
Deep Thoughts on Deep Learning

Mark Stamp*

Department of Computer Science
San Jose State University

December 9, 2019

1 Introduction

Deep learning is often credited with having nearly metaphysical powers to solve
challenging problems. Yet, the techniques behind deep learning are often treated
as mysterious black boxes. In this tutorial, we attempt to provide a solid foun-
dation for a deeper understanding of deep learning. Our primary emphasis is
on backpropagation and automatic differentiation, but we also discuss a vari-
ety of related topics, including gradient descent, and various parameters that
arise. In addition, we point out some of the many connections between deep
learning and other not-so-deep techniques—primarily, hidden Markov models
(HMM) and support vector machines (SVM). But first, we discuss artificial
neural networks, which are the basic building blocks of deep learning.

2 A Brief History of ANNs

The concept of an artificial neuron [7, 19] is not new, as the idea was proposed
by McCulloch and Pitts in the 1940s [11]. However, modern computational
neural networking really begins with the perceptron, which was first proposed
by Rosenblatt in the late 1950s [14].

An artificial neuron with three inputs is illustrated in Figure 1. In the
original McCulloch-Pitts formulation, 𝑋𝑖 ∈ {0, 1}, 𝑤𝑖 ∈ {+1,−1}, and the

*Email: mark.stamp@sjsu.edu. This lengthy tutorial is intended to serve as a supplement
to my book, Introduction to Machine Learning with Applications in Information Security [17],
which only includes shallow thoughts on the deep topics covered here.

1

output 𝑌 ∈ {0, 1}. The threshold 𝑇 determines whether the output 𝑌 is 0 (in-
active) or 1 (active), based on

∑︀
𝑤𝑖𝑋𝑖. The thinking was that a neuron either

fires or it does not (thus, 𝑌 ∈ {0, 1}), and the inputs would come from other
neurons (thus, 𝑋𝑖 ∈ {0, 1}), while the weights 𝑤𝑖 specify whether an input is
excitatory (increasing the chance of the neuron firing) or inhibitory (decreas-
ing the chance of the neuron firing). Whenever

∑︀
𝑤𝑖𝑋𝑖 > 𝑇 , the excitatory

response wins, and the neuron fires; otherwise the inhibitory response wins and
the neuron does not fire.

𝑇

𝑋2

𝑤2

𝑋0

𝑤0

𝑋1

𝑤1
𝑌

Figure 1: Artificial neuron

A perceptron is considerably less restrictive than a McCulloch-Pitts arti-
ficial neuron, as the 𝑋𝑖 and 𝑤𝑖 can be real valued. Since we want to use a
perceptron as a binary classifier, the output is generally taken to be binary.
McCulloch and Pitts chose such a restrictive formulation because they were
trying to model logic functions. At the time, it was felt that encoding elemen-
tary logic into artificial neurons would be the key step to constructing systems
with artificial intelligence. However, that point of view has certainly not panned
out, while the additional generality offered by the perceptron formulation has
proven extremely useful.

Given a real-valued input vector 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛−1), a perceptron can
be viewed as a function of the form

𝑓(𝑋) =
𝑛−1∑︁
𝑖=0

𝑤𝑖𝑋𝑖 + 𝑏,

that is, a perceptron computes a weighted sum of the components. Based on a
threshold, a perceptron can be used to define a binary classifier. For example,
we could classify a sample 𝑋 as “type 1” provided that 𝑓(𝑋) > 𝑇 , for some
specified threshold 𝑇 , and otherwise classify 𝑋 as “type 0.”

2

In the case of two dimensional input, the decision boundary of a perceptron
defines a line

𝑓(𝑥, 𝑦) = 𝑤0𝑥+ 𝑤1𝑦 + 𝑏. (1)

It follows that a perceptron cannot provide ideal separation in cases where the
data itself is not linearly separable.

There was considerable research into artificial neural networks (ANN) in the
1950s and 1960s, and that era is often described as the first “golden age” of AI
and neural networks. But the gold turned to lead in 1969 when an influential
work by Minsky and Papert [12] emphasized the limitations of perceptrons.
Specifically, they observed that the XOR function is not linearly separable,
which implies that a single perceptron cannot model something as elementary
as XOR. The OR, AND, and XOR functions are illustrated in Figure 2, where
we see that OR and AND are linearly separable, while XOR is not.

0 1
0

1

𝑋0

𝑋
1

0 1
0

1

𝑋0

𝑋
1

0 1
0

1

𝑋0

𝑋
1

(a) OR (b) AND (c) XOR

Figure 2: OR and AND are linearly separable but XOR is not

As the name suggests, a multilayer perceptron (MLP) is an ANN that in-
cludes multiple (hidden) layers in the form of perceptrons. An example of an
MLP with two hidden layers is given in Figure 3, where each edge represent a
weight that is to be determined. Unlike a single layer perceptron, MLPs are
not restricted to linear decision boundaries, and hence an MLP can accurately
model the XOR function. However, the perceptron training method proposed
by Rosenblatt [14] cannot be used to effectively train an MLP [10]. To train a
single perceptron, simple heuristics will suffice, assuming that the data is lin-
early separable. From a high level perspective, training a single perceptron is
somewhat analogous to training a linear SVM, except that for a perceptron,
we do not require that the margin (i.e., minimum separation) be maximized.
However, training an MLP would appear to be challenging since we have hid-
den layers between the input and output, and it is not clear how changes to the
weights in these hidden layers will affect each other, let alone the output.

3

𝑋0 𝑋1

𝑓0 𝑓0 𝑓0

𝑓1 𝑓1 𝑓1 𝑓1

𝑔 𝑔 𝑔

𝑌0 𝑌1 𝑌2

Input layer

1st hidden layer

2nd hidden layer

Output layer

Output

Figure 3: MLP with two hidden layers

As an aside, it is interesting to note that for SVMs, we deal with data that
is not linearly separable by employing a soft margin (i.e., we allow for training
errors) and by use of the so-called “kernel trick,” where we map the input data
to a higher dimensional feature space using a (nonlinear) kernel function. In
contrast, perceptrons (in the form of MLPs) overcome the limitation of linear
separability by the use of multiple layers. For an MLP, it is almost as if the non-
linear kernel function has been embedded directly into the model itself through
the use of hidden layers, as opposed to a user-specified explicit kernel function,
as is the case for an SVM.

One possible advantage of the MLP approach over an SVM is that for an
MLP, the equivalent of the kernel function is, in effect, derived from the data
and refined through the training process. In contrast, for an SVM, the kernel
function is selected by a human, and once selected it does not change. In
machine learning, removing those pesky humans from the learning process is a
good thing. However, a possible tradeoff is that significantly more training data
will likely be needed for an MLP, as compared to an SVM, due to the greater
data requirement involved in learning the equivalent of a kernel function.

4

As another aside, we note that from a high level perspective, it is possible
to view MLPs as combining some aspects of SVMs (i.e., specifically, nonlinear
decision boundaries) and HMMs (i.e., hidden layers). Also, we’ll see that the
backpropagation algorithm that is used to train MLPs includes a forward pass
and backward pass, which is eerily reminiscent of the training process that is
used for HMMs.

As yet another aside, we note that an MLP is a feedforward neural network,
which means that there are no loops—the input data and intermediate results
feed directly through the network. In contrast, a recurrent neural network
(RNN) can have loops, which gives an RNN a concept of memory, but can also
add significant complexity.

In the book Perceptrons: An Introduction to Computational Geometry, pub-
lished in 1969, Minsky and Papert [12] made much of the perceived shortcoming
of perceptrons—in particular, the aforementioned inability to model XOR. This
was widely viewed as a devastating criticism at the time, as it was believed that
successful AI would need to capture basic principles of logic. Although it was
known that perceptrons with multiple layers (i.e., MLPs) can model XOR, at
the time, nobody knew how to efficiently train MLPs. Minsky and Papert’s
work was highly influential and is frequently blamed for the relative lack of
interest in the field—a so-called “AI winter”—that persisted throughout the
1970s and into the early 1980s.

By 1986 there was renewed interest in ANNs, thanks in large part to the work
of Rumelhart, Hinton, and Williams [15], who developed a practical means of
training MLPs—the method of backpropagation. We discuss backpropagation
in some detail in Section 6.

It is worth noting that there was another “AI winter” that lasted from the
late 1980s through the early 1990s (at least). The proximate cause of this most
recent AI winter was that the hype far outran the limited successes that had
been achieved. Although deep learning has now brought ANNs back into vogue,
your author (a doubting Thomas, and proud of it) is not convinced that the
current artificial intelligence mania will prove any less artificial than previous AI
“summers” which, on the whole, yielded mostly disappointment. Some of the
ridiculous statements being made today [8] lead your eminently sensible author
to believe that the hype is already hopelessly out of control.1

1In stark contrast to the nonsensical hype that envelopes far too much of the discussion
of deep learning and (especially) AI, there does exist some clear-headed thinking that points
to the great transformative potential of learning technology in the real world, rather than
the world of science fiction. For a fine example of this latter genre, see the intriguingly-titled
article, “Models will run the world” [5]. (Spoiler alert: “Models will run the world” is not
about world domination by skinny women in swimsuits).

5

Next, we discuss deep learning, which builds on the foundation of ANNs. We
can view the relationship between ANNs and deep learning as being somewhat
akin to that of Markov chains and HMMs. That is, ANNs serve as a basic
technology that can be used to build a powerful machine learning technique,
analogous to the way that an HMM is built on the foundation of an elementary
Markov chain. But, before we get into the details of deep learning, we consider
the topic from a high-level perspective.

3 Why Deep Learning?

It is sometimes claimed that the major advantage of deep learning arises when
the amount of training data is large. For example, the tutorial [9] gives a graph
similar to that in Figure 4, which purports to show that deep learning will con-
tinue to achieve improved results as the size of the dataset grows, whereas other
machine learning techniques will plateau at some relatively early point. That
is, models generated by non-deep learning techniques will “saturate” relatively
quickly, and once this saturation point is reached, more data will not yield im-
proved models.2 In contrast, deep learning is supposed to continue learning,
essentially without limit as the volume of training data increases, or at least
it will plateau at a much higher level. Of course, even if this is entirely true,
there are practical computational constraints, since more data requires more
computing power for training.

4 Decisions, Decisions

The essence of machine learning is that when training a model, we minimize the
need for input from those fallible humans. That is, we want our machine learning
models to be data driven, in the sense that the models learn as much as possible
directly from the data itself, with minimal human intervention. However, any
machine learning technique will require some human decisions—for HMMs we
specify the number of hidden states, for SVMs we specify the kernel function,
and so on.

For ANNs in general, and deep learning in particular, the following design
decisions are relevant [6].

