
Object Oriented Software 
Engineering

CS134

Chris Pollett

Sep.8, 2004



Outline 

• Aspects of Object Orientation
• Object-oriented analysis
• Encapsulation, inheritance, and 

polymorphism
• Composition and Delegation
• OO Design Principles
• The Code Interface



Aspects of Object Orientation

• As projects get larger need some way to organize 
the program to maintain comprehensibility.

• Successfully higher level language have been 
developed to simplify this process.

• For CS134 we are using OO to accomplish this 
task. Three stages: OO Analysis (OOA), OO 
Design (OOD), and OO Programming (OOP).



Object-oriented analysis

• Goal is to figure out which classes you 
should use. 

• To do this one might:
– Circle nouns and noun phrases from the 

requirement description in blue. The circle the 
verbs in red.

– The nouns will be potential classes. The verbs 
potential methods.



Pop Example

• Requirement: a framework for computer 
games with moving critters. The critters are 
draws as polygons, bitmaps, or animated 
loops of bitmaps. The world includes forces 
like gravity and friction. The critters listen 
to mouse-keyboard controls…

• Nouns: game, critter, polygon, bitmap, …
• Actions: draw, listen …



Pop Example cont’d

• Might come up with classes like:

cGame

cCritter * _critter[]

cWorldBox

step(float dt)

cCritter

cVector _postion, _velocity, 
_acceleration

Float _health, _age 

move(), update(), feellistener() shoot()



In OOA you should

• Use simple diagrams
• Revise often, until everything is organized
• Use multiple diagram rather try to squeeze 

everything on one diagram
• Test out diagram under different use cases.



Encapsulation, inheritance, and 
polymorphism

• As said before putting data within object is 
called encapsulation.

• Two other related concepts are inheritance
and polymorphism.



Inheritance

• The idea of inheritance is that if you have 
already have a class that is close to what 
you need it is often a good idea to subclass 
to get the class you want.

cCritter

cCritterArmed



More Inheritance

• Where inherit a class from another you might want 
to override some existing function.

• For example, in cCritter might override the 
update() function which changes the critter’s state 
according to the current game world…

• This might be used in cGame where an array of
cCritter’s is kept. By calling biota[i]->update() can 
invoke whichever kind of critter’s update function.

• Note need pointers to exhibit polymorphic 
behavior.



Some OO terminology

• For us, sometimes call public methods of a class 
the interface of the class.

• Member functions which return internal variable 
values called accessors.

• Functions which changed internal variable values 
called mutators.

• If a method has not been implemented called 
abstract



Composition and Delegation

• ClassA is composed with ClassB if it has 
ClassB or ClassB* as a member.

• Can replace inheritance by composition.

foo()

A B
A *p

foo(){p->foo();}

foo(){A::foo();}

B

A



More Composition and 
Delegation

• Passing method calls to a composed object is called 
delegation.

• We used member pointers rather than objects to permit 
polymorphism.

• Composition sometimes slightly better than inheritance 
because using multiple inheritances can sometimes be 
harder to maintain. In have two inheritances could make 
one an inheritance and for the other use compostion.

• Compostion allows one to lock in behavior at runtime.
• Still is blackbox code reuse.



Examples of Delegation

• cCritter use of cSprite’s, cListeners, and
cForce. Note also using polymorphism 
when subclass.



OO Design Principles

• OOA: An object is an organism-- it should own all the 
methods it needs to do things

• OOA: Have more than one class.
• OOA: Don’t make your classes do too much.
• OOA: reuse classes
• OOA: prefer composition to class inheritance
• OOD: Think like an object to determine class methods.
• OOD: Use pointer methods rather than instance methods
• OOD: program to an interface not an implementation



More principles

• OOP: Don’t store same thing in two places.
• OOP: Don’t write the same code twice
• OOP: Don’t ask object their runtime type.
• OOP: Don’t break encapsulation.



The Code Interface

• C++ features for interfaces:
– #define switched for #ifdef’s
– Typedef’s for renaming types
– Static variables 
– Static methods


	Object Oriented Software Engineering
	Outline
	Aspects of Object Orientation
	Object-oriented analysis
	Pop Example
	Pop Example cont’d
	In OOA you should
	Encapsulation, inheritance, and polymorphism
	Inheritance
	More Inheritance
	Some OO terminology
	Composition and Delegation
	More Composition and Delegation
	Examples of Delegation
	OO Design Principles
	More principles
	The Code Interface

