
Mouse, cursors, and keyboard

CS134
Chris Pollett

Nov. 17, 2004.

Outline

• Mouse Messages
• Cursor Tools
• The Mouse Wheel
• Focus and Autofocus
• The Keyboard

Mouse Messages
• Windows generates a number of mouse related messages:

WM_MOUSEMOVE, WM_ONLBUTTONDOWN, etc.
• In MFC, these are handled by the corresponding handler

functions: OnMouseMove, OnLButtonDown, etc.
• One can select which class is responsible for handling a

message by going to class view, right clicking the name of
the class, and selecting Properties and then clicking on the
message button.

• Your class will then get a default message handler written
in it which you can rewrite

Example

void CPopView::OnLButtonDown(UINT
nFlags, CPoint point)

{
SetCapture();
pgame->onLButtonDown(this, nFlags, point);

}

Calling the OnDraw Method

• Your code should never call OnDraw directly.
• Instead, can do things like pDoc-

>UpdateAllViews(NULL);
• Or what we might do in the case of a mouse event

is call Invalidate();
• Actually, what happens in Pop:

CPopView::OnMouseView might call
CPopDoc::UpdateAllViews which calls
CPopView::OnUpdate, which calls
CPopView::Invalidate which calls
CPopView::OnDraw

Cursor Tools

• As might have multiple views, data for
cursor type stored in CPopView. i.e., it has
an HCURSOR _hCursor handle.

Changing the Cursor

• Most functions related to the cursor are that --
Windows functions, not MFC methods.

• For example, one can change the cursor’s
appearance using SetCursor(HCURSOR hCursor).

• We might change the cursor in response to
menuitem events that we added. Say the menu
item View| Pin Cursor was selected. Then in our
CPopView::OnViewPinCursor method we might
call SetCursor.

Making a Cursor in the Resource
Editor

• To create a special looking cursor, one can do to Project| Add resource|
… Then select the kind of resource, i.e., a Cursor, you want to add.
You then get an Image Editing window in which you can work on your
cursor.

• Be aware:
– Cursors are only black and white
– Want most of a cursor to be transparent, so be sure to use one of

the transparent colors.
– Cursors have an associated Hot Spot that you can change in the

Resource Workshop.
– You probably also want to change the ID of your cursor to

something other than IDC_CURSOR1

Getting a Cursor Resource
• To now uses the beautiful cursor resource you’ve created

you need to do something like: HCURSOR _hMyCursor;
_hMyCursor = LoadCursor(IDC_MYCURSOR);

• This might be done at the start of CPopApp::InitInstance();
• Want to keep _hMyCursor public so CPopView has access

to it. We can then use as:
void CPopView::OnViewMyCursor()
{ _hCursor = ((CPopApp*)::AfxGetApp())->_hMyCursor;
}

Using Cursor Tools

• OnMouseMove(UINT nFlags, CPoint
point) -- nFlags contains info on which
buttons are down, point says location of
mouse.

• For example, nFlags &MK_LBUTTON
checks if left button down.

The Mouse Wheel

• Generates a WM_MOUSEWHEEL event
can handle for instance in
CPopView::OnMouseWheel(UINT nFlags,
short zDelta, CPoint pt)

• In Pop only used right now to scroll through
the different tool types.

Focus and Autofocus

• CPopView::OnSetCursor has code to have
the view under the cursor be automatically
in focus when that option is selected in the
menu.

The Keyboard

• To handle you can handle either on OnChar
or OnKeyDown events