2If any learning model truly saturates, then adding more data will be counterproductive
beyond some point, as the work factor for training on larger datasets increases, while there
is no added benefit from the resulting trained model. It would therefore be useful to be able
to predetermine a “score” of some sort that would tell us approximately how much data is
optimal when training a particular learning model for a given type of data.

6

Amount of Training Data

P
er
fo
rm

an
ce

Deep Learning
Machine Learning

Figure 4: Model performance as a function of the amount of training data

∙ The depth of an ANN refers to the number of hidden layers. The “deep”
in deep learning indicates that we employ ANNs with lots of hidden lay-
ers, where “lots” seems to generally mean as many as possible, based on
available computing power.

∙ The width of an ANN is the number of neurons per layer, which need not
be the same in each layer.

∙ In an MLP, for example, nonlinearity is necessary, and this is achieved
through the activation functions (also known as transfer functions). Most
activation functions used in deep learning are designed to mimic a step
function—examples include the sigmoid (or logistic) function

𝑓(𝑥) =
1

1 + 𝑒−𝑥
,

the hyperbolic tangent

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
,

the inverse tangent (also known as arctangent)

𝑓(𝑥) = tan−1(𝑥),

7

and the rectified linear unit (ReLU)

𝑓(𝑥) = max{0, 𝑥} =

{︂
𝑥 if 𝑥 > 0
0 otherwise.

Note that the softmax function is a generalization of the sigmoid function
to multiclass problems.

The graph of each of the activation functions given above is illustrated in
Figure 5. As of this writing, ReLU is the most popular activation function.
Numerous variants of the ReLU function are also used, including the leaky
ReLU and exponential linear unit (ELU).

∙ In addition to activation functions, we also specify an objective function.
The objective function is the function that we are trying to optimize, and
typically represents the training error.

∙ A bias node may be included (or not) in any hidden layer. Each bias node
generates a constant value, and hence is not connected to any previous
layer. When present, a bias node allows the activation function to be
shifted. In the perceptron example given in (1), the bias corresponds to
the 𝑦-intercept 𝑏.

−6.00−4.00−2.00 0.00 2.00 4.00 6.00

0.50

1.00

−2.00 −1.00 1.00 2.00

−1.00

1.00

(a) Sigmoid function (b) Hyperbolic tangent

−6.00−4.00−2.00 2.00 4.00 6.00

−2.00

−1.00

1.00

2.00

−4.00 −2.00 0.00 2.00 4.00

1.00

2.00

3.00

4.00

5.00

(c) Arctangent (d) ReLU

Figure 5: Activation functions

8

For the sake of comparison with our favorite non-deep learning technique,
the depth of an HMM can be viewed as the order of the underlying Markov
model. Typically, for HMMs, we only consider models of order one (in which
case, the current state depends only on the previous state), but it is possible
to consider higher order models. The width of an HMM might be viewed as
being determined by 𝑁 , the number of hidden states. But, regardless of the
order of the model or the choice of 𝑁 , there is really only one hidden layer in
any HMM. The fact that an HMM is based on linear operations implies that
adding multiple hidden layers would have no effect, as the multiple layers would
be equivalent to a single layer. Furthermore, the 𝐴 and 𝐵 matrices of an HMM
can be viewed as its activation functions (with the 𝐵 matrix corresponding
to the output layer), and 𝑃 (𝒪 |𝜆) corresponds to the objective function in an
ANN. Note that these functions are all linear in an HMM, while at least some
of the activation functions must be nonlinear in any true multilayer ANN, such
as an MLP.

Neural networks are trained using the backpropagation algorithm, which is
a special case of a more general technique known as reverse mode automatic
differentiation. Next, we discuss automatic differentiation, and then turn our
attention to the specific case of backpropagation.

5 Automatic Differentiation

First, let’s recall the chain rule from calculus. Suppose that we have a composite
function of the form

𝑦 = 𝑓(𝑥) where 𝑥 = 𝑔(𝑡).

Then, by the chain rule,
𝑑𝑦

𝑑𝑡
=

𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
.

For a function of two or more variables, things are only slightly more complex.
Consider a function of the form

𝑧 = 𝑓(𝑥, 𝑦) where 𝑥 = 𝑔(𝑡) and 𝑦 = ℎ(𝑡).

Then
𝑑𝑧

𝑑𝑡
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑡
,

that is, we differentiate with respect to each variable and sum the results. In
the special case where 𝑓(𝑥, 𝑦) is of the form

𝑧 = 𝑓(𝑥, 𝑦) where 𝑦 = 𝑔(𝑥),

9

the chain rule still applies, and we find

𝑑𝑧

𝑑𝑥
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥
=

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥
,

since 𝑑𝑥/𝑑𝑥 = 1. Of course, these concepts are easily extended to functions of
any number of variables.

Now we consider the problem of computing derivatives efficiently. Suppose
that we want to evaluate the derivative of a “reasonable” function 𝑓(𝑥) at some
specific point 𝑥. One obvious way to do so comes directly from the definition
of the derivative,

lim
ℎ→0

𝑓(𝑥+ ℎ)− 𝑓(𝑥)

ℎ
.

That is, we can simply evaluate

𝑓(𝑥+ ℎ)− 𝑓(𝑥)

ℎ

at some small value of ℎ. The problem here is that if we make ℎ very small,
roundoff error will be a big problem, and if we don’t make ℎ sufficiently small,
then the approximation is not likely to be good.

Instead of using the definition of the derivative, we can use symbolic compu-
tation to generate the derivative function 𝑓 ′(𝑥) and then evaluate this function
at the desired point. This is essentially what you would typically do (assuming
you are a human) if you were asked to evaluate 𝑓 ′(𝑥) in a calculus class.

It is possible to determine derivative functions algorithmically for reasonable
functions (see, Mathematica, Maple, and Macsyma, for example). However,
even if we leave aside the problems inherent in automatically generating the
derivative function 𝑓 ′(𝑥), this approach would generally be computationally
inefficient. One such efficiency issue is that components are often repeated in
the derivative. For example, consider a function of the form 𝑓(𝑥) = 𝑔(𝑥)/ℎ(𝑥).
Then,

𝑓 ′(𝑥) =
𝑔′(𝑥)ℎ(𝑥)− 𝑔(𝑥)ℎ′(𝑥)

ℎ2(𝑥)

and we see that ℎ(𝑥) appears twice. This duplication issue only becomes worse
when dealing with functions of more than one variable.

To be more concrete, let’s define a “reasonable” function as one that is given
in the form of a computer program. Any function that we can evaluate on a
computer must be composed of fairly elementary operations, such as addition,
subtraction, multiplication, division, polynomial functions, trigonometric func-
tions, logarithms, exponentials, and so on. Since we’re (hopefully) all computer

10

geeks, the only functions we could possibly care about are those that can exist
in the form of a computer program. Hence, we’ll assume that any function 𝑓(𝑥)
that we’ll need to deal with is composed of simple operations (e.g., addition,
subtraction, etc.). For any such function 𝑓(𝑥), we can evaluate the deriva-
tive 𝑓 ′(𝑥) at a specific point by recursively applying the chain rule to a set of
simple sub-functions. This is the key insight behind automatic differentiation.

At this point, automatic differentiation might sound like symbolic differ-
entiation, but it’s not. In automatic differentiation, we are concerned with
evaluating the derivative at a specified point, not obtaining an expression for
the derivative function itself, which allows for automatic differentiation to be
far more efficient in most cases. This should become clearer momentarily.

To see how automatic differentiation might work, let’s walk through a simple
example. Consider the function of two variables,

𝑓(𝑥, 𝑦) =
𝑥

1 + 𝑥𝑦
. (2)

For computational purposes, this function can be written in pseudo-code as
in Figure 6, where 𝑥 and 𝑦 are initialized as desired, and 𝑧 gives us 𝑓(𝑥, 𝑦)
evaluated at the specified initial point (𝑥, 𝑦).

1: 𝑣0 = 𝑥 // initialization
2: 𝑣1 = 𝑦 // initialization
3: 𝑣2 = 1 + 𝑣0𝑣1
4: 𝑣3 = 𝑣0/𝑣2
5: 𝑧 = 𝑣3

Figure 6: Pseudo-code for the function 𝑓(𝑥, 𝑦) in (2)

Now, suppose that we want to evaluate the partial derivatives of 𝑓(𝑥, 𝑦), that
is, we want to compute 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦 at some specified point (𝑥, 𝑦). By
repeatedly applying the chain rule to the program version of the function 𝑓(𝑥, 𝑦),
as given in Figure 6, we obtain the derivative pseudo-code in Figure 7.

For the derivative program in Figure 7, we must initialize 𝑥, 𝑦, 𝑑𝑥, and 𝑑𝑦,
where (𝑥, 𝑦) is the point at which we want to evaluate the partial derivative.
But, how should we initialize 𝑑𝑥 and 𝑑𝑦 so as to obtain a partial derivative?

When we compute 𝜕𝑓/𝜕𝑥, we treat 𝑥 as a variable and 𝑦 as a constant, which
implies that for this partial derivative, we have 𝑑𝑥 = 1 and 𝑑𝑦 = 0. Thus, by
initializing (𝑑𝑥, 𝑑𝑦) = (1, 0), the value of 𝑑𝑧 in the last line of Figure 7 will give
us 𝜕𝑓/𝜕𝑥, evaluated at the specified point (𝑥, 𝑦). For example, if we want to
compute 𝜕𝑓/𝜕𝑥 at the point (𝑥, 𝑦) = (3, 2), we initialize both (𝑥, 𝑦) = (3, 2)

11

1: 𝑣0 = 𝑥 // initialization
2: 𝑣1 = 𝑦 // initialization
3: 𝑑𝑣0 = 𝑑𝑥 // initialization
4: 𝑑𝑣1 = 𝑑𝑦 // initialization
5: 𝑑𝑣2 = 𝑣1𝑑𝑣0 + 𝑣0𝑑𝑣1
6: 𝑑𝑣3 = 1/𝑣2 𝑑𝑣0 − 𝑣0/𝑣

2
2 𝑑𝑣2

7: 𝑑𝑧 = 𝑑𝑣3

Figure 7: Pseudo-code for partial derivatives of 𝑓(𝑥, 𝑦) in (2)

1: 𝑣0 = 3 // initialization
2: 𝑣1 = 2 // initialization
3: 𝑑𝑣0 = 1 // initialization
4: 𝑑𝑣1 = 0 // initialization
5: 𝑑𝑣2 = 2
6: 𝑑𝑣3 = 1/7− 6/72 = 1/49
7: 𝑑𝑧 = 1/49

Figure 8: Evaluating 𝜕𝑓/𝜕𝑥 at (𝑥, 𝑦) = (3, 2)

and (𝑑𝑥, 𝑑𝑦) = (1, 0). Then from the derivative pseudo-code in Figure 7, we
obtain 𝜕𝑓/𝜕𝑥 = 1/49, as illustrated in Figure 8.

