
Windows/OpenGL Graphics

CS134
Chris Pollett

Nov. 15, 2004.

Outline

• Doing Windows Graphics
• CDC
• Persistent Display
• Converting to Pixel Positions
• Memory-based Device Contexts
• Linking to OpenGL
• The OpenGL State Machine
• OpenGL Code in Windows
• OpenGL in Pop

Doing Windows Graphics
• Typically:

– do some preparation work
– draw some graphics
– do some clean-up

• Example:
COLORREF bubblecolor;
int intcenterx, intcentery, intradius;
CBrush cbrush, *pbrush_old;
cbrush.CreateSolidBrush(bubblecolor); //prepare
pbrush_old = pDC->SelectObject(&cbrush);
pDC->Ellipse(intcenterx - intradius, intcentery - intradius, intcenterx +

intradius, intcentery + intradius); //draw
pDC->SelectObject(pbrush_old); //clean-up
cbrush.DeleteObject();

CDC

• Handle to a device context
• Has one primary member an HDC
• Each CDC has six tools which inherit from

GDIObject: CPen, CBrush, CBitmap, CPallette,
CFont, CRegion.

• When a CDC is created, it comes with six default
objects

• Need to exchange these for ones one wants to use.
• Don’t delete tools on a CDC
• Delete any tools one creates after one is done with

them

More CDC

• Do graphics calls within CView::OnDraw(CDC
*pDC);

• One exception is if use Memory Device contexts.
• If somewhere else in CView you need to get a

device context use GetDC() and when done
ReleaseDC(CDC *pDC);

• Once have context follow same kinds of steps in
first example

Persistent Display

• Want displays that stay the same under
window resizing.

• Want displays that stay the same when
covered and then uncovered.

To do this need to understand how the
OnDraw method is invoked.

The OnDraw method

• When CView is created by a File| New or
Window|New call, the constructor followed by
OnCreate and then OnDraw are called.

• When CView is resized then OnDraw is called
• Similarly , whenever the window is covered,

OnDraw is called
• Lastly, if CView::Invalidate is called the OnDraw

is called when no other messages on queue. Can
use UpdateView after Invalidate to make things
happen faster

More on Persistent displays

• Two common approaches.
– Have a bitmap of your scene. Draw bitmap with BitBlt

or StretchBlt each time OnDraw called.
– Have a display list consisting of the locations and what

should be displayed at them. Cycle through this list
drawing object each time OnDraw called.

• Can also mix approaches. Pop has a class
cMemoryDC which holds a bitmap and can be
added to the display lists of things to draw

Converting to Pixel Positions

• Need to be able to translate the floating
point CPoint’s and cVector’s we are using
to actual points on the screen as int’s

• Closest thing available in GDI are the
functions SetMapMode and SetViewport
(OpenGL has a glViewport function).

• Pop has its own class for handling this
called cRealPixelConverter.

cRealPixelConverter Examples

cRealConverter _rpconverter; /*should have for each
view */

_rpconverter.setRealWindow(lox,loy,hix,hiy);
// set size of world
//Override CView’s on size method
void MyCView::Onsize(UINT nType, int cx, int cy)
{

CView::OnSize(nType, cx, cy);
_rpconverter.setPixelWindow(cx,cy); //sets view size

}

More Pixel Conversion

• CPopView’s OnSize calls _pgraphics-
>setViewport(cx,cy); which calls
cRealPixelConverter::setPixelConverter in the
Windows case. Also, CPopView::OnSize calls
pviewpointcritter()-
>setAspect((Real)cx,(Real)cy);

• Once the converter has been set up the methods:
realToPixel and pixelToReal can be called to do

conversion.

Memory-based Device Contexts

• Pop uses the class cMemoryDC, a subclass
of CDC, to hold bitmaps and as offscreen
buffers.

• CPopView has a _cMemDC field which is a
cMemoryDC used for a backbuffer.

• A scene is drawn here and then copyTo is
invoked to write to actual window CDC.

• This avoids flicker.

OpenGL

• OpenGL is a graphics library
• Pop uses it to do 3D graphics
• To set up a Windows program so that it can use

this library:
– Add opengl32.lib and glu32.lib to the project
– Use the following #includes:

#include “gl/gl.h”
#include “gl/glu.h”

• OpenGL functions typically begin with gl, glu,
wgl. gl -- core library, glu -- OpenGL Utilities,
wgl -- Windows extensions

The OpenGL State Machine

• Can think of OpenGL as a finite state
machine.

• OpenGL keeps track of what is the current
color it is drawing with, what is the current
matrix it is using, etc.

• After setting up a scene for drawing we use
glFinish() or glFlush() to get it to draw.

 Sample OpenGL Fragment
//Init Window
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0); //set clipping region.
glBegin(GL_POLYGON);

glVertexf(.25, .25, 0.0);
glVertexf(.75, .25, 0.0);

 …
glEnd();
glFinish();

OpenGL Code in Windows

• OpenGL works under X-windows,
Windows, and Mac.

• The Win32 extensions include a few built-in
data types and functions which can be used
with OpenGL. For example:
ChoosePixelFormat, SelectPixelFormat,
wglCreateContext and SwapBuffers.

Sample Windows Fragment
PIXELFORMATDESCRIPTOR pixelformat;
int pixelformat_index;
HGLRC openglrenderingcontext;
pixelformatindex = ChoosePixelFormat(hdc, &pixelformat);
SelectPixelFormat(hdc, pixelformatindex, &pixelformat);
openglrenderingcontext = wglCreateContext(hdc_view);
wglMakeCurrent(hdc_view, openglrenderingcontext); /*done also in

cGraphicsOpenGL::activate()*/
//draw something
glFinish();
SwapBuffers(hdc_view);

OpenGL in Pop
• When OpenGL is being used CPopView::OnDraw(CDC *pDC)

makes a bunch of calls to _pgraphics which in turn do OpenGL calls.
• For example, _pgraphics->activate() calls wglMakeCurrent(_pdc-

>getSafeHdc(), _hRC);
• The graphics background is cleared using:

_pgraphics->clear(targetrect);
which calls glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
• Setting up the view and projection matrices are then done with:

_pviewpointcritter->loadViewMatrix();
_pviewpointcritter->loadProjectionMatrix();
//…

More OpenGL in Pop
These in turn call:
glMatrixMode(GL_MODELVIEW);
glLoadMatrix(_pviewpointcritter->attitude().inverse());
glMatrixMode(GL_PROJECTION)
gluPerspective(fieldofviewangledegrees, xtoyaspectratio, nearzclip,

farzclip);

Drawing the game world calls:
pgame()->drawCritters(_pgraphics, _drawflags);
This generates a bunch of gl and glu calls. For instance in the case of

Polygons:
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(…);
glDrawArrays(…);

Yet more OpenGL in Pop

Finally, graphics are drawn with:
_pgraphics->display(this, pDC);
which calls:
glFinish();
SwapBuffers(_pDC->getSafeHDC());

