Windows/OpenGL Graphics

CS134
Chris Pollett
Nov. 15, 2004.



Outline

Doing Windows Graphics

CDC

Persistent Display

Converting to Pixel Positions
Memory-based Device Contexts
Linking to OpenGL

The OpenGL State Machine
OpenGL Code in Windows
OpenGL 1n Pop



Doing Windows Graphics

e Typically:
— do some preparation work
— draw some graphics
— do some clean-up
e Example:
COLORREF bubblecolor;
int intcenterx, intcentery, intradius;
CBrush cbrush, *pbrush_old;
cbrush.CreateSolidBrush(bubblecolor); //prepare
pbrush_old = pDC->SelectObject(&cbrush);

pDC->Ellipse(intcenterx - intradius, intcentery - intradius, intcenterx +
intradius, intcentery + intradius); //draw

pDC->SelectObject(pbrush_old); //clean-up
cbrush.DeleteObject();



CDC

Handle to a device context

Has one primary member an HDC

Each CDC has six tools which inherit from
GDIObject: CPen, CBrush, CBitmap, CPallette,
CFont, CRegion.

When a CDC 1s created, it comes with six default
objects

Need to exchange these for ones one wants to use.
Don’t delete tools on a CDC

Delete any tools one creates after one 1s done with
them




More CDC

Do graphics calls within CView::OnDraw(CDC
*pDC);
One exception 1s if use Memory Device contexts.

If somewhere else in CView you need to get a
device context use GetDC() and when done

ReleaseDC(CDC *pDC);

Once have context follow same kinds of steps in
first example



Persistent Display

 Want displays that stay the same under
window resizing.

 Want displays that stay the same when
covered and then uncovered.

To do this need to understand how the
OnDraw method 1s invoked.



The OnDraw method

When CView is created by a Filel New or
WindowINew call, the constructor followed by
OnCreate and then OnDraw are called.

When CView i1s resized then OnDraw i1s called

Similarly , whenever the window 1s covered,
OnDraw 1s called

Lastly, if CView::Invalidate 1s called the OnDraw
1s called when no other messages on queue. Can
use UpdateView after Invalidate to make things
happen faster



More on Persistent displays

e Two common approaches.

— Have a bitmap of your scene. Draw bitmap with BitBlt
or StretchBlt each time OnDraw called.

— Have a display list consisting of the locations and what
should be displayed at them. Cycle through this list
drawing object each time OnDraw called.

e (Can also mix approaches. Pop has a class
cMemoryDC which holds a bitmap and can be
added to the display lists of things to draw



Converting to Pixel Positions

Need to be able to translate the floating
point CPoint’s and cVector’s we are using
to actual points on the screen as int’s

Closest thing available in GDI are the
functions SetMapMode and SetViewport
(OpenGL has a glViewport function).

Pop has its own class for handling this
called cRealPixelConverter.



cRealPixelConverter Examples

cRealConverter _rpconverter; /*should have for each
view */

_rpconverter.setRealWindow(lox,loy,hix,hiy);

// set size of world

//Override CView’s on size method

voild MyCView::Onsize(UINT nType, int ¢cx, int cy)

{

CView::OnSize(nType, cx, Cy);
_rpconverter.setPixelWindow(cx,cy); //sets view size

¥



More Pixel Conversion

 CPopView’s OnSize calls _pgraphics-
>setViewport(cx,cy); which calls
cRealPixelConverter::setPixelConverter in the
Windows case. Also, CPopView::OnSize calls
pviewpointcritter()-
>setAspect((Real)cx,(Real)cy);

* Once the converter has been set up the methods:

realToPixel and pixelToReal can be called to do
conversion.



Memory-based Device Contexts

Pop uses the class cMemoryDC, a subclass
of CDC, to hold bitmaps and as offscreen
buffers.

CPopView has a _cMemDC field which 1s a
cMemoryDC used for a backbuffer.

A scene 1s drawn here and then copyTo 1s
invoked to write to actual window CDC.

This avoids flicker.



OpenGL

OpenGL 1s a graphics library
Pop uses it to do 3D graphics

To set up a Windows program so that it can use
this library:
— Add opengl32.1ib and glu32.1ib to the project

— Use the following #includes:
#include “gl/gl.h”
#include “gl/glu.h”
OpenGL functions typically begin with gl, glu,
wgl. gl -- core library, glu -- OpenGL Utilities,
wgl -- Windows extensions



The OpenGL State Machine

e Can think of OpenGL as a finite state
machine.

* OpenGL keeps track of what is the current
color 1t 1s drawing with, what 1s the current
matrix it 1s using, etc.

e After setting up a scene for drawing we use
glFinish() or glFlush() to get it to draw.



Sample OpenGL Fragment

//Init Window
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
g10rtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0); //set clipping region.
glBegin(GL_POLYGON);

glVertex{(.25, .25, 0.0);

glVertex{(.75, .25, 0.0);

glEnd();
glFinish();



OpenGL Code in Windows

* OpenGL works under X-windows,
Windows, and Mac.

 The Win32 extensions include a few built-1n
data types and functions which can be used
with OpenGL. For example:
ChoosePixelFormat, SelectPixelFormat,
wglCreateContext and SwapBuffers.



Sample Windows Fragment

PIXELFORMATDESCRIPTOR pixelformat;

int pixelformat_index;

HGLRC openglrenderingcontext;

pixelformatindex = ChoosePixelFormat(hdc, &pixelformat);
SelectPixelFormat(hdc, pixelformatindex, &pixelformat);
openglrenderingcontext = wglCreateContext(hdc_view);

wglMakeCurrent(hdc_view, openglrenderingcontext); /*done also in
cGraphicsOpenGL::activate()*/

//draw something
glFinish();
SwapBuffers(hdc_view);



OpenGL 1n Pop

When OpenGL is being used CPopView::OnDraw(CDC *pDC)
makes a bunch of calls to _pgraphics which in turn do OpenGL calls.

For example, _pgraphics->activate() calls wglMakeCurrent(_pdc-
>getSafeHdc(), _hRC);

The graphics background is cleared using:

_pgraphics->clear(targetrect);

which calls glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT);

Setting up the view and projection matrices are then done with:
_pviewpointcritter->load ViewMatrix();
_pviewpointcritter->loadProjectionMatrix();

/...



More OpenGL in Pop

These in turn call:
glMatrixMode(GL_MODELVIEW);
gll.oadMatrix(_pviewpointcritter->attitude().inverse());

glMatrixMode(GL_PROJECTION)

gluPerspective(fieldofviewangledegrees, xtoyaspectratio, nearzclip,
farzclip);

Drawing the game world calls:
pgame()->drawCritters(_pgraphics, _drawflags);

This generates a bunch of gl and glu calls. For instance in the case of
Polygons:

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(...);
glDrawArrays(...);



Yet more OpenGL 1n Pop

Finally, graphics are drawn with:
_pgraphics->display(this, pDC);
which calls:
glFinish();
SwapBuftfers(_pDC->getSateHDC());



