[1steners

CS134
Chris Pollett
Oct 13, 2004.

Outline

cController

From keypress to critter
Listeners

Shooting with Listeners
Viewer listeners

Listeners 1nitializing critters

cController

In MFC, void CView::OnKeyDown(UINT nChar, UINT nRepChnt,
UINT nFlags) is triggered whenever a key is pressed.

— Here nFlags is a set of bitflags saying if Ctrl, Alt, and/or Shift are
being pressed

— nRepChnt is supposed to hold the number of keypresses caused by
holding that key down

In Pop, the class cController is used to hold the state of the keyboard
and mouse.

It has a useful accessor functions to get this info.

Possible keys are represented as in Windows by integer keycodes
(#defines VK_?7?7. Ex: VK_A, VK_LEFT, etc)

More on cController

e cController maintains an unsigned integer
for each key representing the current
keystate.

e Bit-flags in this integer indicate 1f Shift or
CTRL also pressed.

e Flags also say if a key has been down for
more than one cGame::step call.

cController Class (partial defn)

class cController : public CObject
1

protected:
UINT _keystate[VKKEYCOUNT];
Real _keystateage[VKKEYCOUNT];

public:
cController();
virtual void update(Real dt);
BOOL keyon(int vkcode);
BOOL keyonplain(int vkcode);
BOOL keyoncontrol(int vkcode); ...

From keypress to critter

When you press a key:
— An OnKeyDown event goes to the active CPopView
— CPopView::OnKeyDown calls cGame::onKeyDown
— The cGame object stores the key information in its *_pcontroller
— The cGame::step method calls cCeritter::feellistener of the player

— The Player’s critter calls _plistener->listen(dt, this) where
_plistener is a pointer to a cListener

— listen uses pcritter->pgame()->pcontroller() to get at _pcontroller
to see which keys are currently being pressed

— Depending on this, cCeritter::setAcceleration and similar methods
are called

Remarks

* Notice any critter can access pcritter-
>pgame()->pcontroller()

e Can use this for multiperson games

[1steners

As we already said:
void cCritter::feellistener(Real dt)

{

_plistener->listen(dt, this);

¥

We pass this so can adjust fields of cCritter
Also, pass this so cListener can navigate to cGame

The dt 1s passed so adjustments to critters position
can depend on how much time has passed.

How feellistener 1s called

feellistener 1s called within cGame::step.

cGame::step generates calls feellistener(), move(),
update(), feelistener(), move(), update()....

Notice update() will call feelforce() so feellistener
typically adds in more acceleration to those just

added

These accelerations are used to calculate the
movement done 1n move()

UML for different kinds of

I 1steners
& :
cCritter cListener
cListenerScootern cListenerArrow| | cListenerCar |||cListenerSpaceShip
cListenerCursor cListenerHopper

Example Listener

void cListenerArrow::listen(Real dt, cCritter *pcritter)

{

cController *pcontroller = pcritter->pgame->pcontroller();
pcritter->setAcceleration(cVector::ZEROVECTOR);
if(!pcontroller->keyonplain(VK_LEFT) &&
Ipcontroller->keyonplain(VK_RIGHT) &&
I'pcontroller->keyonplain(VK_DOWN) &&
Ipcontroller->keyonplain(VK_UP) &&
Ipcontroller->keyonplain(VK_PAGEDOWN) && //used in 3D for z direction
Ipcontroller->keyonplain(VK_PAGEUP) &&) //used in 3D
{
pcritter->setVelocity(cVector:: ZEROVECTOR);
return;
h
if(pcontroller->keyoneplain(VK_LEFT))
pcritter->setVelocity(-pcritter->maxspeed()*cVector:: XAXIS);

More On Example

 End of function adjusts attitude matrix if
motion lock on.

cListenerScooter

e Also directly sets the critter’s velocity.

e So also sets acceleration vector to zero before changing velocity.

e In scooter:

Up key sets the critter’s velocity to its maxspeed in the direction of
the tangent. (note: if stop pressing key velocity set to zero)

The down key sets the critter’s veolcity to maxspeed in the
opposite direction

The left and right arrows cause the critter to yaw. That is, the
tangent is rotated about the binormal.

Page-up and page-down cause the critter to pitch. That is, the
tangent 1s rotated around the normal.

Finally, Home and End keys ‘roll’ the critter by rotating its normal
around the tangent

Critter’s direction of looking also visibly updated.

More on listeners

 To make things more responsive, it is useful to
have two turn speed’s

* Some listeners don’t act directly on velocity but
use acceleration instead: cListenerSpaceship, and
cListenerCar both add and subtract from the
acceleration.

— Spaceship adds in the direction currently pointing
— Car adds 1n the direction of current motion.

e cListenerCursor sets acceleration to zero, then sets
velocity to what 1s needed to move critter to
current mouse location in dt time.

Shooting with Listeners

For many games, it 1s useful to have critters that can
shoot/eject objects.

Suppose one wants to allow shooting to be done by hitting
the space bar or pushing the left mouse button.

Shooting critter’s are typically derived from
cCritterArmedPlayer which can handle this kind of
shooting via the code 1in its feellistener method. The state
of shooting or not 1s toggled via a _bshooting variable.

Reason this code 1s done in feellistener 1s so that code does
not have to be executed by listening critters that don’t
shoot.

Shooting feellistener code

void cCritterArmedPlayer::feellistener(Real dt)
{

cCritter::feellistener(dt);

_bshooting = (pgame()->keystate(VK_SPACE) ==
cController::KEYON);

if(pgame()->keystate(VK_LBUTTON) ==
cController::KEYON)

{

_bshooting = TRUE;
aimAt(pgame()->cursorpos());

Viewer listeners

Each CPopView has a cCritterViewer *_pviewpointcritter that 1s used
to set the projection matrix and view matrix inside the
CPopView::OnDraw call.

A view shows the game world as seen from its _pviewpointcritter.

The programmer can change the appearance of the view by moving or
rotating the _pviewpointcritter, and setting the zoom as discussed last
day.

In order to let the game player change the viewpoint can add a listener
to this critter.

— pviewpointcritter->setListener(new cListener ViewerOrtho());

cListenerViewerOrtho is one of three special listeners in
Pop just for viewers.

More Viewer Listeners

cListenerOrtho 1s used for 2D-worlds. Reacts to Ctrl +
arrow keys. Moves the _pviewpointcritter back and forth
parallel to the XY-plane. Ins and Del generate in out zoom
calls.

cListenerViewerFly and cListenerViewerRide are always
used as the _pviewpointcritter listener for 3D-worlds. In
fly mode, Ctrl+arrow combinations move the viewpoint
critter along its tangent, normal, and binormal directions.
Ctrl+Shift+arrow rotates the _pviewpointcritter along these
axes. Ins and Del zooms in/out.

cListenerViewerRide 1s used to let the viewer ride upon the
games pplayer ar a fixed cVector _offset.

Listeners 1nitializing critters

e The clistener class has a virtual void
install(cCritter *pcritter) method.

* Recall attach a listener to a critter using cCritter’s
setListener method(cListener *plistener).

» setlistener calls plistener->install(this) to give the
listener a chance to make adjustment to the critter
before it starts to be used.

