
Selection Games

CS116A
Chris Pollett
Nov. 8, 2004.

Outline

• PickNPop Demo
• Specification
• Design
• Implementation
• Other Selection Games

Specification
• Concept -- race against time to unpack jewels from a box. Have white

and colored bubbles. Colored bubbles are the valuable jewels. Want to
pop the white bubbles to get at colored ones.

• Appearance -- some pictures.
• Controls -- mouse uses one of two kinds of cursor tools: a popping tool

and a dragging tool. Can use mouse wheel or toolbar to select tool.
• Behavior -- Screen is divided into two parts. At start all disks to the

left. Need to drag jewels to right; pop blocking white bubbles. 1000pts
for completing round. Get points for moving each jewel or popping
non-jewel. Lose points for popping a jewel.

Design
• Player in this games is offscreen.The player critter is used as a

container to hold the game score.
• Game has two cGraphicsRealBox2’s: _packingbox and _targetbox.

Bubble/jewels start in the _packingbox.
• New kinds of critters are used for jewels, non-jewels (called peanuts),

and unpacked jewels.
• The constructors of each are overridden to give them the appropriate

sprites.
• The die() methods of these classes have also been overridden to add a

sound and to add _value to player’s score
• Finally, cCritterJewel::update has been overridden to detect if critter is

in _targetbox. If so, it replaces itself with cCritterGoodJewel.

UML
cCritter

cCritterPeanut cCritterJewel cCritterUnpackedJewel

cSpriteBubbleGrayScale cSpriteBubblePie

cPolygon

cSprite

cSpriteBubble

Implementation

• Unlike Spacewar and Airhockey, _border of the world has
a nonzero z size so that the shapes can pass above and
below each other when game played in 3D.

• Implementation of scoring a little tricky -- want score for
completing a round always 1000 but want to be able to
vary the number of bubbles. JEWEL_PERCENT controls
percent of world covered in bubbles.

• seedBubbles repsonsible for adding bubbles. Also figures
out how much each bubble is worth and a value for
_scorecorrection.

• seedCritters computes peanutstoadd and jewelstoadd. Add
jewels first, so when painter algorithm applied they will be
buried in MFC. In OpenGL cGame::zStackCritters used to
achieve this effect.

seedCritters

void cGamePickNPop::seedCritters()
{

int i;
int jewelstoadd, peanutstoadd;
Real jewelprobability = cGamePickNPop::JEWEL_WEIGHT;
int jewelvalue(0), peanutvalue(0);
cCritter *pcritternew;
jewelstoadd = int(jewelprobability*_seedcount);
peanutstoadd = _seedcount -jewelstoadd;
jewelvalue =

int(_maxscore*cGamePickNPop::JEWEL_GAME_SCORE_WEIGHT)/(jewelstoad
d?jewelstoadd:1);

peanutvalue = int(_maxscore -
jewelstoadd*jewelsvalue)/(peanutstoadd?peanutstoadd:1);

_scorecorrection = _maxscore -(jewelstoadd*jewelsvalue+peanutstoadd*peanutvalue);
…

More seedCritters

….
_pbiota->purgeNonPlayerNonWallCritters();
for(i=0; i<peanutstoadd; i++)
{

pcritternew = new cCritterPeanut(this);
pcritternew->setValue(peanutvalue);

}
for(i=0; i<jewelstoadd; i++)
{

pcritternew = new cCritterJewel(this);
pcritternew->setValue(jewelvalue);

}
zStackCritters();

}

The World Rectangles

• We want the PickNPop game to fit as nicely as possible
within window.

• So CDocument is given a cGraphicRealBox _packingbox
and _targetbox which are supposed to fit within _border.

• The actual values are calculated in terms of _border.
• cRealBox::innerBox is used to get a box slightly within

_border.
• Finally, colors for boxes set.

Converting a critter using update

void cCritterJewel::update(CPopview *pactiveview)
{

cGamePickNPop *pgamepnp = NULL;
cCritter::update(pactiveview);
cVector safevelocity(_velocity);
safevelocity.setZ(0.0);
setVelocity(safevelocity);
if(pgame()->IsKindOf(RUNTIME_CLASS(cGamePickNPop)))

pgamepnp = (cGamePickNPop*)(pgame());
else

return;
cRealBox effectivebox = pgamepnp-

>targetbox().innerBox(cGamePickNPop::JEWELBOXTOLERAN
CE*radius());

….}

More update

…
if(!effectivebox.inside(_position)) return;
playSound(“Ding”);
cCritterUnpackedJewel *pcritternew = new

cCritterUnpackedJewel(this);
pcritternew->setMoveBox(pgamepnp->targetbox());
pcritternew->setDragBox(pgamepnp->targetbox());
delete_me() // make a service request
pcritternew->add_me(_pownerbiota); //another service request
pgamepnp->pplayer()->addScore(_value);

}

Other Selection Games

• How would you implement Simon or some other
memory game?

• Book suggests if doing a memory game with cards
to override draw and then based on a flag draw a
cover for a card or not.