For the function in (2), elementary calculus tells us that

𝜕𝑓

𝜕𝑥
=

1

1 + 𝑥𝑦
− 𝑥𝑦

(1 + 𝑥𝑦)2
.

It’s easily verified that evaluating this function at (𝑥, 𝑦) = (3, 2) agrees with the
result obtained by evaluating our derivative program in Figure 8.

On the other hand, to evaluate 𝜕𝑓/𝜕𝑦 at the point (3, 2), we initialize the
derivative program with (𝑥, 𝑦) = (3, 2) and (𝑑𝑥, 𝑑𝑦) = (0, 1), in which case we
obtain the result in Figure 9. Here, we find that the derivative program gives
us 𝜕𝑓/𝜕𝑦 = −9/49. This result is also easily verified to be correct.

From the example above, we see that automatic differentiation provides
a straightforward way to compute partial derivatives of any “programmable”
function at a specified point. This is a very good thing indeed, but it’s still far
from optimal for the backpropagation problem.

For functions of more than one variable, the gradient plays the role of the
derivative. In backpropagation, we will need to compute the gradient of a func-
tion of many variables. Our example function 𝑓(𝑥, 𝑦) in (2) has two variables,

12

1: 𝑣0 = 3 // initialization
2: 𝑣1 = 2 // initialization
3: 𝑑𝑣0 = 0 // initialization
4: 𝑑𝑣1 = 1 // initialization
5: 𝑑𝑣2 = 3
6: 𝑑𝑣3 = −9/49
7: 𝑑𝑧 = −9/49

Figure 9: Evaluating 𝜕𝑓/𝜕𝑦 at (𝑥, 𝑦) = (3, 2)

so its gradient is of the form

∇𝑓(𝑥, 𝑦) =

(︂
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

)︂
.

As illustrated above, when using the code in Figure 7, we compute 𝜕𝑓/𝜕𝑥
with the initialization (𝑑𝑣0, 𝑑𝑣1) = (1, 0), while 𝜕𝑓/𝜕𝑦 requires the initializa-
tion (𝑑𝑣0, 𝑑𝑣1) = (0, 1). More generally, for a function of 𝑛 variables, we have

∇𝑓(𝑥0, 𝑥1, . . . , 𝑥𝑛−1) =

(︂
𝜕𝑓

𝜕𝑥0

,
𝜕𝑓

𝜕𝑥1

, . . . ,
𝜕𝑓

𝜕𝑥𝑛−1

)︂
.

When using automatic differentiation (as discussed above), the analog of the
derivative pseudo-code in Figure 7 is initialized with

(𝑑𝑣0, 𝑑𝑣1, 𝑑𝑣2, . . . , 𝑑𝑣𝑛−1) = (1, 0, 0, . . . , 0)

when evaluating 𝜕𝑓/𝜕𝑥0, while to compute 𝜕𝑓/𝜕𝑥1, we initialize

(𝑑𝑣0, 𝑑𝑣1, 𝑑𝑣2, . . . , 𝑑𝑣𝑛−1) = (0, 1, 0, . . . , 0),

and so on. Hence, to determine the gradient requires a total of 𝑛 evaluations of
the derivative code. But, we observe that the code is identical in each of these 𝑛
iterations—only the initial values of the derivative variables 𝑑𝑣𝑖 change. This
suggests that there should be a more efficient way to compute the gradient and,
fortunately, this is indeed the case.

Above, we have described forward mode automatic differentiation. There is
also reverse mode automatic differentiation [2] which, although somewhat less
intuitive, will enable us to compute all of the partial derivatives required to
evaluate the gradient of a function of any number of variables in an efficient
single pass. We now outline this more efficient reverse mode, using the same
example as above, namely, the function 𝑓(𝑥, 𝑦) in (2).

13

Consider again our program to compute 𝑓(𝑥, 𝑦), as given in Figure 6. First,
let’s compute derivatives involving the 𝑣𝑖. From line 3 in Figure 6, we have

𝑑𝑣2
𝑑𝑣0

= 𝑣1 and
𝑑𝑣2
𝑑𝑣1

= 𝑣0,

while line 4 implies that

𝑑𝑣3
𝑑𝑣0

=
1

𝑣2
and

𝑑𝑣3
𝑑𝑣2

= −𝑣0
𝑣22

Next, we’ll apply the chain rule and make use of the results in the previous
paragraph. We begin with the trivial observation

𝑑𝑧

𝑑𝑧
= 1,

that is, the rate of change of 𝑧 with respect to itself is 1. Then from line 5 in
Figure 6 we have the equally trivial result

𝑑𝑧

𝑑𝑣3
= 1,

which follows from the fact that 𝑧 = 𝑣3. Next, we find that

𝑑𝑧

𝑑𝑣2
=

𝑑𝑧

𝑑𝑣3

𝑑𝑣3
𝑑𝑣2

= −𝑣0
𝑣22

𝑑𝑧

𝑑𝑣3
,

and
𝑑𝑧

𝑑𝑣1
=

𝑑𝑧

𝑑𝑣2

𝑑𝑣2
𝑑𝑣1

= 𝑣0
𝑑𝑧

𝑑𝑣2
,

while
𝑑𝑧

𝑑𝑣0
=

𝑑𝑧

𝑑𝑣3

𝑑𝑣3
𝑑𝑣0

+
𝑑𝑧

𝑑𝑣2

𝑑𝑣2
𝑑𝑣0

=
1

𝑣2

𝑑𝑧

𝑑𝑣3
+ 𝑣1

𝑑𝑧

𝑑𝑣2
.

In Figure 10, we have summarized reverse mode automatic differentiation for
our example function (2). Here, we have shorthanded 𝑑𝑧/𝑑𝑧 as 𝑑𝑧 and 𝑑𝑧/𝑑𝑣𝑖
as 𝑑𝑣𝑖, for 𝑖 = 0, 1, 2, 3.

Note that 𝑑𝑣0 in Figure 10 gives us 𝜕𝑓/𝜕𝑥, while 𝑑𝑣1 is 𝜕𝑓/𝜕𝑦, both evaluated
at (𝑥, 𝑦). Consequently, we can obtain the values of both partial derivatives,
evaluated at a specified point (𝑥, 𝑦), in a single pass through the pseudo-code
for 𝑓(𝑥, 𝑦) in Figure 6 (to determine the 𝑣𝑖), followed by a single pass through the
reverse mode differentiation pseudo-code given in Figure 10 (which determines
the 𝑑𝑣𝑖 that represent the partial derivatives).

14

1: 𝑑𝑧 = 1
2: 𝑑𝑣3 = 𝑑𝑧
3: 𝑑𝑣2 = −𝑣0/𝑣

2
2 𝑑𝑣3

4: 𝑑𝑣1 = 𝑣0 𝑑𝑣2
5: 𝑑𝑣0 = 1/𝑣2 𝑑𝑣3 + 𝑣1𝑑𝑣2

Figure 10: Reverse mode automatic differentiation for 𝑓(𝑥, 𝑦) in (2)

In Figure 11 we give the results of reverse mode automatic differentiation
for the function 𝑓(𝑥, 𝑦) in (2), that is,

𝑓(𝑥, 𝑦) =
𝑥

1 + 𝑥𝑦
.

Here, the forward pass is computed using the pseudo-code in Figure 6 while the
backward pass is computed using the code in Figure 10. From Figure 11, we
see that

∇𝑓(3, 2) =

(︂
𝜕𝑓

𝜕𝑥
(3, 2),

𝜕𝑓

𝜕𝑦
(3, 2)

)︂
=
(︁ 1

49
,
−9

49

)︁
,

which agrees with the partial derivative computations in Figures 8 and 9, and
is also easily verified by directly computing 𝜕𝑓/𝜕𝑥 and 𝜕𝑓/𝜕𝑦.

Forward pass
1: 𝑣0 = 3 // initialization
2: 𝑣1 = 2 // initialization
3: 𝑣2 = 1 + 𝑣0𝑣1 = 7
4: 𝑣3 = 𝑣0/𝑣2 = 3/7
5: 𝑧 = 𝑣3 = 3/7

Backward pass
1: 𝑑𝑧 = 1
2: 𝑑𝑣3 = 𝑑𝑧 = 1
3: 𝑑𝑣2 = −𝑣0/𝑣

2
2 𝑑𝑣3

= −3/49 · 1 = −3/49
4: 𝑑𝑣1 = 𝑣0 𝑑𝑣2

= 3 · (−3/49) = −9/49
5: 𝑑𝑣0 = 1/𝑣2 𝑑𝑣3 + 𝑣1𝑑𝑣2

= 1/7 · 1 + 2 · (−3/49) = 1/49

Figure 11: Evaluating gradient of 𝑓(𝑥, 𝑦) =
𝑥

1 + 𝑥𝑦
at (3, 2)

15

Reverse mode automatic differentiation gives us an extremely efficient means
to obtain the entire gradient, evaluated at a specified point—regardless of the
number of independent variables, we simply need to execute the forward pass,
followed by the backward pass. Thus, reverse mode automatic differentiation is
much more efficient for computing the gradient, as compared to other methods,
including the forward mode of automatic differentiation discussed above.3

In reverse mode automatic differentiation we have, in effect, swapped the
roles of dependent and independent variables, and then applied the chain rule
as usual. In the particular example considered above, we only have one de-
pendent variable, so there is no choice in the initialization of the “partial”
derivative 𝑑𝑧/𝑑𝑧. However, if we have, say, two dependent variables, then we
would have a similar situation as in the forward mode example above, that is,
we would need to execute the reverse mode code twice to obtain the partial
derivatives for both dependent variables. It follows that forward mode is more
efficient when there are fewer independent variables, while reverse mode is more
efficient when there are fewer dependent variables. In backpropagation, we’ll
have a single dependent variable (based on a cost or error function), but a large
number of independent variables (representing the weights), so reverse mode is
the clear winner.

6 Backpropagation

Backpropagation can be viewed as a special case of reverse mode automatic
differentiation. In backpropagation, we have a forward pass, a backward pass,
and we use the results of these two passes to recompute the weights of the
neural network under consideration. The forward pass corresponds to simply
evaluating the program that defines the objective function at a specified point.
When training a neural network, the objective function that we are concerned
with will typically measure the distance between the computed values (using
our current estimates for the weights) and the desired (known) training values.
That is, in backpropagation, we are typically dealing with an error function that
is based on a distance measure. The backward pass consists of evaluating the
gradient of the objective function using reverse mode automatic differentiation.
Then based on the computed gradient, we’ll use a steepest descent algorithm
to re-estimate the weights of the ANN. This process is iterated until we reach
a (local) minimum of the objective function.

3For more complex functions, the savings inherent in automatic differentiation are even
more significant, as will become clear when you solve the homework problems.4

4You are solving the homework problems, aren’t you?

