touch another critter

Armed Robots

• Robot’s _bshooting is always true.
• _waitshoot is used to say delay between

shots
• Can set with setWaitShoot(Real waitshoot)
• To avoid shooting in synchrony this method

adds a little randomness.

cCritterArmed/cCritterBullet
association

• Bullets have a *_pshooter field so that:
– A bullet doesn’t shoot its shooter
– When the bullet damages something, points can be

awarded to the player
– When a bullet dies it can notify its critter

• Armed critters have an array of bullets shot so that
– If an armed critter wants to shoot more than a limited

number of bullets, oldest deleted first
– When an armed critter is gone it can notify its bullets

Destruction

cCritterBullet::~cCritterBullet()
{

if(_pshooter)
_pshooter->removeBullet(this);

}

cCritterArmed::~cCritterArmed()
{
 for(int i = 0; i<_bulletarray.GetSize(); i++)

_bulletarray.GetAt(i)->_pshooter = NULL;
}

