
The Pop Framework

CS134

Chris Pollett

Sep.1, 2004

Outline

• OO Simulations
• The Pop Source Code
• Essential Pop Classes
• UML Class Diagrams
• Using the Pop Framework

OO Simulations

• Games often simulate some aspect of the real
world.

• A simulation is a model of real world phenomena
that is run on a computer (or any other device
other than on the world itself)

• Some examples of things we can simulate:
dynamics of motion, motion of group of objects
such as rockets, birds, sports balls, etc. Growth of
cities, spread of diseases, etc.

OO and Simulations

• OO Design lends itself to simulations. Most
simulations break into a variety of objects that are
being simulated and these objects called modelled
using classes.

• We can wrap into a class definition the properties
of an object and defining member functions we
can say how the object behaves according to
various inputs. This ``Wrapping’’ is called
encapsulation.

Yet More OO Stuff

• OO also allows one to give the objects in the
simulation a uniform behavior. All instances of an
object can behave according to some behavior
function. If want new objects which are the same
but use a different behavior function we can use
inheritance or strategy patterns.

• Example: could override Person to get
PersonOnEarth or PersonOnMars where the
physics of motion might be different

The Pop Source Code

• Consists of the following groups of file:
– MFC files: childfrm, mainfrm, pop, PopDoc, popview,

stdafx
– Game files: game, gameairhockey, gameballworld,

gamedambuilder, gamepicknpop, GameSpacewar,
gamestub, gamestub3d

– Critter files:biota, critter, critterarmed, critterwall,
critterviewer

More Source Files

– Sprite files: sprite, spritebubble, spritepolygon,
spritemultiIcon.

– Physics files: VectorTransformation, realbox, force
– Utility files: controller, listener, metric, Randomizer,

timer
– Graphics files: graphics, graphicsMFC,

graphicsOpenGL, memoryydc, RealPixelConverter,
texture, glshapes

– Dialog files: SpeedDialog
– Parameter and Resource files

Pop Build Involves

-->h-->cpp-->obj\

-->vcproj --> sln -->exe
-->bmp\ /
-->cur---->rc-->res/
-->wav/
-->ico/

Essential Pop Classes

Some of the classes + basic UML
cCritter cSprite

*
cGame cCritter

Main Pop Classes

CPopApp cPerformanceTimer

CPopDoc CPopView

cGame cCritter

*

*

* cGraphics

cSprite

cListener
cForce*

cCritter

• One of the most important classes is
cCritter.

• It is used for the basic objects in the Pop
world.

• Some subclasses are: cCritterArmed,
cCritterBullet, cCritterArmedPlayer,
cCritterArmedRobot, cCritterWall,
cCritterViewer,etc

cSprite

• cCritter delegates to cSprite the responsibility of
how a critter actually looks

• Can change appearance of a critter without have to
create a new class.

• cSprite has a draw method to do drawing
• cSprite has subclasses cPolygon, cSpriteIcon,

cSpriteDirectional, cSpriteLoop, cSpriteCircle,
cSpriteBubble,etc

cGame

• Initializes all the creatures in the world
• Keeps track of each critters status and status of

game
• Has a function step(dt) that simulates dt amount of

time

Everything is stored as a real number (I.e, dt) to
avoid resolution dependence. cVector used to
specify points in world. There is a related cMatrix.

cForce

• A critter’s behavior can be influence by any
number of force objects.

• Some example subclasses are
cForceGravity, cForceDrag,
cForceObjectSpringRod, cForceObjectSeek,
cForceEvadeBullet.

cListener

• At each update a critter’s cListener object is
given access to the current mouse and key
state and is allowed to change the critter’s
motion or state.

• Some subclasses include cListenerArrow,
cListenerScooter, cListenerCursor, etc.

CPopApp

• This is the main application class. It is an
MFC subclass

• OnIdle has been overwritten to drive the
animation.

• Calls cPerformanceTimer to find the time
since last update which is used eventually
to call step(dt)

CPopDoc

• Document that holds the data associated
with your windows and game you are
running

CPopView

• Is a view that controls how the data is displayed in
an onscreen window. Also does initial processing
on user input.

• Delegates actual drawing to a cGraphics object
which is a bridge to an underlying graphics system
like GDI or OpenGL.

Subclasses of cGraphics include cGraphicsMFC and
cGraphicsOpenGL

UML Class Diagrams

• Have seen has-a relationships already. To
draw subclasses can use:

cCrittercGame

cGameStub cCritterArmed

cCritterStubPlayer

cCritterStubProp

cCritterStubRival

Associations

• Class has an instance of another object or
has a function which returns the other
object.

• Can add arrows to indicate has a way to
navigate to an object

cGame cCritter

Using the Pop Framework

• Want to subclass the class cGame. (In homework
we take cGameStub and modify it)

• Edit CPopDoc so that it sets your game as the
default game:
setGameClass(RUNTIME_CLASS(cGameMyGa
me));

• Probably will want to modify resource files
cCritterStubPlayer and cCritterStubRival and
cCritterStubProp. For example, setMoveBox
function of critter controls region critter can move
in

	The Pop Framework
	Outline
	OO Simulations
	OO and Simulations
	Yet More OO Stuff
	The Pop Source Code
	More Source Files
	Pop Build Involves
	Essential Pop Classes
	Main Pop Classes
	cCritter
	cSprite
	cGame
	cForce
	cListener
	CPopApp
	CPopDoc
	CPopView
	UML Class Diagrams
	Associations
	Using the Pop Framework