16

We’ll look at backpropagation in more detail based on a simpler example
below. But first we need to say a little more about gradient descent. A detailed
example is given in Appendix A, where we show that an HMM can be trained
using gradient ascent, as opposed to the well-known Baum-Welch re-estimation
hill-climb technique.

6.1 Gradient Descent

Suppose that we want to find a local minimum of the function

𝑓(𝑥) = 𝑥6 + 2𝑥5 − 33

4
𝑥4 − 14𝑥3 +

53

4
𝑥2 + 27𝑥+ 9.

The graph of this function appears in Figure 12.

𝛼1𝑓
′(𝑥)𝛼2𝑓

′(𝑥)

𝑥

𝑓
(𝑥
)

Figure 12: Two examples of gradient descent

In Figure 12, the red and blue dashed lines are the tangent lines to the curve
at the red open circle and the blue open square, respectively. For any 𝑥0, the
derivative 𝑓 ′(𝑥0) will give us the slope of the tangent line to 𝑓 at the point 𝑥0.
Once we know the slope of the tangent line, by moving a small step in the
opposite direction of this slope, we will obtain a smaller (or equal) value for
the function 𝑓 , and hence we can converge towards a local minimum. More
precisely, in gradient descent we select an initial 𝑥0, then compute 𝑓 ′(𝑥0) and

17

update 𝑥0 to 𝑥1 according to

𝑥1 = 𝑥0 − 𝛼𝑓 ′(𝑥0),

where 𝛼 is “small.” Provided that 𝛼 is sufficiently small, 𝑓(𝑥1) ≤ 𝑓(𝑥0), and
we can iterate this process to determine a series of 𝑥𝑖 that converge to a local
minimum.

In Figure 12 we illustrate gradient descent for two different starting points—
the red open circle and the blue open square—and two different step sizes, 𝛼1

and 𝛼2, respectively.
5 Note that in the case of the blue squares in Figure 12,

we bypass a local minimum (marked with a black diamond). This shows that
gradient descent is not a hill climb algorithm.

When training a neural network, the gradient descent step size is referred
to as the learning rate, and this is a critical parameter. The significance of
the learning rate can be seen in Figure 12, where a smaller value for 𝛼2 would
likely yield a different result. Note that, the learning rate need not be constant
throughout the iterative training process.6

In a neural network application, computing the error requires that the error
function be evaluated at all of the training data points. Since there may be a
large number of steps in the gradient descent, and an extremely large number of
training samples, this could be very costly. So, instead of evaluating the gradient
at all of the training samples, we can evaluate the gradient based on a subset of
the training samples at each iteration. This modification is often referred to as
stochastic gradient descent (SGD),7 but is more properly known as a mini-batch
technique. Since we are not using all samples, there is no guarantee that we will
descend at each step, but it can be shown that on average, we will move in the
right direction [3]. For example, a mini-batch based gradient descent for the
function in Figure 12 might follow a trajectory something like the red squiggly
line in Figure 13.

Along with the learning rate, the batch size is an important parameter when
training a neural network. And, as with the learning rate, the batch size need
not be the same for each iteration.

We note in passing that mini-batches in backpropagation are somewhat anal-
ogous to the concept of bagging as used when training a random forest [17].

5The gradient descent examples in Figure 12 are oversimplified. In gradient descent, the
increment 𝛼𝑓 ′(𝑥) varies depending on the value of the derivative, while the picture in Figure 12
shows constant increments.

6Intuitively, we’d probably want to set the learning rate relatively large initially, and then
reduced it in later iterations as the model is closer to converging.

7Technically, in stochastic gradient descent, we would use only a single training sample at
each iteration. For most applications of backpropagation to training a neural network, this
would result in an extremely large number of iterations.

18

𝛼𝑓 ′(𝑥)

𝑥

𝑓
(𝑥
)

Figure 13: Mini-batch gradient descent

Bagging consists of selecting subsets of the data and features to construct the
decision trees that form the random forest. Although mini-batches are used in
backpropagation primarily for the sake of efficiency, mini-batches can yield a
better result, since the “noisy” intermediate steps enable a model to bypass an
inferior local minimum. Consequently, mini-batches can give us a more useful
neural network, while bagging allows a random forest to overcome the overfitting
that plagues decision trees.

The use of backpropagation to train an ANN also has some striking sim-
ilarities to the sequential minimal optimization (SMO) algorithm [17]. The
SMO algorithm—which efficiently solves large and sparse quadratic program-
ming problems—is the most effectual method known for training an SVM. For
the sake of efficiency, SMO relies on a gradient descent, with minimal “batches”
of the Lagrangian coefficients selected at each iteration. The use of minimal
batches and gradient descent in SMO are very much analogous to SGD in the
context of backpropagation.

In the next section, we provide a straightforward neural network example
and give some details on the use of backpropagation to train this particular
network.8 Specifically, we consider the problem of training a 2-layer MLP based
on a slightly generalized version of the XOR function.

8For another example, see Appendix B, where we show that an HMM can be trained using
Lagrange multipliers and backpropagation.

19

6.2 Simple MLP Example

As discussed in Section 2, the XOR function cannot be accurately modeled
by a single layer perceptron. However, an MLP with two layers, such as that
illustrated in Figure 14, can represent XOR. See homework Problem 2 at the
end of this tutorial for more details on how to design a 2-layer MLP that is
equivalent to the XOR function.

𝑋0 𝑋1

𝑓 𝑓

𝑔

𝑌

𝑤0
𝑤1 𝑤2 𝑤3

𝑤4 𝑤5

Figure 14: Simple MLP example

Our goal here is to train the MLP in Figure 14 using backpropagation. We’ll
choose 𝑓 to be the logistic function

𝑓(𝑠, 𝑡) =
1

1 + 𝑒−(𝑠+𝑡)

and, to keep it simple, we’ll let 𝑔(𝑠, 𝑡) = 𝑠 + 𝑡. Then the function defined by
this particular MLP is given by

𝑌 = 𝑤4 𝑓(𝑤0𝑋0, 𝑤2𝑋1) + 𝑤5 𝑓(𝑤1𝑋0, 𝑤3𝑋1)

=
𝑤4

1 + 𝑒−(𝑤0𝑋0+𝑤2𝑋1)
+

𝑤5

1 + 𝑒−(𝑤1𝑋0+𝑤3𝑋1)
.

(3)

We’ll attempt to train the this MLP to model

𝐹 (𝑋0, 𝑋1) = XOR(⌊𝑋0 + 0.5⌋, ⌊𝑋1 + 0.5⌋), (4)

20

which is a generalized form of the XOR function, defined for 0 ≤ 𝑋𝑖 < 1.
Note that in this function, we simply apply the usual rules of rounding to 𝑋0

and 𝑋1, and then apply the standard XOR function to these rounded values.
The decision boundaries for the function in (4) are given in Figure 15.

0 1
0

1

0

01

1

𝑋0

𝑋
1

Figure 15: Decision boundaries for 𝐹 (𝑋0, 𝑋1) in (4)

For the MLP specified by (14), the output 𝑌 is a real number. Since the
output of the generalized XOR function in (4) that we are trying to model
is either 0 or 1, we can map the result of the MLP to 0 or 1, depending on
whether 𝑌 is closer to 0 or 1, that is

MLP(𝑋0, 𝑋1) =

{︂
0 if 𝑌 < 1/2
1 otherwise.

Again, we want to train this MLP to recognize the function (4). Each
training sample will consist of a pair (𝑋0, 𝑋1) and 𝑍, where 0 ≤ 𝑋𝑖 < 1 and
where 𝑍 is computed using the generalized XOR function in (4).

We’ll measure the error using one-half of the squared Euclidean distance.
Then for any given set of weights (𝑤0, 𝑤1, . . . , 𝑤5), each training sample gives
us an error term of the form

𝐸(𝑤) =
1

2

(︁ 𝑤4

1 + 𝑒−(𝑤0𝑋0+𝑤2𝑋1)
+

𝑤5

1 + 𝑒−(𝑤1𝑋0+𝑤3𝑋1)
− 𝑍

)︁2
. (5)

It follows that the overall error when approximating the function in (4) by the
MLP in Figure 14 is the sum over our training samples of these error terms. For
simplicity, here we’ll just consider the error for a single sample—it is straight-
forward to extend this analysis to the error for any number of training samples.
Pseudo-code to evaluate the error term 𝐸(𝑤) is given in Figure 16.

21

1: 𝑣0 = 𝑤0 // initialization
2: 𝑣1 = 𝑤1 // initialization
3: 𝑣2 = 𝑤2 // initialization
4: 𝑣3 = 𝑤3 // initialization
5: 𝑣4 = 𝑤4 // initialization
6: 𝑣5 = 𝑤5 // initialization
7: 𝑣6 = 𝑋0𝑣0 +𝑋1𝑣2
8: 𝑣7 = 𝑋0𝑣1 +𝑋1𝑣3
9: 𝑣8 = 1 + 𝑒−𝑣6

10: 𝑣9 = 1 + 𝑒−𝑣7

11: 𝑣10 = 𝑣4/𝑣8
12: 𝑣11 = 𝑣5/𝑣9
13: 𝑣12 = (𝑣10 + 𝑣11 − 𝑍)2/2
14: 𝑧 = 𝑣12

Figure 16: Pseudo-code to compute the error 𝐸(𝑤) in (5)

Next, we follow the reverse mode automatic differentiation procedure out-
lined in Section 5. From line 7 in Figure 16 we have

𝑑𝑣6
𝑑𝑣0

= 𝑋0 and
𝑑𝑣6
𝑑𝑣2

= 𝑋1,

while line 8 yields
𝑑𝑣7
𝑑𝑣1

= 𝑋0 and
𝑑𝑣7
𝑑𝑣3

= 𝑋1,

and line 9 gives us
𝑑𝑣8
𝑑𝑣6

= −𝑒−𝑣6 ,

and so on. From these derivative expressions and the trivial observations

𝑑𝑧

𝑑𝑧
= 1 and

𝑑𝑧

𝑑𝑣12
= 1,

we obtain the results in Figure 17, where we use 𝑑𝑣𝑖 as shorthand for 𝑑𝑧/𝑑𝑣𝑖. It
follows that if we initialize

(𝑣0, 𝑣1, . . . , 𝑣5) = (𝑤0, 𝑤1, . . . , 𝑤5)

and compute the remaining 𝑣𝑖 as in Figure 16, the gradient of the error func-
tion 𝐸(𝑤) is given by the final six lines in Figure 17, that is,

∇𝐸(𝑤) =
(︀
𝑑𝑣0, 𝑑𝑣1, 𝑑𝑣2, 𝑑𝑣3, 𝑑𝑣4, 𝑑𝑣5

)︀
.

