
Collisions

CS134
Chris Pollett
Oct 11, 2004.

Introduction

• The cCritter::collide method
• Collision handling
• Colliding spheres

The cCritter::collide method

• A cCritter has a virtual BOOL
collide(cCritter *pcritter) method.

• This checks if pcritter is touching the caller
and returns TRUE/FALSE accordingly.

• In the TRUE case, one also executes code to
handle the result of the collision.

Some points about collide

• Want to keep physics symmetric. That is,
we only want to call a collide method once
for each pair of critters.

• Need a mechanism to decide if we are going
to call pcritteri->collide(pcritterj) or
pcritterj->collide(pcritteri)

Default collide

• The cCritter::collide implements (a) the law
of conservation of momentum, (b) the law
of conservation of energy, and (c) the
requirement that two objects can’t be in the
same place at the same time (cCritter’s
behave like fermions)

• Standard implementation assumes critters
behave like spheres.

Other implementations

• cCritterWall’s collide is different since long
narrow walls are not like disks/spheres. The
code for this is slightly complicated. Will
not discuss today.

• cCritterBullets damage other object then
explode.

Example of overriding collide

BOOL cCritterChild::collide(cCritter *pcritter)
{

BOOL collided = cCritter::collide(pcritter);
if(collided)
{
//do something
}
return collided;

}

More examples of overriding
collide

BOOL cCritterArmedPlayer::collide(cCritter
*pcritter)

{
BOOL collided = cCritter::collide(pcritter);
if(collided && _sensitive && !pcritter-

>IsKindOf(RUNTIME_CLASS(cCritterWall)))
damage(1);

return collided;
}

Another Example

BOOL cCritterBasket::collide(cCritter *pcritter)
{

if(contains(pcritter))
{

pcritter->die();
return TRUE;

}
else

return FALSE;

}

cCritterBullet::collide() Rough
Sketch

• Makes use of cCritterBullet::isTarget to
check:
– If the pcritter is one of bullet’s targets and

bullet’s touching it, damage pcritter and die.
– If pcritter is a target and you’re not touching it,

do nothing
– If pcritter isn’t a target, collide with it normally

Collision Handling Overview

• Have a utility class for holding pairs of critters,
this class says which critter has priority to control
behavior of collision

• Maintain a collection of all pairs of critters which
can collide

• For each game step, iterate through this collection
of pairs

• For each candidate pair, collide the critters by
letting the higher priority critter call its collide
method on the other.

The N-Squared Problem

• If had N critters and did nothing clever, then
checking for all possible collisions would involve
N^2 checks.

• Don’t need to check if a critter collides with itself,
so above architecture reduces the problem to N(N-
1)/2 checks

• Can further try to restrict irrelevant possibilities
(Ex: wall to wall collisions).

• Pop works well when there is less than 500 or so
pairs to check.

A collision-handling architecture

• Here are the relevant collision classes:

cGame

_pcollider

collidestep

_cCollider

smartAdd(cCritter*, cGame*)
iterateCollide()
removeReferencesTo(cCritter*)

cCollisionPair cCritter
_pcrittercaller
_pcrittertag

collideThePair()

*

1

*

_collidepriority
collide(cCritter*)
collidesWith(cCritter*)

How the collide classes work
together

• cCollisionPair has two cCritter* members called
_pcrittercaller and _pcritterarg. cCollider::collideThePair
calls _pcrittercaller->collide(_pcritterarg).

• cCollider holds a collection of cColliderPair objects. A
cGame has a cCollider _pcollider object. When you add a
critter to the game, cCollider::smartAdd looks at all
possible pairs that include the new critter and creates a
cColliderPair object for the relevant pair. When a critter, p,
is deleted _pcollider->removeReferencesTo(p) is called.

• In each update, cGame::collideStep calls
_pcollider->iterateCollide() which in turn calls
collideThePair for each cColliderPair.

Collision priority

How does smartAdd know what the relevant pairs
are? And how does it know which member of the
pair should have which role?

Answer: Each cCritter has a Real _collidePriority.
Given two critters the one with the higher priority
will be set up to have its collide called. Each
cCritter also has a collidesWith(cCritter
*pcritterOther) method which smartAdd uses to
figure out if the given critter can collide with
pcritterOther.

More on Collision Priority

• Order of priority of some common critter types:
Walls, Bullets, Player, Other critters.

• collidesWith returns an int. As will probably want
to override, some useful return codes are:
cCollider::DONTCOLLIDE,
cCollider::COLLIDEASCALLER,
cCollider::COLLIDEASARG,
cCollider::COLLIDEEITHERWAY

• Usually, collidesWith compares the
_collidepriority values and returns the appropriate
code.

N^3 Issues

• cCollider stores cCollosionPair’s as lists.
• To delete a pair from a cCollider involves

deleting roughly N objects from a collection
of N^2/2 objects.

• If used an array would and did this in a silly
fashion each time delete an object would
need to move everything over by 1.

• So would have O(N^3) work. Agh!!

Colliding Spheres

• We collide object using physics.
• Conservation of momentum means:

M_1*V_{1out} + M_2*V_2out} = M_1*V_{1in}
+M2*V_{2In}

• Notice the velocities are vectors, so have 3
components.

• We are also assuming energy is conserved (elastic
collisions). This means:

• 1/2*(M_1||V_{1out}||^2 +M_2||V_{2out}||^2) =
1/2*(M_1||V_{1in}||^2 +M_2||V_{2in}||^2)

More on Colliding spheres

• Values for velocities that satisfy the first
constraint give a line. Values for velocities which
satisfy the second constraint give an ellipse.

• So the intersection gives two solutions, a pre and
post collision solution.

• Book works out formula of solutions (massratio :=
M_2/M_1):
V_{1out} = [(1-massratio)*V_{1in} +

2*massratio*V_2in]/(1+massratio)
V_{2out} = [2*V_{1in}+(massratio -

1)*V_{2in}]/(1+massratio)

Making Fermions

• Code has been added to cCritter::collide so
as to move pairs of critters apart along the
line connecting their centers so they don’t
overlap after a collision.

