
MD2 format/ Interesting Worlds

CS116A
Chris Pollett

Nov. 10, 2004.

Outline

• MD2 file format
• Pop and Quake
• Ballworld Game

MD2 and MD3 file formats

• Used in projects based on the id software’s Quake
engine.

• Can be used with the Pop Framework.
• Can use Milkshape 3D to create new Models.

(Milkshake 3D was originally to create Half-life
MDL format models but has various exporters)

• Milkshakp is free for 30 days. Relatively cheap to
buy.

MD2 file Structure
Header

Frames Vertices

Triangles

Skin Filenames
(names 64 chars)

Texture Coordinates

Header
struct SMD2Header
{

int m_iMagicNum; //ID Polygon 2 = 844121161
int m_iVersion; // always 8
int m_iSkinWidthPx; // one skin on model at a time
int m_iSkinHeightPx;
int m_iFrameSize;
int m_iNumSkins;
int m_iNumVertices;
int m_iNumTexCoords;
int m_iNumGLCommands;
int m_iNumFrames;
int m_iOffsetskins; //how many bytes from start of file to skins
int m_iOffsetTexCoords;
int m_iOffsetTriangles;
int m_iOffsetFrames; int m_iOffsetGlCommands; int m_iFileSize;

};

Frame and Vertices

struct SMD2Frame
{

float m_fScale[3];
float m_fTrans[3];
char m_caName[16];
SMD2Vert m_avertices[m_iNumVertices];

};

struct SMD2Vert
{

byte m_bVert[3]; //compressed need to mult by scale, add trans
byte m_bNormal;

};
If just draw these points with OpenGL should look vaguely like a figure.

Triangles

struct SMD2Triangle
{

unsigned short m_sVertIndices[3]; //indices into array of SMD2Verts
unsigned short m_sTexIndices[3]; //will get to in a moment

};

Could draw these one by one using
glBegin(GL_TRIANGLES);
//look up vertices in triangle
// scale and translate
// do glVertex3fv to draw
glEnd();

Adding Skins

• Each element in m_sTexIndices[3]; from a SMD2Triangle corresponds
to a point in a texture file.

• The relevant structure looks like:
struct SMD2TexCoord
{

unsigned short m_sTex[2]; /* need to convert to 0--1 range
 for OpenGL. (Divide by m_iSkinWidthPx and height) */

}
• Pop understands skins which are .pcx or .bmp files
• To plot a triangle for each i =0,1,2 call:

• glTexCoord2fv with the SMD2TexCoord specified by the
m_sTexIndices[i].

• Then call glVertex3fv with the m_bVert[3] corresponding to the given
m_sVertIndices[i]

Animations

• Animation is achieved by drawing one
frame waiting a little while then drawing the
next frame.

• To make the animation not seem jerky
should interpolate between corresponding
points in successive frames. (And make the
interpolation correspond to time elapsed).

GL Commands

• Drawing triangle by triangle is slow.
• Triangle strips and triangle fans are faster to draw.
• The GL commands part of an MD2 file can be

used to list fans and strips.
• The relevant struct for a command looks like:

struc SMD2CommandElt
{

float x,y; //texture coordinates
int vertexIndex; // index of vertex

};

More Commands

• Commands are organized into
m_iNumGLCommands many groups

• First element in group is a signed int.
• The absolute value of the int indicates the number

of points in the group
• The sign indicates whether to draw a fan (neg) or a

strip (pos).
• A zero indicates the end of the list

Pop and Quake

• The code for MD2 files for Pop was originally
written by a Giavinh Pham.

• The relevant files to look at are:
– quakemd2model.h
– quakeMD2model.cpp
– spritequake.h
– spritequake.cpp
– GraphicsOpenGL.h
– graphicsOpenGL.cpp

More on Pop and Quake
• To use Quake Models in Pop use a tool like Milkshape to create your model.
• Your textures/skins should be .pcx or .bmp files and should be in same

directory as your .md2 file
• Then subclass cSpriteQuake like:
class cSpriteQuakeAlien : public cSpriteQuake
{
DECLARE_SERIAL(cSpriteQuakeAlien)
public:

cSpriteQuakeAlien():
cSpriteQuake("models\\Invader\\Tris.MD2",
"models\\Invader\\alien.bmp",
cVector(0.0, 0.0, 0.48)){} /*vector is offset to apply when drawing model */

};

• Or just call 3 component constructor of cSpriteQuake
• Can create a new instance using default constructor then add to critter
• Useful methods for set/getting frame and animating can be found in the class.

Ballworld Game Specification

• Concept -- game is a sidescroller. Objects come toward
you and you have to avoid letting them hit you.

• Appearance -- some picture
• Controls -- player uses hopper controls. Player uses

left/right arrows to move left/right. Up arrow to hop. Can
add hops to a hop.

• Behavior -- goal is to move to the right end of world and
hop into the hoop there. If a player jumps a ball he score a
point. If player bumps into a ball he loses a health point.
Jumping into the hoop also scores a point and resets you to
left of world.

Ballworld Design

• _border.set(100.0, 12.0, 0.0) is done to make world long
and thin.

• To see only part of the world pviewer->zoom(4.0); is done.
• To make view track player…pview->pviewpointcritter()-

>setTrackPlayer(TRUE);
• This is all done in cGameBallWorld::initializeView
• So the world does not bounce up and down with hops so

add:
virtual int worldShape(){return

cGame::SHAPE_XSCROLLER;}
to game header. Can also do vertical scroller by changin X-
>Y.

More Ballworld Design

• cListenerHopper took some tweaking
• This had to be meshed with

cCritterBallworldPlayer
• collide of both the player and cCritterTreasure had

to be overridden
• A cForceGravity was used on cCritterBallProp to

make things move to left of screen and also so
would fall to ground.

• setBounciness(.9) used to make collision with
bottom of screen slightly inelastic.