22

1: 𝑑𝑧 = 1
2: 𝑑𝑣11 = 𝑣10 + 𝑣11 − 𝑍
3: 𝑑𝑣10 = 𝑣10 + 𝑣11 − 𝑍
4: 𝑑𝑣9 = −𝑣5/𝑣

2
9 𝑑𝑣11

5: 𝑑𝑣8 = −𝑣4/𝑣
2
8 𝑑𝑣10

6: 𝑑𝑣7 = −𝑒−𝑣7𝑑𝑣9
7: 𝑑𝑣6 = −𝑒−𝑣6𝑑𝑣8
8: 𝑑𝑣5 = 𝑑𝑣11/𝑣9
9: 𝑑𝑣4 = 𝑑𝑣10/𝑣8
10: 𝑑𝑣3 = 𝑋1 𝑑𝑣7
11: 𝑑𝑣2 = 𝑋1 𝑑𝑣6
12: 𝑑𝑣1 = 𝑋0 𝑑𝑣7
13: 𝑑𝑣0 = 𝑋0 𝑑𝑣6

Figure 17: Reverse mode automatic differentiation for 𝐸(𝑤) in (5)

To apply the backpropagation algorithm, we first select initial values for
the weights 𝑤𝑖 of the MLP in Figure 14, and we use the code in Figure 16 to
compute the 𝑣𝑖. Then we use the code in Figure 17 to compute the gradient.
Based on the gradient and learning rate 𝛼, we generate updated weights ̃︀𝑤𝑖 as̃︀𝑤𝑖 = 𝑤𝑖 − 𝛼 𝑑𝑣𝑖 for 𝑖 = 0, 1. . . . , 5.

This process is iterated until we reach a (local) minimum of the error function.
In the backpropagation algorithm, computing the 𝑣𝑖 as in Figure 16 is re-

ferred to as the forward pass, while the code in Figure 17 is the backward pass.
These two passes are used to compute the gradient of the error function.

We note that in terms of the 𝑣𝑖 in Figure 16, the gradient of 𝐸(𝑤) is

∇𝐸(𝑤) =
(︁ 𝜕𝐸

𝜕𝑤0

,
𝜕𝐸

𝜕𝑤1

,
𝜕𝐸

𝜕𝑤2

,
𝜕𝐸

𝜕𝑤3

,
𝜕𝐸

𝜕𝑤4

,
𝜕𝐸

𝜕𝑤5

)︁
=
(︀
𝑋0(𝑒

−𝑣6)(𝑣4/𝑣
2
8)(𝑣10 + 𝑣11 − 𝑍),

𝑋0(𝑒
−𝑣7)(𝑣5/𝑣

2
9)(𝑣10 + 𝑣11 − 𝑍),

𝑋1(𝑒
−𝑣6)(𝑣4/𝑣

2
8)(𝑣10 + 𝑣11 − 𝑍),

𝑋1(𝑒
−𝑣7)(𝑣5/𝑣

2
9)(𝑣10 + 𝑣11 − 𝑍),

(𝑣10 + 𝑣11 − 𝑍)/𝑣8,

(𝑣10 + 𝑣11 − 𝑍)/𝑣9
)︀

However, for the backpropagation algorithm, we do not expand the partial
derivatives in this way, as the backward pass provides an efficient means of
computing the required partial derivatives.

23

Again, for the example considered here, the error function is based on only
one sample. Typically, we would use a mini-batch, where the error function
depends on multiple samples at each step. It is straightforward to derive the
error function and gradient for the case where the error term depends on any
number of training samples.

7 Conclusion

The main focus of this paper is the backpropagation algorithm. There are many
additional sources of information, including the aforementioned [6] and [2]. The
original source [15] is well worth reading.

In [15] it is mentioned that

8 Problems

1. For the function in (2), pseudo-code for the forward pass and backward
pass of the backpropagation algorithm is given in Figures 6 and 10, respec-
tively. Give analogous pseudo-code for the forward and backward passes
for the function

𝑓(𝑥, 𝑦) =
𝑥

1 + 𝑒−(𝑥+𝑦)
.

2. Consider the MLP in Figure 14, which has two inputs and one hidden
layer consisting of two nodes. Suppose that we choose the function in this
MLP to be

𝑓(𝑥0, 𝑥1) = max{𝑥0 + 𝑥1, 0} (6)

and we let
𝑔(𝑠, 𝑡) = 𝑠+ 𝑡.

The function 𝑓(𝑥0, 𝑥1) in (6) is the rectified linear unit (ReLU), which is
discussed in Section 4.

a) Give the function specified by this MLP, that is, write the output 𝑌
in terms of the inputs 𝑋𝑖 and weights 𝑤𝑖.

b) Suppose that we restrict 𝑋𝑖 ∈ {0, 1} for 𝑖 = 0, 1 and we also re-
quire that 𝑌 ∈ {0, 1} and that the weights satisfy 𝑤𝑖 ∈ {+1,−1}
for 𝑖 = 0, 1, . . . , 5. Under these conditions, determine weights so that
the resulting MLP represents the XOR function. Construct a truth
table to verify that the output 𝑌 agrees with the XOR function.

24

c) Since XOR is not linearly separable, your solution to part b) must
not be a separating hyperplane.9 Shade the unit square according to
whether the points are classified as 0 or 1 based on your solution to
part b), assuming that we classify (𝑋0, 𝑋1) as 0 whenever 𝑌 < 0.5 and
we classify (𝑋0, 𝑋1) as 1 whenever 𝑌 ≥ 0.5. Note that the unit square
has corners at (0, 0), (0, 1), (1, 0), and (1, 1), and we are restricting the
input (𝑋0, 𝑋1) to be within this region—but we do not require 𝑋𝑖 to
be 0 or 1, as we did in part b).

3. Draw a diagram analogous to that in Figure 20, but for the case where
the HMM has 𝑁 = 3 hidden states and there are 𝑇 = 3 observations.

4. In this problem, we show that we must have nonlinear functions in an
MLP. Consider the simple MLP in Figure 14 and let 𝑓(𝑥0, 𝑥1) = 𝑎𝑥0+ 𝑏𝑥1

and 𝑔(𝑠, 𝑡) = 𝑠+𝑡. Show that this is equivalent to a single layer perceptron,
and give the function that defines the perceptron.

5. Write line 9 in Figure 17 in terms of 𝑤0, 𝑤1, . . . , 𝑤5 using the values of
the 𝑣𝑖 as computed Figure 16. Verify that this line gives us 𝜕𝐸/𝜕𝑤5.

6. In this problem, you will use the following data to train the MLP in
Figure 14 to recognize the XOR function.

𝑖 𝑋0 𝑋1 𝑍𝑖

0 0.6 0.4 1
1 0.1 0.2 0
2 0.8 0.6 0
3 0.3 0.7 1
4 0.7 0.3 1
5 0.7 0.7 0
6 0.2 0.9 1

a) Use the stochastic gradient descent (SGD) algorithm, with the pseudo-
code in Figure 16 for the forward pass, and the pseudo-code in Figure 17
for the backward pass. Initialize the weights as

(𝑤0, 𝑤1, . . . , 𝑤5) = (1, 2,−1, 1,−2, 1),

use a constant learning rate of 𝛼 = 0.1, and in each epoch10 consider the
training samples in order 𝑖 = 0, 1, . . . , 6. Train for 1000 epochs. Give

9Recall that a hyperplane in 2-dimensional space is a line.
10An epoch is one complete pass through the training data.

25

the final weights (𝑤0, 𝑤1, . . . , 𝑤5), compute the result of your trained
MLP on each training sample, and determine the accuracy on the train-
ing set. Also, determine the accuracy of your MLP on the following
test data.

𝑖 𝑋0 𝑋1 𝑍𝑖 𝑖 𝑋0 𝑋1 𝑍𝑖

0 0.55 0.11 1 5 0.46 0.54 1
1 0.32 0.21 0 6 0.16 0.51 1
2 0.24 0.64 1 7 0.52 0.94 0
3 0.86 0.68 0 8 0.46 0.87 1
4 0.53 0.79 0 9 0.96 0.63 0

b) Repeat part a), but use 10,000 epochs. Compare your trained MLP
from part a) to your trained MLP from this part. In particular, com-
pute the output of the function (3) on each training sample based on
the trained model in a), and do the same using the model obtained in
this part. Comment on these results.

7. Repeat Problem 6, but include a bias node (with bias 1) in the hidden
layer. Note that this will change the objective function, and hence the
forward and backward passes will need to be modified.

8. Generate pseudo-code for the backpropagation forward pass and backward
pass analogous to that in Figures 16 and 17, respectively, but for the case
where the error is based on a mini-batch consisting of two training samples
rather than a single training sample.

9.* Baum-Welch re-estimation, which is the standard method of training an
HMM, is a hill climb technique [17]. In Appendix B, we showed that
HMM training can be based on a Lagrange neural network. Since we can
train a neural network using backpropagation, which is not a hill climb, it
follows that if we train an HMM as outlined in Appendix B, the training is
not a hill climb. Thus, the neural network approach to training an HMM
might be advantageous, since Baum-Welch will get stuck at the first local
maximum that it encounters.

Using a Lagrange neural network, train HMMs on English text, with 27
symbols (lowercase letters a through z and word-space) with 𝑁 = 2 hidden
states and 𝑇 = 50,000 observations. Use SGD (i.e., a mini-batch of size 1)
and experiment with different choices for the learning rate 𝛼. In each
case, train for a sufficient number of epochs so that the model converges.
Compare your results to the example in Section 9.2 of [17], which also
appears in Section 8 of [16].

26

10.* The article [1] and Appendix A discuss an alternative method for training
an HMM based on gradient ascent. One advantage of this gradient based
approach, as compared to Baum-Welch re-estimation, is that it can be
applied in an “online” mode, that is, the model can be updated as more
data is available, without retraining from scratch. In this problem, you
will implement and test the algorithm in Appendix A.

In this algorithm, we’ll update the the elements of the 𝐴 and 𝐵 matrices
using a softmax technique, that is,

𝑎𝑖𝑗 =
𝑒𝜏𝑤𝑖𝑗

𝑁−1∑︀
𝑘=0

𝑒𝜏𝑤𝑖𝑘

and 𝑏𝑖(𝑗) =
𝑒𝜏𝑣𝑖𝑗

𝑀−1∑︀
𝑘=0

𝑒𝜏𝑣𝑖𝑘
,

where 𝜏 is a “temperature” parameter. We update 𝑤𝑖𝑗 and 𝑣𝑖𝑗 in this
equation as ̃︀𝑤𝑖𝑗 = 𝑤𝑖𝑗 +

𝛼

𝒞
(︀
𝒜𝑖𝑗 −𝒜𝑖𝑎𝑖𝑗

)︀
and ̃︀𝑣𝑖𝑗 = 𝑣𝑖𝑗 +

𝛼

𝒞
(︀
ℬ𝑖𝑗 − ℬ𝑖𝑏𝑖(𝑗)

)︀
,

where 𝛼 is the learning rate, 𝒞 is a function of 𝑃 (𝒪 |𝜆), 𝒜𝑖𝑗 is the expected
number of transitions from state 𝑖 to state 𝑗, ℬ𝑖𝑗 is the expected number
of times we observe 𝑗 in state 𝑖, and

𝒜𝑖 =
∑︁
𝑗

𝒜𝑖𝑗 and ℬ𝑖 =
∑︁
𝑗

ℬ𝑖𝑗.

