Games

CS134
Chris Pollett
Oct 6, 2004.

= 3 9 4

Introduction

he class cGame
he game’s timestep cycle

he virtual methods of cGame

he cBiota class

The class cGame

* In writing a game in the Pop framework you
typically need to create a few subclasses of
cCritter and a new child class of cGame.

* The most significant member of the cGame class
1s cBiota *_pbiota. This has a collection of
pointers to all the game’s active objects.

e This class 1s implemented as a serializable
CArray, with array walking methods: draw, move,
update, animate, feellistener.

Array Walking Example

vold cBiota::update(CPopView *pactiveview,
Real dt)

1

for(int 1=0; 1 < GetSize(); 1++)

{

GetAt(1)->update(pactiveview, dt);

¥

More on cGame

cGame’s also have a cCritter *_pplayer for the player.
This pointer is always assumed to be not NULL.
_pplayer 1s also usually a member of _pbiota

Might want to add field for other distinguished critters to
the game. Ex: goals in hockey game

A cGame also has a CRealBox _border to specify how big
the world 1s

The size of critters on screen depends on their radii versus
border size.

cGame’s also have a _wrapFlag saying what happens
where border hit. (WRAP, BOUNCE or CLAMP)

Yet More on cGame

Critter’s also have _wrapflags. So might think this is in
instance of having same info in multiple places. (forgery)

By default cCritter sets _wrapflag the same as its game’s
_wrapftlag. But subclasses might do different things.

cGame’s also have seedcount and maxscore fields as
well as a score() methods

cGame’s CArray<HCURSOR, HCURSOR> _arrayCursor
used to say what kind of control are available for the game

_pcollider holds pair of critters want to be able to check if
collide

The game’s timestep cycle

e step(Real dt) is probably the most important method of cGame.

e Not virtual as very delicate.

e Basically, it:

Adjusts game parameter (Game Over, Reset, etc)
Listens and passes user input to feellistener methods
Moves-- calls critters” move methods

Updates -- calls critters’ update methods

Checks for collisions between pair of critters

Cleans up defunct critters; adds requested critters
Animates critter sprites

Draws to active views

The virtual methods of cGame

* To extend cGame you want to override the
constructor and override methods like:
seedCritters, initializeView,
adjustGameParameters, and statusMessage

The cGame constructor

cGame: : cGame():
_seedcount(COUNTSTART),
_gameover(TRUE),
_maxscore(MAXSCORE),
_scorecorrection(0),
_wrapflag(cCritter: :WRAP),
_bDragging(FALSE),
_pfocus(NULL),
_pplayer(NULL),
_border(cGame: :WORLDWIDTH, cGame: :WORLDHEIGHT),

* When override can change some of these
initial values to get game you want as well
as modify some of the body of constructor.

Example Modification

e For Spacewar want to change border dimension,
background color and the type of player:

_border.set(20.0, 20.0);

_border.pcolorstyle()-
>setF1l1Color(cColor::CN_BLACK);

setPlayer(new cCritterArmedPlayerSpaceWar);

* You can have player which are offscreen or not

member of _pbiota: setPlayer(new cCritter(),
FALSE);

e If you want to have some permanent critters can
initialize 1n constructor. See Hw1 Solution

Seeding the Game

cGame::seedCritters() 1s where 1nitialize other
critters for the game

It 1s also called when game restarted or reset.

For example, in Spacewar, the player 1s added in
the constructor, the asteroids are added in
seedCritters, and as level goes up
adjustGameParameters adds UFOs.

In Ballworld, the player and basket are added in
the constructor, the ball in seedCritters.

When 1s seedCritters() first
called?

It is called by cPopDoc::setGameClass when the particular game in Pop is set:
setGameClass(RUNTIME_CLASS(cGameSpaceWar));

(Aside CRuntimeClass holds a string name of class, its size in bytes, and info
about parent class. Used for serialization, run time typing)

setGameClass:
— constructs a new game object and puts it into _pgame field of CPopDoc
— calls _pgame->seedcritters()

— calls the document view to adjust their displays for the new game
(UpdateAllViews(NULL,CPopDoc::VIEWHINT_STARTGAME, 0);

setGameClass 1s the only way cGame object are
constructed.

Other ways seedCritters called

* When press enter to start new game. This
generates a call to cGame::reset which 1n
turn calls seedCeritters.

— Reset also returns player health to start value
and _level to 1.

e seedCritter 1s called within
adjustGameParameters.

Example seedCritters

void cGameSpacewar::seedCritters()

{

biota-
_p>purgeCritters(RUNTIME_CLASS(CCritterBullet));
/* deleted stuff .. */
for(int 1=0; 1<_seedcount; 1++)
new cCritterAsteroid(this);

¥

e purgeCritters gets rid of all critters of the given
type.

How the game adjusts itselt

e cGame::adjustGameParameters gets called once per game update
(which is called within cGame::step.)

Ex:
vold cGameStub::adjustGameParameters()
{
if(health() && !_gameover)
{
_gameover = TRUE;
pplayer->addscore(_scorecorrection);
playSound(““Tada”);
return
¥

//might reseed characters etc

Initializing the view

e There are many things you might want to
adjust about views: 2D versus 3D, 1nitial
viewpoint, what looking at, etc.

