Blobby Objects and Splines

CS116B

Chris Pollett
Feb 2, 2005.

Outline

- Blobby Objects
- Spline Representations

Blobby Objects

- By a blobby object we mean a nonrigid object. That is things, like cloth, rubber, liquids, water droplets, etc.
- These objects tend to exhibit a degree of fluidity.
- For example, in a chemical compound electron density clouds tend to be distorted by the presence of other atoms/molecules.

More Blobby Objects

- Several models have been developed to handle these kind of objects.
- One technique is to use a combination of Gaussian density functions (Gaussian bumps).

- A surface function could then be defined by:
$\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum_{\mathrm{k}} \mathrm{b}_{\mathrm{k}}{ }^{*} \exp \left(-\mathrm{a}_{\mathrm{k}}{ }^{*} \mathrm{r}_{\mathrm{k}}{ }^{2}\right)-\mathrm{T}=0$
where $r_{k}{ }^{2}=x_{k}{ }^{2}+y_{k}{ }^{2}+z_{k}{ }^{2}$

Still More Blobby Objects

- Another technique called the meta-ball technique is to describe the object as being made of density functions much like balls.
- The advantage here is that the density function falls of in a finite interval.

Spline Representations

- In drafting, a spline is a flexible strip used to produce a smooth curve through a designated set of points.
- Small weights would be distributed along the strip to hold it in position on the drafting table.
- A spline curve and a spline surface were originally curves or surfaces created in this manner.
- In computer graphics a spline is any composite curve with polynomial section satisfying some specified continuity conditions
- Over the next day or so we will consider several different kinds of splines.

Interpolation and Approximation Splines

- To specify a spline we need to give a set of coordinate positions called control points.
- If the polynomial sections are fitted so that all the control points are passed through by the curve then the resulting curve is said to interpolate the control points.
- Otherwise, the curve is said to approximate the control points

Convex Hull

- A set of control points defines a convex hull in which the spline will live.
- The convex hull of a set of points is the smallest convex set containing those points.
- A convex set S is a set of points such that if x, y are in S so is any point on the line between them

Parametric Continuity Conditions

- To ensure a smooth transition from one section of a spline to the next, we can impose various kinds of continuity conditions.
- Suppose each section of the spline curve is defined by equations like $x=x(u), y=y(u), z(u)$ for $u _1<=u<=u _2$
- Then parametric continuity would be the condition that at the endpoints of the sections the first derivatives of the two sections match.
- Zero-order parametric continuity means the sections simply meet at the endpoints
- nth-order parametric continuity means the first n derivatives of the the end points match where sections are connected.

0th order but not 1st order

Geometric Continuity Conditions

- Geometric continuity conditions are a relaxation of parametric continuity conditions.
- Rather than require derivatives to exactly match at end points we only require that the derivatives are proportional to each other.
- Again one can define nth order geometric continuity by requiring the first n derivatives of pairs of endpoints to be proportional to each other.

Spline Specifications

- There are three different ways to specify splines:
- state the set of boundary conditions that are imposed on the spline
- state the matrix that characterizes the spline
- state a set of blending/basis function that determines how specified constraints on the curve are combined to calculate positions along the curve path.

Boundary Condition Example

- Suppose we have the cubic:

$$
\mathrm{x}(\mathrm{u})=\mathrm{a}_{\mathrm{x}} * \mathrm{u}^{3}+\mathrm{b}_{\mathrm{x}} * \mathrm{u}^{2}+\mathrm{c}_{\mathrm{x}} * \mathrm{u}+\mathrm{d}_{\mathrm{x}}, 0<=\mathrm{u}<=1 .
$$

- Boundary conditions might be the coordinates of $x(0), x(1)$ and the derivatives $x^{\prime}(0), x^{\prime}(1)$. These four numbers are enough to fix $a_{x}, b_{x}, c_{x}, d_{x}$
- Next day will talk about how this representation is connected to the other representations

