
Games

CS134
Chris Pollett
Oct 6, 2004.

Introduction

• The class cGame
• The game’s timestep cycle
• The virtual methods of cGame
• The cBiota class

The class cGame

• In writing a game in the Pop framework you
typically need to create a few subclasses of
cCritter and a new child class of cGame.

• The most significant member of the cGame class
is cBiota *_pbiota. This has a collection of
pointers to all the game’s active objects.

• This class is implemented as a serializable
CArray, with array walking methods: draw, move,
update, animate, feellistener.

Array Walking Example

void cBiota::update(CPopView *pactiveview,
Real dt)

{
for(int i=0; i < GetSize(); i++)
{

GetAt(i)->update(pactiveview, dt);
}

}

More on cGame
• cGame’s also have a cCritter *_pplayer for the player.
• This pointer is always assumed to be not NULL.
• _pplayer is also usually a member of _pbiota
• Might want to add field for other distinguished critters to

the game. Ex: goals in hockey game
• A cGame also has a CRealBox _border to specify how big

the world is
• The size of critters on screen depends on their radii versus

border size.
• cGame’s also have a _wrapFlag saying what happens

where border hit. (WRAP, BOUNCE or CLAMP)

Yet More on cGame
• Critter’s also have _wrapflags. So might think this is in

instance of having same info in multiple places. (forgery)
• By default cCritter sets _wrapflag the same as its game’s

_wrapflag. But subclasses might do different things.

• cGame’s also have _seedcount and _maxscore fields as
well as a score() methods

• cGame’s CArray<HCURSOR, HCURSOR> _arrayCursor
used to say what kind of control are available for the game

• _pcollider holds pair of critters want to be able to check if
collide

The game’s timestep cycle
• step(Real dt) is probably the most important method of cGame.
• Not virtual as very delicate.
• Basically, it:

– Adjusts game parameter (Game Over, Reset, etc)
– Listens and passes user input to feellistener methods
– Moves-- calls critters’ move methods
– Updates -- calls critters’ update methods
– Checks for collisions between pair of critters
– Cleans up defunct critters; adds requested critters
– Animates critter sprites
– Draws to active views

The virtual methods of cGame

• To extend cGame you want to override the
constructor and override methods like:
seedCritters, initializeView,
adjustGameParameters, and statusMessage

The cGame constructor
cGame::cGame():

_seedcount(COUNTSTART),
 _gameover(TRUE),

_maxscore(MAXSCORE),
_scorecorrection(0),
_wrapflag(cCritter::WRAP),
_bDragging(FALSE),
_pfocus(NULL),
_pplayer(NULL),
_border(cGame::WORLDWIDTH, cGame::WORLDHEIGHT),

…
• When override can change some of these

initial values to get game you want as well
as modify some of the body of constructor.

Example Modification

• For Spacewar want to change border dimension,
background color and the type of player:

_border.set(20.0, 20.0);
_border.pcolorstyle()-

>setFillColor(cColor::CN_BLACK);
setPlayer(new cCritterArmedPlayerSpaceWar);
• You can have player which are offscreen or not

member of _pbiota: setPlayer(new cCritter(),
FALSE);

• If you want to have some permanent critters can
initialize in constructor. See Hw1 Solution

Seeding the Game

• cGame::seedCritters() is where initialize other
critters for the game

• It is also called when game restarted or reset.
• For example, in Spacewar, the player is added in

the constructor, the asteroids are added in
seedCritters, and as level goes up
adjustGameParameters adds UFOs.

• In Ballworld, the player and basket are added in
the constructor, the ball in seedCritters.

When is seedCritters() first
called?

• It is called by cPopDoc::setGameClass when the particular game in Pop is set:
setGameClass(RUNTIME_CLASS(cGameSpaceWar));

• (Aside CRuntimeClass holds a string name of class, its size in bytes, and info
about parent class. Used for serialization, run time typing)

• setGameClass:
– constructs a new game object and puts it into _pgame field of CPopDoc
– calls _pgame->seedcritters()
– calls the document view to adjust their displays for the new game

(UpdateAllViews(NULL,CPopDoc::VIEWHINT_STARTGAME, 0);

• setGameClass is the only way cGame object are
constructed.

Other ways seedCritters called

• When press enter to start new game. This
generates a call to cGame::reset which in
turn calls seedCritters.
– Reset also returns player health to start value

and _level to 1.
• seedCritter is called within

adjustGameParameters.

Example seedCritters

void cGameSpacewar::seedCritters()
{

_pbiota-
>purgeCritters(RUNTIME_CLASS(cCritterBullet));

/* deleted stuff .. */
for(int i=0; i<_seedcount; i++)

new cCritterAsteroid(this);

}
• purgeCritters gets rid of all critters of the given

type.

How the game adjusts itself
• cGame::adjustGameParameters gets called once per game update

(which is called within cGame::step.)
Ex:
void cGameStub::adjustGameParameters()
{

if(!health() && !_gameover)
{

_gameover = TRUE;
pplayer->addscore(_scorecorrection);
playSound(“Tada”);
return

}
//might reseed characters etc

}

Initializing the view

• There are many things you might want to
adjust about views: 2D versus 3D, initial
viewpoint, what looking at, etc.