Each of 𝒜𝑖𝑗, 𝒜𝑖, ℬ𝑖𝑗, ℬ𝑖, and 𝒞 depend on the observation sequence 𝒪,
and all are easily computed.11

a) Use the algorithm outlined in this problem to train HMMs on English
text, with 27 symbols (lowercase letters a through z and word-space),
using 𝑁 = 2 hidden states and 𝑇 = 50,000 observations. Experiment
with various choices for the temperature parameter 𝜏 and learning
rate 𝛼. Compare your results to the example in Section 9.2 of [17],
which also appears in Section 8 of [16].

11In terms of 𝛾𝑡(𝑖, 𝑗), 𝛾𝑡(𝑖) and 𝑐𝑡 defined in [16] and Chapter 2 of [17], we have the following:

𝒜𝑖𝑗 =

𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑖, 𝑗), 𝒜𝑖 =

𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑖), ℬ𝑖𝑗 =
∑︁

𝑡∈{0,1,...,𝑇−1}
𝒪𝑡=𝑗

𝛾𝑡(𝑖), ℬ𝑖 =

𝑇−1∑︁
𝑡=0

𝛾𝑡(𝑖), and 𝒞 =

𝑇−1∑︁
𝑡=0

𝑐𝑡.

27

b) For the best set of parameters (𝜏, 𝛼) that you identified in part a),
train an HMM in an online mode. Specifically, train a model based
on 𝑇1 = 5000 samples, to obtain weight matrices𝑊1 and 𝑉1. Then train
a model on the next 𝑇2 = 5000 samples to obtain weight matrices 𝑊2

and 𝑉2. Let 𝑊 = 𝑊1 + 𝑊 + 2 and 𝑉 = 𝑉1 + 𝑉2 be the weight
matrices for the combined 𝑇 = 10,000 samples. Continue updating
the model with blocks of 5000 samples until you reach 𝑇 = 50,000
total samples. Compare the 𝐵 matrix of your online model based
on 𝑉 = 𝑉1 + 𝑉2 + · · · + 𝑉10 to a model trained using all 𝑇 = 50,000
samples at once (i.e., a non-online model). Also train this non-online
model using the same parameters (𝜏, 𝛼) that you determined in part a).

11. From Appendix A, verify the partial derivative expressions in (12).

12. This problem deals with the weight matrix 𝑊 discussed in Appendix A.
Note that similar results hold for the weight matrix 𝑉.

a) Verify that each row sum of the initial weight matrix𝑊 given in Table 1
is equal to the corresponding row sum of the final weight matrix 𝑊, as
given in Table 1.

b) Prove that each row sum of 𝑊 is constant over all iterations.

References

[1] Pierre Baldi and Yves Chavin. Smooth on-line learning algorithms for
hidden markov models. Neural Computation, 6:307–318, 1994. https:

//core.ac.uk/download/pdf/4881023.pdf.

[2] Atılım Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. Automatic differentiation in machine learning:
A survey. https://arxiv.org/pdf/1502.05767.pdf, 2018.

[3] Léon Bottou. On-line learning and stochastic approximations. In David
Saad, editor, On-line Learning in Neural Networks, pages 9–42. Cambridge
University Press, New York, NY, USA, 1998.

[4] The Brown corpus of standard American English. http://www.cs.

toronto.edu/~gpenn/csc401/a1res.html.

[5] Steven A. Cohen and Matthew W. Granade. Models will run the
world. Wall Street Journal. https://www.wsj.com/articles/models-

will-run-the-world-1534716720, 2018.

28

https://core.ac.uk/download/pdf/4881023.pdf
https://core.ac.uk/download/pdf/4881023.pdf
https://arxiv.org/pdf/1502.05767.pdf
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
https://www.wsj.com/articles/models-will-run-the-world-1534716720
https://www.wsj.com/articles/models-will-run-the-world-1534716720

[6] Matthew R. Gormley. Neural networks and backpropagation.
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/

lecture20-backprop.pdf, 2017.

[7] Larry Hardesty. Explained: Neural networks. http://news.mit.edu/

2017/explained-neural-networks-deep-learning-0414, 2017.

[8] Alex Hern. The Guardian. Elon Musk says AI could lead to third world
war. https://www.theguardian.com/technology/2017/sep/04/elon-

musk-ai-third-world-war-vladimir-putin, 2017.

[9] Can Kaan. Deep learning tutorial for beginners. https://www.kaggle.

com/kanncaa1/deep-learning-tutorial-for-beginners, 2018.

[10] Andrey Kurenkov. A ‘brief’ history of neural nets and deep learn-
ing. http://www.andreykurenkov.com/writing/ai/a-brief-history-

of-neural-nets-and-deep-learning/, 2015.

[11] Warren S. McCulloch and Walter Pitts. A logical calculus of
the ideas immanent in nervous activity. Bulletin of Mathemati-
cal Biophysics, 5, 1943. https://pdfs.semanticscholar.org/5272/

8a99829792c3272043842455f3a110e841b1.pdf.

[12] Marvin Minsky and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. MIT Press, 1969.

[13] Raúl Rojas. Neural Networks — A Systematic Introduction. Springer,
1996. https://page.mi.fu-berlin.de/rojas/neural/.

[14] Frank Rosenblatt. Principles of neurodynamics: Perceptrons and the the-
ory of brain mechanisms. http://www.dtic.mil/dtic/tr/fulltext/u2/
256582.pdf, 1961.

[15] David Rumelhart, Geoffrey Hinton, and Ronald Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(9), 1986.

[16] Mark Stamp. A revealing introduction to hidden Markov models. https:
//www.cs.sjsu.edu/~stamp/RUA/HMM.pdf, 2004.

[17] Mark Stamp. Introduction to Machine Learning with Applica-
tions in Information Security. Chapman & Hall/CRC Press, 2017.
https://www.crcpress.com/Introduction-to-Machine-Learning-

with-Applications-in-Information-Security/Stamp/p/book/

9781138626782.

29

https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf
https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture20-backprop.pdf
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
http://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://www.theguardian.com/technology/2017/sep/04/elon-musk-ai-third-world-war-vladimir-putin
https://www.theguardian.com/technology/2017/sep/04/elon-musk-ai-third-world-war-vladimir-putin
https://www.kaggle.com/kanncaa1/deep-learning-tutorial-for-beginners
https://www.kaggle.com/kanncaa1/deep-learning-tutorial-for-beginners
http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://pdfs.semanticscholar.org/5272/8a99829792c3272043842455f3a110e841b1.pdf
https://page.mi.fu-berlin.de/rojas/neural/
http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/256582.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782

[18] Rohit Vobbilisetty, Fabio Di Troia, Richard M. Low, Corrado Aaron Visag-
gio, and Mark Stamp. Classic cryptanalysis using hidden Markov models.
Cryptologia, 41(1):1–28, 2017.

[19] Charles Wallis. History of the perceptron. https://web.csulb.edu/

~cwallis/artificialn/History.htm, 2017.

[20] Shengwei Zhang and A. G. Constantinides. Lagrange programming
neural networks. IEEE Transactions on Circuits and Systems—
II: Analog and Digital Signal Processing, 39(7):441–452, July 1992.
https://www.researchgate.net/publication/3324333_Lagrange_

Programming_neural_networks.

30

https://web.csulb.edu/~cwallis/artificialn/History.htm
https://web.csulb.edu/~cwallis/artificialn/History.htm
https://www.researchgate.net/publication/3324333_Lagrange_Programming_neural_networks
https://www.researchgate.net/publication/3324333_Lagrange_Programming_neural_networks

Appendix A: HMMs and Gradient Ascent

The article [1] provides an alternative to Baum-Welch re-estimation for training
a hidden Markov model (HMM). This alternative is based on gradient ascent,
whereas Baum-Welch is a hill climb. One possible advantage of the gradient
ascent approach is that it can be applied in an “online” mode, that is, the
model can be updated as more data is available, without retraining from scratch.
Another advantage is that no probability of zero can occur. The presentation
in [1] is somewhat terse, so here we flesh out a few aspects of the algorithm, as
well as converting to notation that is consistent with that found in [16] and [17].

A.1: Background

So that this tutorial is reasonably self-contained, in this section, we provide a
brief introduction to hidden Markov models (HMMs). For a far more thorough
introduction to HMMs and the standard training technique, known as Baum-
Welch re-estimation, see [16], or Chapter 2 of [17].

As the name suggests, in an HMM there is a Markov process that is not
directly observable. In addition to this (hidden) Markov process, we have a
series of observations that are probabilistically related to the hidden states.
Figure 18 provides a generic illustration of an HMM, where the 𝑋𝑖 represent
the hidden states, the 𝐴 matrix drives the Markov process, and the 𝐵 matrix
relates the hidden states to the observations. The dashed line can be thought of
as a “curtain” that we cannot see through—although we can gain probabilistic
information about the hidden states from the observations and the 𝐵 matrix.

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 18: Hidden Markov model

31

The following notation will be used here, and is generally consistent with
that found in [16, 17], for example.

𝑇 = length of the observation sequence
𝑁 = number of states in the model
𝑀 = number of observation symbols
𝑄 = {𝑞0, 𝑞1, . . . , 𝑞𝑁−1} = distinct states of the Markov process
𝑉 = {0, 1, . . . ,𝑀 − 1} = set of possible observations
𝐴 = state transition probabilities
𝐵 = observation probability matrix
𝜋 = initial state distribution
𝒪 = (o0,o1, . . . ,o𝑇−1) = observation sequence.

The matrices 𝐴, 𝐵, and 𝜋 are all row stochastic, that is, each row satisfies
the requirements of discrete probability distribution. Furthermore, these three
matrices define the hidden Markov model, which we denote as 𝜆 = (𝐴,𝐵, 𝜋).
In the remainder of this paper, we neglect the 𝜋 matrix.

Note that the observations are assumed to be drawn from {0, 1, . . . ,𝑀 −1},
which serves to simplify the notation, with no loss of generality. Thus, we
have o𝑖 ∈ 𝑉 for 𝑖 = 0, 1, . . . , 𝑇 − 1. Note also that an observation sequence—as
opposed to an individual observation—is denote as 𝒪. We’ll denote multiple
observation sequences as 𝒪1, 𝒪2, and so on.

