
Animation

CS134

Chris Pollett

Sep. 15, 2004

Introduction

Interested in writing programs which
continually update objects on the screen.
We’ll talk about:
– Creating endless animation loops
– Simulating speed in a processor independent

fashion
– Cascading animation activities
– Updating different views of the animation

Creating endless animation loops

• In a typical game images on screen change even if
you are not giving any input.

• Where in the program should this continual
updating be done?

• How can one synchronize inputs with game
updates?

• A UML diagram called an activity diagram is
useful for describing how this is done in Pop.

Activity diagram of continuous
drawing (like a flow chart)

Start

OnIdle:Measure dt
and call the critters

move(dt)

Check message queue
and process messages

Check user actions and
enqueue and messages

Not in exit state Not in exit state

Program in exit state

End

More on Activity Diagrams

• In such a diagram diamonds indicate test points.
• Arrows show the flow of program control.

Horizontal lines indicate forks and joins of parallel
operations

• OnIdle will get called over and over and this is
where we should put our animation code.

• Above can be viewed as an example of the
Command pattern.

More on OnIdle

• We animate by overriding CWinApp::OnIdle.
• Want to make calls to the CDocument objects

which will cascade down to the cGame objects.
• OnIdle is called at least once each time that it

finishes processing its current messages
• OnIdle has a return type BOOL. true = keep

calling OnIdle even if no messages.

First pass at Overriding OnIdle

BOOL CPopApp::OnIdle(LONG lCount)
{

CWinApp::OnIdle(lCount);
animateAllDocs(0.05);
return TRUE;

}

Issues with First Pass

• 0.05 is supposed to indicate number of seconds
between updates. However, would like to also be
able to have this reflect how long it takes to
update.

• To do this we’ll use cPerformanceTimer which
encapsulate the clock calls needed figure out much
time has passed. Has a tick method. In addition:
– Would like to be able to turn animation on and off.
– Would like to minimize impact of code on other

running processes.

Simulating speed in a processor
independent fashion

• What value should be used for an
animations dt where dt is our smallest
timestep?

• If we update a point according to a rule like:
new_pos = old_pos +dt*vel, want it to look
the same on different speed hardware.

• So dt should be a time in second not
processor cycles.

First pass at Overriding OnIdle

BOOL CPopApp::OnIdle(LONG lCount)
{

CWinApp::OnIdle(lCount);
double dt = _timer.tick();/*uses system clock to

find out time elapsed */
animateAllDocs(dt);
return TRUE;

}

Size of dt

• Suppose on faster hardware get 50 updates a
second; whereas on slower, hardware have 25
updates a second.

• In the first case, dt= .02 and in the second case dt
=.04.

• So in first case, when do an update calculate
new_pos =old_ pos +.02*vel and in the second
case new_pos =old_pos+.04*vel.

• So motion is finer/smoother on faster hardware.

Comment on velocity

• By default critters in Pop have a default
speed of 2.0. Then if window world size is
10 wide can expect it takes 5 seconds for an
object to cross screen.

• Time to cross will not depend on hardware.

• What does tick() member function look
like?

cPerformanceTimer(){_currenttime =
getsystemtime();}

double getsystemtime();
double tick()
{

double systemtime = getsystemtime();
_dt = systemtime - _currenttime;
_currenttime = systemtime;
return _dt;

}

double _currenttime
double _dt

cPerformanceTimer

Measuring a Timestep

More on cPerformanceTimer

• getsystemtime is a private function of this class.
Either uses clock() on old systems or
timeGetTime() on newer systems. Latter is fairly
precise as based on machine’s processing speed.

• When you pause the game (for example because
of requiring a dialog to be filled), you should call
_timer.tick() to prevent jerkiness in motion.

• Beside dt, also have _maxdt and _mindt. The
former is used to allow smooth motion on old
machines (even if things must look slower). The
latter is to prevent the graphics pipeline from
being choked if processor speed is to fast.

Graphics Refresh Rate

• To figure out what _mindt should be call
::GetDeviceCaps(hdc, VREFRESH). Then
take_mindt to be inverse of this.

• To guarantee _mindt has passed since the
last refresh we can these have process spin,
in tick(), in a while loop until greater than
this amount of time has passed

Improving Animation Speed

• Speed depends on amount computation and
graphics overhead required to put an object on the
screen.

• If N critters might possible interact with any
amongst themselves, could require O(N^2) time to
compute the total interaction.

• Usually not doing this so graphics overhead will
tend to dominate.

• Exact cost will depend on if using MFC or
OpenGL.

Pixel Overhead

• How much time does it take to render the
pixels in a frame?

• pixel overhead≈area of rectangle *colors
per pixel * bus overhead.

• The number of pixels you are moving grows
as the square of the edge dimension.

• On same hardware a 800x600 frame renders
4 times faster than a 1600x1200 one.

Number of Colors

• Some games take over the screen and run in
single task mode.

• These games might then set the color depth
as it likes in order to reduce pixel overhead.

• This is not done in Pop.
• Another way to speed things up is to

increase the refresh rate on the graphics
card, if possible.

Bus Overhead
• Time to move a pixel from one memory location

to another.
• Generally, build up scene in an off-screen graphics

area, then when ready move whole screen to frame
buffer which graphics card displays.

• Bus overhead depends on graphics card. This
moving can be avoid to some degree using page-
flipping

• Used to be page-flipping only worked for whole
screens.

• When possible OpenGL does page flipping for
windowed apps

Cascading animation activities
What things are called by animateAllDocs(dt)?
• This function calls CPopDoc::stepDoc(dt) for each

CPopDoc associated with game.
• This latter method calls cGame::step(dt) for the

game inside the CPopDoc.
• step(dt) updates the positions and appearances of an

array of critters in the game
• CPopDoc::stepDoc(dt) then calls

CPopDoc::UpdateAllViews which in turn calls each
cPopView’s OnDraw

• OnDraw uses the CPopView’s cGrpahics
*_pGraphics member to draw on the screen view
window.

stepDoc

void CPopDoc::stepDoc(real dt)
{

_pgame->step(dt);
cTimeHint timehint(dt);
UpdateAllViews(NULL, 0, &timehint);

}

Updating different views of the
animation

• UpdateAllViews(CView *pSender, int Lhint,
CObject *pHint) generate calls to
CPopView::OnUpdate(CView *pSender, int
LHint, CObject *phint)

• This might just call Invalidate() to enqueue a
message which will be handled by OnDraw.

• Could do calls like GetDocument()-
>UpdateAllViews(…) if wanted one view to be
able to contact another.

• LHint 0 for normal updates,
CPopDoc::VIEW_START_GAME for start of
game

	Animation
	Introduction
	Creating endless animation loops
	Activity diagram of continuous drawing (like a flow chart)
	More on Activity Diagrams
	More on OnIdle
	First pass at Overriding OnIdle
	Issues with First Pass
	Simulating speed in a processor independent fashion
	First pass at Overriding OnIdle
	Size of dt
	Comment on velocity
	Measuring a Timestep
	More on cPerformanceTimer
	Graphics Refresh Rate
	Improving Animation Speed
	Pixel Overhead
	Number of Colors
	Bus Overhead
	Cascading animation activities
	stepDoc
	Updating different views of the animation