* Views are managed by
CPopView::OnUpdate which is called from
CPopView:.onCreate when Pop 1s first
launched or is called by
CPopView::setGameClass

Thinking about coordinates

x-axis goes left to right horizontally across
screen

y-axis goes bottom to top of screen
z-ax1s points out of screen

So might want to look at world from a
location like: (0.0, 0.0, 5.0) in a 2D
game...Or might want to change where
viewing world from

What OnUpdate does

1f(IHint == CPopDoc::VIEWHINT_STARTGAM!

{

pgame()->initializeView(this); //says the kind of view
pgame()->initialize Viewpoint(_pviewpointcritter);
//says where to look within this view

pgraphics()->installLightingModel(pgame()-
>plightingmodel()); /*this for now only can toggle

lighting calculations in OpenGL, by default do calc.
Only PickNPop doesn’t have on */
//Call invalidate to show stuff now

(1]

Example view

void cGame::1nitializeView(CPopView *pview)

{
pview->setCursor(((CPopApp*):: AfxGetApp())->_hCursorArrow);
pview->setUseBackgroundBitmap(FALSE);
pview->setUseSolidBackground(TRUE);

pview->setGraphicsClass(RUNTIME_CLASS(cGraphicsMFC));
//might change in subclass

pview->pviewpointcritter()->setTrackplayer(TRUE);
/* Could set listener in subclass with:

pview->pviewpointcritter()->setListener(new
cListenerViewerRide()); //works only in 3D

*/

Initializing the viewpoint critter

* Once have set the view can set up the viewpoint
within this view:

void cGame::initializeViewpoint(cCritterViewer
*pviewer)

if(pviewer->is3D())//for now this check if using OpenGL
pviewer->setViewpoint(cVector3(0.0, -1.0, 2.0), _border.center());
else //2D case
pviewer->setViewpoint(cVector::ZAXIS, _border.center);
/%
If want to, can override and change and also set a zoom:
pviewer->zoom(1.5)

*/

Interpreting the previous slide

cCritterViewer::setViewpoint(cVector toviewer, cVector lookatpoint)

toviewer

lookatpoint
The above call will position the viewpoint just far enough away so that

every corner of the world’s _border box is visible. This method is
implemented by calls to moveTo and lookAt

If you want to see half this much change the zoom from 1 to 2.
In 2D, the toviewer is always the z-axis

The status message

e This 1s the message 1n the status bar at the
bottom of the Pop window.

e Itis set by the line:

cMainFrame->SetMessageText(pDoc->pgame()-
>statusMessage());

 The method cGame::statusMessage can be
overriden by you. It returns an MFC
CString object.

Example of something can put in

status message
CString cStrUpdates, ¢StrCount;

int count = _pbiota-
>count(RUNTIMI

E_CLASS(cCritters));

int nUpdatesPerSecond =
int(((CPopApp*):: AfxGetApp())-
>_timer.updatesPerSecond());

cStrUpdates.Format(“Updates/Sec: %d”,
nUpdatesPerSecond);

cStrCount.Format(“Num critters: %d”, count);

return cStrUpdate +

¢¢ 9

+ cStrCount;

The randomSprite factory method

e A factory method constructs an object of a certain
kind and returns pointer to it.
An example in the cGame class 1s:
cSprite™ randomSprite(int spriteindex);
/* Some allowable spriteindex’s:
cGame::ST_SPRITETYPENOTUSED
cGame::ST_SIMPLEPOLYGONS, etc */

e To use this factory method, one could within
cCritter’s constructor call:

setSprite(pownergame-
>randomSprite(cGame::ST_ASTEROIDPOLYGONNS);

e (One can override this class

The cBiota class

cBiota is based on the class CTypedPtrArray with
a few special methods added. (So Add adds a
critter)

Pointers are used to store cCritter’s so that one can
use polymorphism when subclass cCritter
methods.

Arrays are a little faster than linked lists to iterate
through, so that’s why arrays rather than lists
used.

cBiota’s have a _pgame pointer so that cCritter
pgame() method can find the parent game.

Important methods of ¢cBiota

cBiota as mentioned before has a number of array
walking methods: draw, move, udate, animate,
render, and listen.

Except for draw these are called by cGame::step
draw 1s called by CPopView::draw

Aside: draw traverses array backwards so that the player
1s drawn on top. (The player is the first element of
array)

cGame::_pfocus 1s used by PickNPop and
DamBuilder to point to the critter being handled
by the cursor. This creature 1s highlighted by
cBiota::draw

Service Requests

cBiota has a CArray<cServiceRequest, cServiceRequest>
_servicerequestarray,

A cServiceRequest holds a critter and a string request.

A request might be generated when we walk through our
array at some point. Don’t want to change the array size on
the fly so make request.

A typical request is to add/delete/replicate/move in array a
critter.

Deleting a critter requires a delete pcritter call and requires
us to remove the invalid pointer from cBiota.

Note 1gnore delete requests for player critter.