For 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, define

𝛼𝑡(𝑖) = 𝑃 (o0,o1, . . . ,o𝑡, 𝑥𝑡 = 𝑞𝑖 |𝜆)

and
𝛽𝑡(𝑖) = 𝑃 (o𝑡+1,o𝑡+2, . . . ,o𝑇−1 |𝑥𝑡 = 𝑞𝑖, 𝜆).

Then 𝛼𝑡(𝑖) is the probability of the partial observation sequence up to time 𝑡,
assuming that the underlying Markov process is in state 𝑞𝑖 at time 𝑡, and 𝛽𝑡(𝑖)
is essentially the analog of 𝛼𝑡(𝑖), but for the tail of the sequence as opposed to
the head of the sequence.

Next, for 𝑡 = 0, 1, . . . , 𝑇 − 1 and 𝑖 = 0, 1, . . . , 𝑁 − 1, define

𝛾𝑡(𝑖) = 𝑃 (𝑥𝑡 = 𝑞𝑖 | 𝒪, 𝜆)

and for 𝑡 = 0, 1, . . . , 𝑇 − 2 and 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}, define the “di-gammas”

𝛾𝑡(𝑖, 𝑗) = 𝑃 (𝑥𝑡 = 𝑞𝑖, 𝑥𝑡+1 = 𝑞𝑗 | 𝒪, 𝜆).

Note that 𝛾𝑡(𝑖) is the probability of being in a state 𝑞𝑖 at time 𝑡 while 𝛾𝑡(𝑖, 𝑗)
is the probability of being in state 𝑞𝑖 at time 𝑡 and transitioning to state 𝑞𝑗

32

at time 𝑡 + 1. The parameters 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗) are easily computed in terms
of 𝛼𝑡(𝑖) and 𝛽𝑡(𝑖) as

𝛾𝑡(𝑖) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃 (𝒪 |𝜆) and 𝛾𝑡(𝑖, 𝑗) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(o𝑡+1)𝛽𝑡+1(𝑗)

𝑃 (𝒪 |𝜆)
and it is clear that

𝛾𝑡(𝑖) =
𝑁−1∑︁
𝑗=0

𝛾𝑡(𝑖, 𝑗).

Efficient recursive algorithms exist for computing the 𝛼𝑡(𝑖) and 𝛽𝑡(𝑖); see [16, 17]
for all of the gory details.

When computing the 𝛼𝑡(𝑖) and 𝛽𝑡(𝑖), it is necessary to carefully scale so as
to avoid underflow. In [16, 17], these scaling factors, which are easily computed,
are denoted as 𝑐𝑖, for 𝑖 = 0, 1, . . . , 𝑇 − 1. It can be shown that

𝑃 (𝒪 |𝜆) = 1
𝑇−1∏︀
𝑡=0

𝑐𝑡

. (7)

However, in most realistic applications,
∏︀

𝑐𝑡 will surely result in overflow, and
hence we typically quantify the performance of the model during training using

log
(︀
𝑃 (𝒪 |𝜆)

)︀
= −

𝑇−1∑︁
𝑡=0

log(𝑐𝑡)

Remarkably, computing 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗) using the scaled 𝛼𝑡(𝑖) and 𝛽𝑡(𝑖) is
exact, that is, we obtain exactly the same gammas and di-gammas as we would
if we were able to use the unscaled 𝛼𝑡(𝑖) and 𝛽𝑡(𝑖).

In Baum-Welch re-estimation, the elements of the HMM matrix 𝐴 = {𝑎𝑖𝑗}
are re-estimated based on the expected number of state transitions, which are
easily computed in terms of the 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗). Similarly, it is easy to update
the elements of 𝐵 = {𝑏𝑖(𝑗)}, once the 𝛾𝑡(𝑖) and 𝛾𝑡(𝑖, 𝑗) have been computed.
After the matrices 𝐴 and 𝐵 have been updated, the 𝛼𝑡(𝑖), 𝛽𝑡(𝑖), 𝛾𝑡(𝑖, 𝑗), and 𝛾𝑡(𝑖)
are recomputed, and the process is repeated. It can be shown that Baum-
Welch re-estimation is a hill climb, that is, 𝑃 (𝒪 |𝜆) cannot decrease at any
iteration. Since it is a hill climb, Baum-Welch re-estimation can only find a
local maximum, and hence it is often beneficial to train multiple models using
different initial values for the model parameters.

The bottom line here is that we can efficiently compute 𝛾𝑡(𝑖), 𝛾𝑡(𝑖, 𝑗), and
the scaling factors 𝑐𝑡. We will make use of these quantities in the gradient ascent
algorithm that we next consider.

33

A.2: HMM Training via Gradient Ascent

The following HMM training algorithm is presented in [1] as an alternative to
Baum-Welch re-estimation. In this algorithm, we update the the elements of
the matrices 𝐴 and 𝐵 based on a softmax function and matrices of weights.
The 𝑁 × 𝑁 weight matrix 𝑊 = {𝑤𝑖𝑗} is used to update 𝐴 and the 𝑁 × 𝑀
matrix of weights 𝑉 = {𝑣𝑖𝑗} is used to update 𝐵. The update steps consists of

𝑎𝑖𝑗 =
𝑒𝜏𝑤𝑖𝑗

𝑁−1∑︀
𝑘=0

𝑒𝜏𝑤𝑖𝑘

and 𝑏𝑖(𝑗) =
𝑒𝜏𝑣𝑖𝑗

𝑀−1∑︀
𝑘=0

𝑒𝜏𝑣𝑖𝑘
, (8)

where 𝜏 is a “temperature” parameter. Due to the use of the softmax func-
tion, we avoid 0 probabilities, and we are also assured that the row stochastic
requirements for 𝐴 and 𝐵 will be satisfied, regardless of the weights in𝑊 and 𝑉 .

We update 𝑊 and 𝑉 in (8) according to

̃︀𝑤𝑖𝑗 = 𝑤𝑖𝑗 +
𝜌

𝒞(𝒪)

(︀
𝒜𝑖𝑗(𝒪)−𝒜𝑖(𝒪)𝑎𝑖𝑗

)︀
(9)

and ̃︀𝑣𝑖𝑗 = 𝑣𝑖𝑗 +
𝜌

𝒞(𝒪)

(︀
ℬ𝑖𝑗(𝒪)− ℬ𝑖(𝒪)𝑏𝑖(𝑗)

)︀
, (10)

where 𝜌 is the learning rate, 𝒞(𝒪) = 𝑃 (𝒪 |𝜆), and 𝒜𝑖𝑗(𝒪) is the expected
number of transitions from state 𝑖 to state 𝑗 over the observation sequence 𝒪,
and ℬ𝑖𝑗(𝒪) is the expected number of times we observe 𝑗 in state 𝑖 for 𝒪, while

𝒜𝑖(𝒪) =
∑︁
𝑗

𝒜𝑖𝑗(𝒪) and ℬ𝑖(𝒪) =
∑︁
𝑗

ℬ𝑖𝑗(𝒪).

Each of 𝒜𝑖𝑗(𝒪), 𝒜𝑖(𝒪), ℬ𝑖𝑗(𝒪), ℬ𝑖(𝒪), and 𝒞(𝒪) is easily computed in terms
of the 𝛾𝑡(𝑖, 𝑗), 𝛾𝑡(𝑖) and 𝑐𝑡 discussed in Section A.1; see [16] or Chapter 2 of [17]
for the algorithms used to compute these elements.

We have

𝒜𝑖𝑗(𝒪) =
𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑖, 𝑗) and 𝒜𝑖(𝒪) =
𝑇−2∑︁
𝑡=0

𝛾𝑡(𝑖) (11)

and

ℬ𝑖𝑗(𝒪) =
∑︁

𝑡∈{0,1,...,𝑇−1}
𝒪𝑡=𝑗

𝛾𝑡(𝑖) and ℬ𝑖(𝒪) =
𝑇−1∑︁
𝑡=0

𝛾𝑡(𝑖)

and

𝒞(𝒪) = 𝑃 (𝒪 |𝜆) = 1
𝑇−1∏︀
𝑡=0

𝑐𝑡

34

However, as a practical matter, we cannot compute 𝒞(𝒪) without having over-
flow. We discuss this issue in more detail below.

We now show that the update formula in (9) is a gradient ascent; a similar
argument holds for (10). First, we note that (8) implies

𝜕𝑎𝑖𝑗
𝜕𝑤𝑖𝑗

= 𝜏 𝑎𝑖𝑗(1− 𝑎𝑖𝑗) and
𝜕𝑎𝑖𝑗
𝜕𝑤𝑖𝑘

= −𝜏 𝑎𝑖𝑗𝑎𝑖𝑘 (12)

Next, for any given state sequence 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑇−1), let

𝑓(𝑋) = 𝜋𝑋0
𝑏𝑋0

(o0)𝑎𝑋0,𝑋1
𝑏𝑋1

(o1) · · · 𝑎𝑋𝑇−2,𝑋𝑇−1
𝑏𝑋𝑇−1

(o𝑇−1)

and define the likelihood function 𝐿𝒪(𝜆) = 𝑃 (𝒪 |𝜆). We have

𝐿𝒪(𝜆) =
∑︁
𝑋

𝑓(𝑋).

When training the HMM, our goal is to maximize the likelihood 𝐿𝒪(𝜆). It is
not difficult to verify that

𝜕𝑓(𝑋)

𝜕𝑎𝑖𝑗
= 𝑔𝑖𝑗(𝑋)

𝑓(𝑋)

𝑎𝑖𝑗

where 𝑔𝑖𝑗(𝑋) is simply the number of transitions from state 𝑖 to state 𝑗 in
the state sequence 𝑋, that is, 𝑔𝑖𝑗(𝑋) is the number of times that 𝑎𝑖𝑗 appears
in 𝑓(𝑋). Therefore,

𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑗
=
∑︁
𝑋

𝑔𝑖𝑗(𝑋)
𝑓(𝑋)

𝑎𝑖𝑗
=

𝒜𝑖𝑗(𝒪)

𝑎𝑖𝑗
(13)

where 𝒜𝑖𝑗(𝒪) =
∑︀

𝑋 𝑔𝑖𝑗(𝑋)𝑓(𝑋) and, as above, 𝒜𝑖𝑗(𝒪) is the expected number
of transitions from state 𝑖 to state 𝑗. Now, by the chain rule and (12), we have

𝜕𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

=
𝑁−1∑︁
𝑘=0

𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑘

𝜕𝑎𝑖𝑘
𝜕𝑤𝑖𝑗

= 𝜏𝒜𝑖𝑗(𝒪)(1− 𝑎𝑖𝑗)− 𝜏𝑎𝑖𝑗
∑︁
𝑘 ̸=𝑗

𝒜𝑖𝑘(𝒪)

= 𝜏
(︁
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗

𝑁−1∑︁
𝑘=0

𝒜𝑖𝑘(𝒪)
)︁

= 𝜏
(︀
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪)

)︀
35

It follows that

𝜕log𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

=
𝜏

𝐿𝒪(𝜆)

(︀
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪)

)︀
(14)

which gives us a gradient ascent algorithm on the negative log likelihood func-
tion. The expression in (14) directly yields the claimed update formula (9),
where 𝒞(𝒪) is a function of 𝑃 (𝒪 |𝜆). Note that if 𝜂 is the selected learning
rate, then 𝜌 that appears in (9) is 𝜂𝜏 . For simplicity, we’ll simply refer to 𝜌 as
the learning rate.

