
Listeners

CS134
Chris Pollett
Oct 13, 2004.

Outline

• cController
• From keypress to critter
• Listeners
• Shooting with Listeners
• Viewer listeners
• Listeners initializing critters

cController
• In MFC, void CView::OnKeyDown(UINT nChar, UINT nRepCnt,

UINT nFlags) is triggered whenever a key is pressed.
– Here nFlags is a set of bitflags saying if Ctrl, Alt, and/or Shift are

being pressed
– nRepCnt is supposed to hold the number of keypresses caused by

holding that key down
• In Pop, the class cController is used to hold the state of the keyboard

and mouse.
• It has a useful accessor functions to get this info.
• Possible keys are represented as in Windows by integer keycodes

(#defines VK_???. Ex: VK_A, VK_LEFT, etc)

More on cController

• cController maintains an unsigned integer
for each key representing the current
keystate.

• Bit-flags in this integer indicate if Shift or
CTRL also pressed.

• Flags also say if a key has been down for
more than one cGame::step call.

cController Class (partial defn)

class cController : public CObject
{

protected:
UINT _keystate[VKKEYCOUNT];
Real _keystateage[VKKEYCOUNT];

public:
cController();
virtual void update(Real dt);
BOOL keyon(int vkcode);
BOOL keyonplain(int vkcode);
BOOL keyoncontrol(int vkcode); …

};

From keypress to critter
When you press a key:

– An OnKeyDown event goes to the active CPopView
– CPopView::OnKeyDown calls cGame::onKeyDown
– The cGame object stores the key information in its *_pcontroller
– The cGame::step method calls cCritter::feellistener of the player
– The Player’s critter calls _plistener->listen(dt, this) where

_plistener is a pointer to a cListener
– listen uses pcritter->pgame()->pcontroller() to get at _pcontroller

to see which keys are currently being pressed
– Depending on this, cCritter::setAcceleration and similar methods

are called

Remarks

• Notice any critter can access pcritter-
>pgame()->pcontroller()

• Can use this for multiperson games

Listeners

• As we already said:
void cCritter::feellistener(Real dt)
{

_plistener->listen(dt, this);
}

• We pass this so can adjust fields of cCritter
• Also, pass this so cListener can navigate to cGame
• The dt is passed so adjustments to critters position

can depend on how much time has passed.

How feellistener is called

• feellistener is called within cGame::step.
• cGame::step generates calls feellistener(), move(),

update(), feelistener(), move(), update()….
• Notice update() will call feelforce() so feellistener

typically adds in more acceleration to those just
added

• These accelerations are used to calculate the
movement done in move()

UML for different kinds of
Listeners

cCritter cListener

cListenerScooter cListenerArrow cListenerCar cListenerSpaceShip

cListenerCursor cListenerHopper

Example Listener
void cListenerArrow::listen(Real dt, cCritter *pcritter)
{

cController *pcontroller = pcritter->pgame->pcontroller();
pcritter->setAcceleration(cVector::ZEROVECTOR);
if(!pcontroller->keyonplain(VK_LEFT) &&
 !pcontroller->keyonplain(VK_RIGHT) &&
 !pcontroller->keyonplain(VK_DOWN) &&
 !pcontroller->keyonplain(VK_UP) &&
 !pcontroller->keyonplain(VK_PAGEDOWN) && //used in 3D for z direction
 !pcontroller->keyonplain(VK_PAGEUP) &&) //used in 3D
{

pcritter->setVelocity(cVector::ZEROVECTOR);
return;

}
if(pcontroller->keyoneplain(VK_LEFT))

pcritter->setVelocity(-pcritter->maxspeed()*cVector::XAXIS);
…..

}

More On Example

• End of function adjusts attitude matrix if
motion lock on.

cListenerScooter
• Also directly sets the critter’s velocity.
• So also sets acceleration vector to zero before changing velocity.
• In scooter:

– Up key sets the critter’s velocity to its maxspeed in the direction of
the tangent. (note: if stop pressing key velocity set to zero)

– The down key sets the critter’s veolcity to maxspeed in the
opposite direction

– The left and right arrows cause the critter to yaw. That is, the
tangent is rotated about the binormal.

– Page-up and page-down cause the critter to pitch. That is, the
tangent is rotated around the normal.

– Finally, Home and End keys ‘roll’ the critter by rotating its normal
around the tangent

– Critter’s direction of looking also visibly updated.

More on listeners

• To make things more responsive, it is useful to
have two turn speed’s

• Some listeners don’t act directly on velocity but
use acceleration instead: cListenerSpaceship, and
cListenerCar both add and subtract from the
acceleration.
– Spaceship adds in the direction currently pointing
– Car adds in the direction of current motion.

• cListenerCursor sets acceleration to zero, then sets
velocity to what is needed to move critter to
current mouse location in dt time.

Shooting with Listeners
• For many games, it is useful to have critters that can

shoot/eject objects.
• Suppose one wants to allow shooting to be done by hitting

the space bar or pushing the left mouse button.
• Shooting critter’s are typically derived from

cCritterArmedPlayer which can handle this kind of
shooting via the code in its feellistener method. The state
of shooting or not is toggled via a _bshooting variable.

• Reason this code is done in feellistener is so that code does
not have to be executed by listening critters that don’t
shoot.

Shooting feellistener code

void cCritterArmedPlayer::feellistener(Real dt)
{

cCritter::feellistener(dt);
_bshooting = (pgame()->keystate(VK_SPACE) ==

cController::KEYON);
if(pgame()->keystate(VK_LBUTTON) ==

cController::KEYON)
{

_bshooting = TRUE;
aimAt(pgame()->cursorpos());

}
}

Viewer listeners

• Each CPopView has a cCritterViewer *_pviewpointcritter that is used
to set the projection matrix and view matrix inside the
CPopView::OnDraw call.

• A view shows the game world as seen from its _pviewpointcritter.
• The programmer can change the appearance of the view by moving or

rotating the _pviewpointcritter, and setting the zoom as discussed last
day.

• In order to let the game player change the viewpoint can add a listener
to this critter.
– pviewpointcritter->setListener(new cListenerViewerOrtho());

• cListenerViewerOrtho is one of three special listeners in
Pop just for viewers.

More Viewer Listeners

• cListenerOrtho is used for 2D-worlds. Reacts to Ctrl +
arrow keys. Moves the _pviewpointcritter back and forth
parallel to the XY-plane. Ins and Del generate in out zoom
calls.

• cListenerViewerFly and cListenerViewerRide are always
used as the _pviewpointcritter listener for 3D-worlds. In
fly mode, Ctrl+arrow combinations move the viewpoint
critter along its tangent, normal, and binormal directions.
Ctrl+Shift+arrow rotates the _pviewpointcritter along these
axes. Ins and Del zooms in/out.

• cListenerViewerRide is used to let the viewer ride upon the
games pplayer ar a fixed cVector _offset.

Listeners initializing critters

• The cListener class has a virtual void
install(cCritter *pcritter) method.

• Recall attach a listener to a critter using cCritter’s
setListener method(cListener *plistener).

• setListener calls plistener->install(this) to give the
listener a chance to make adjustment to the critter
before it starts to be used.