• Views are managed by
CPopView::OnUpdate which is called from
CPopView::onCreate when Pop is first
launched or is called by
CPopView::setGameClass

Thinking about coordinates

• x-axis goes left to right horizontally across
screen

• y-axis goes bottom to top of screen
• z-axis points out of screen
• So might want to look at world from a

location like: (0.0, 0.0, 5.0) in a 2D
game…Or might want to change where
viewing world from

What OnUpdate does

if(lHint == CPopDoc::VIEWHINT_STARTGAME)
{

pgame()->initializeView(this); //says the kind of view
pgame()->initializeViewpoint(_pviewpointcritter);

//says where to look within this view
pgraphics()->installLightingModel(pgame()-

>plightingmodel()); /*this for now only can toggle
lighting calculations in OpenGL, by default do calc.
Only PickNPop doesn’t have on */
//Call invalidate to show stuff now

}

Example view
void cGame::initializeView(CPopView *pview)
{

pview->setCursor(((CPopApp*)::AfxGetApp())->_hCursorArrow);
pview->setUseBackgroundBitmap(FALSE);
pview->setUseSolidBackground(TRUE);
pview->setGraphicsClass(RUNTIME_CLASS(cGraphicsMFC));

//might change in subclass
pview->pviewpointcritter()->setTrackplayer(TRUE);
/* Could set listener in subclass with:
pview->pviewpointcritter()->setListener(new

cListenerViewerRide()); //works only in 3D
*/

}

Initializing the viewpoint critter

• Once have set the view can set up the viewpoint
within this view:
void cGame::initializeViewpoint(cCritterViewer

*pviewer)
{

if(pviewer->is3D())//for now this check if using OpenGL
pviewer->setViewpoint(cVector3(0.0, -1.0, 2.0), _border.center());

else //2D case
pviewer->setViewpoint(cVector::ZAXIS, _border.center);

/*
If want to, can override and change and also set a zoom:
pviewer->zoom(1.5)

*/
}

Interpreting the previous slide
cCritterViewer::setViewpoint(cVector toviewer, cVector lookatpoint)

The above call will position the viewpoint just far enough away so that
every corner of the world’s _border box is visible. This method is
implemented by calls to moveTo and lookAt

If you want to see half this much change the zoom from 1 to 2.
In 2D, the toviewer is always the z-axis

lookatpoint

toviewer

The status message

• This is the message in the status bar at the
bottom of the Pop window.

• It is set by the line:
cMainFrame->SetMessageText(pDoc->pgame()-

>statusMessage());
• The method cGame::statusMessage can be

overriden by you. It returns an MFC
CString object.

Example of something can put in
status message

CString cStrUpdates, cStrCount;
int count = _pbiota-

>count(RUNTIME_CLASS(cCritters));
int nUpdatesPerSecond =

int(((CPopApp*)::AfxGetApp())-
>_timer.updatesPerSecond());

cStrUpdates.Format(“Updates/Sec: %d”,
nUpdatesPerSecond);

cStrCount.Format(“Num critters: %d”, count);
return cStrUpdate + “ ” + cStrCount;

The randomSprite factory method

• A factory method constructs an object of a certain
kind and returns pointer to it.
An example in the cGame class is:
cSprite* randomSprite(int spriteindex);
/* Some allowable spriteindex’s:

cGame::ST_SPRITETYPENOTUSED
cGame::ST_SIMPLEPOLYGONS, etc */

• To use this factory method, one could within
cCritter’s constructor call:
setSprite(pownergame-

>randomSprite(cGame::ST_ASTEROIDPOLYGONS);
• One can override this class

The cBiota class

• cBiota is based on the class CTypedPtrArray with
a few special methods added. (So Add adds a
critter)

• Pointers are used to store cCritter’s so that one can
use polymorphism when subclass cCritter
methods.

• Arrays are a little faster than linked lists to iterate
through, so that’s why arrays rather than lists
used.

• cBiota’s have a _pgame pointer so that cCritter
pgame() method can find the parent game.

Important methods of cBiota

• cBiota as mentioned before has a number of array
walking methods: draw, move, udate, animate,
render, and listen.

• Except for draw these are called by cGame::step
• draw is called by CPopView::draw

Aside: draw traverses array backwards so that the player
is drawn on top. (The player is the first element of
array)

• cGame::_pfocus is used by PickNPop and
DamBuilder to point to the critter being handled
by the cursor. This creature is highlighted by
cBiota::draw

Service Requests
• cBiota has a CArray<cServiceRequest, cServiceRequest>

_servicerequestarray,
• A cServiceRequest holds a critter and a string request.
• A request might be generated when we walk through our

array at some point. Don’t want to change the array size on
the fly so make request.

• A typical request is to add/delete/replicate/move in array a
critter.

• Deleting a critter requires a delete pcritter call and requires
us to remove the invalid pointer from cBiota.

• Note ignore delete requests for player critter.