To update the weight 𝑤𝑖𝑗, we need to compute

𝜌

𝐿𝒪(𝜆)

(︀
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪)

)︀
. (15)

Unfortunately, we cannot evaluate 𝐿𝒪(𝜆) without underflow. Fortunately, we
can compute log𝐿𝒪(𝜆), and by applying the logarithm function to (15), we find

𝑧 = log
(︁ 𝜌

𝐿𝒪(𝜆)

(︀
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪)

)︀)︁
= log 𝜌− log𝐿𝒪(𝜆) + log

(︀
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪)

)︀
= log 𝜂 + log 𝜏 +

𝑇−1∑︁
𝑡=0

log(𝑐𝑡) + log
(︀
𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪)

)︀
where 𝜂 is the learning rate, 𝜏 is the temperature parameter, and the 𝑐𝑡 are the
scaling factors in (7). By computing 𝑧 in this way, we can update the weight 𝑤𝑖𝑗

as ̃︀𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝑒𝑧,

assuming that log(𝑥) is the natural logarithm ln(𝑥); otherwise, we simply re-
place 𝑒 by the base of the logarithm. Of course, this only makes sense provided
that the step actually ascends, in which case 𝒜𝑖𝑗(𝒪)− 𝑎𝑖𝑗𝒜𝑖(𝒪) > 0, and even
when this is the true, machine precision and numerical instability are likely to
present significant difficulties. In practice, we find that

𝒞(𝒪) = −log𝐿𝒪(𝜆) =
𝑇−1∑︁
𝑡=0

log(𝑐𝑡). (16)

works reasonably well in the update formulas (9) and (10).

36

A.3: Online HMM Training

Suppose that we train an HMM on the observation sequence 𝒪1 and subse-
quently, more training data becomes available, in the form of another observa-
tion sequence 𝒪2. We would like to have a model that represents the observation
super-sequence 𝒪 = (𝒪1,𝒪2), where the sequence 𝒪 consists of 𝒪2 appended
to 𝒪1. We could simply start over from scratch and train a new model on 𝒪
by using Baum-Welch, or the gradient ascent algorithm discussed in the previ-
ous section. However, our goal here is to devise an online training method, as
opposed to a batch method such as Baum-Welch. That is, we want to find a
method that enables us to update a trained HMM as more data becomes avail-
able, without the need to train a new model on the entire observation super-
sequence. The gradient ascent algorithm discussed above is easily modified to
handle the online case.

Let 𝒪 = (𝒪1,𝒪2, . . . ,𝒪𝑛) be an observation super-sequence, consisting of 𝑛
observation sequences and let 𝐿𝒪(𝜆) = 𝑃 (𝒪 |𝜆) be the likelihood function for
the concatenated observations sequence 𝒪 = (𝒪1,𝒪2, . . . ,𝒪𝑛). Then from (7),
it follows that

𝐿𝒪(𝜆) =
𝑛∏︁

𝑘=1

𝐿𝒪𝑘
(𝜆).

Our goal here is to compute 𝜕𝐿𝒪(𝜆)/𝜕𝑤𝑖𝑗. But first we will determine a formula
for 𝜕𝐿𝒪(𝜆)/𝜕𝑎𝑖𝑗, and then use this result, together with the chain rule, to find
the desired partial derivative.

By the product rule, and making use of (13), we find

𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑗
=

𝜕
(︁ 𝑛∏︀
𝑘=1

𝐿𝒪𝑘
(𝜆)
)︁

𝜕𝑎𝑖𝑗
=

1

𝑎𝑖𝑗

𝑛∑︁
𝑘=1

(︁
𝒜𝑖𝑗(𝒪𝑘)

∏︁
ℓ ̸=𝑘

𝐿𝒪ℓ
(𝜆)
)︁

=
𝐿𝒪(𝜆)

𝑎𝑖𝑗

𝑛∑︁
𝑘=1

𝒜𝑖𝑗(𝒪𝑘)

𝐿𝒪𝑘
(𝜆)

(17)

From the chain rule, we have

𝜕𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

=
𝑁−1∑︁
𝑘=0

𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑘

𝜕𝑎𝑖𝑘
𝜕𝑤𝑖𝑗

Expanding the 𝜕𝑎𝑖𝑘/𝜕𝑤𝑖𝑗 terms using (12), we find

𝜕𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

=
𝑁−1∑︁
𝑘=0

𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑘

𝜕𝑎𝑖𝑘
𝜕𝑤𝑖𝑗

37

= 𝜏 𝑎𝑖𝑗
𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑗

(︀
1− 𝑎𝑖𝑗

)︀
− 𝜏 𝑎𝑖𝑗

𝑁−1∑︁
𝑘 ̸=𝑗

𝑎𝑖𝑘
𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑘

= 𝜏 𝑎𝑖𝑗

(︂
𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑗
−

𝑁−1∑︁
𝑘=0

𝑎𝑖𝑘
𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑘

)︂
Finally, we expand the 𝜕𝐿𝒪(𝜆)/𝜕𝑎𝑖𝑘 terms using (17) to obtain

𝜕𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

= 𝜏 𝑎𝑖𝑗

(︂
𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑗
−

𝑁−1∑︁
𝑘=0

𝑎𝑖𝑘
𝜕𝐿𝒪(𝜆)

𝜕𝑎𝑖𝑘

)︂

= 𝜏 𝑎𝑖𝑗

(︂
𝐿𝒪(𝜆)

𝑎𝑖𝑗

𝑛∑︁
ℓ=1

𝒜𝑖𝑗(𝒪ℓ)

𝐿𝒪ℓ
(𝜆)

− 𝐿𝒪(𝜆)
𝑁−1∑︁
𝑘=0

𝑛∑︁
ℓ=1

𝒜𝑖𝑘(𝒪ℓ)

𝐿𝒪ℓ
(𝜆)

)︂

= 𝜏𝐿𝒪(𝜆)

(︂ 𝑛∑︁
ℓ=1

𝒜𝑖𝑗(𝒪ℓ)

𝐿𝒪ℓ
(𝜆)

− 𝑎𝑖𝑗

𝑛∑︁
ℓ=1

𝑁−1∑︁
𝑘=0

𝒜𝑖𝑘(𝒪ℓ)

𝐿𝒪ℓ
(𝜆)

)︂
= 𝜏𝐿𝒪(𝜆)

(︂ 𝑛∑︁
ℓ=1

𝒜𝑖𝑗(𝒪ℓ)

𝐿𝒪ℓ
(𝜆)

− 𝑎𝑖𝑗

𝑛∑︁
ℓ=1

𝒜𝑖(𝒪ℓ)

𝐿𝒪ℓ
(𝜆)

)︂
= 𝜏𝐿𝒪(𝜆)

𝑛∑︁
ℓ=1

1

𝐿𝒪ℓ
(𝜆)

(︁
𝒜𝑖𝑗(𝒪ℓ)− 𝑎𝑖𝑗𝒜𝑖(𝒪ℓ)

)︁
It follows immediately that for the log likelihood function log𝐿𝒪(𝜆), we have

𝜕 log𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

=
1

𝐿𝒪(𝜆)

𝜕𝐿𝒪(𝜆)

𝜕𝑤𝑖𝑗

= 𝜏
𝑛∑︁

𝑘=1

1

𝐿𝒪𝑘
(𝜆)

(︁
𝒜𝑖𝑗(𝒪𝑘)− 𝑎𝑖𝑗𝒜𝑖(𝒪𝑘)

)︁
Analogous to (16), we use

𝒞(𝒪𝑘) =
𝑇−1∑︁
𝑡=0

log(𝑐𝑡)

in place of the normalizing factor 𝐿𝒪𝑘
(𝜆). We also replace 𝜏 with the learning

rate 𝜌.
The upshot here is that we can update the weights 𝑤𝑖𝑗 for the observation

super-sequence 𝒪 = (𝒪1,𝒪2, . . . ,𝒪𝑛) based on the weights obtained for each
sequence 𝒪𝑖. Consequently, as more training data becomes available, we only
need to compute weights for these new observations, as opposed to retraining
in batch mode over the entire super-sequence. Thus we have an online HMM
training algorithm based on the log likelihood function log𝐿𝒪(𝜆). Analogous
statements hold for the weights 𝑣𝑖𝑗 that are used to update the 𝐵 matrix.

38

A.4: HMM Gradient Ascent Example

Here, we duplicate the example found in Section 8 of [16] and Section 9.2 of [17],
but using the gradient ascent algorithm for HMM training, rather than Baum-
Welch re-estimation. For this example, we train an HMM on English text, where
all characters other than the letters and word space have been removed, and all
uppercase letters have been converted to lowercase. This leaves us with 𝑀 = 27
distinct observation symbols. We’ll choose 𝑁 = 2 hidden states, and train
based on a sequence of 𝑇 = 50,000 observations extracted from the Brown
Corpus [4]. Also, we’ll train for 500 iterations of the gradient ascent defined
by equations (8), (9), and (10). That is, we initialize 𝑊 and 𝑉 , then compute
initial values for 𝐴 and 𝐵 based on these initial values for 𝑊 and 𝑉 using the
softmax function in (8). We then proceed to update 𝑊 and 𝑉 according to (9)
and (10), respectively, and recompute 𝐴 and 𝐵 via (8) for 500 iterations. We
select 𝜏 = 2.5 and 𝜌 = 12.0 for the temperature and learning rate parameters.

The initial and final weights 𝑊 are given in Table 1, while the initial and
final weights 𝑉 appear in Table 2. Similarly, the initial and final 𝐴 matrix is in
Table 3, while the initial and final 𝐵 matrix is given in Table 4. From the final 𝐵
matrix, it is clear that the hidden states in the converged model correspond to
the consonants and vowels (where“y” acts as a consonant and space acts as a
vowel). These results are entirely consistent with results obtained using Baum-
Welch re-estimation, as given in Table 3 in [16] and Table 9.1 in [17]

Table 1: Initial and final weights 𝑊

Initial Final
State 0 2.00000 2.00000 1.79125 2.20875
State 1 1.00000 2.00000 1.67991 1.32009

In this section, we used 𝑇 = 50,000 observations when training the HMM via
gradient ascent. This number was chosen for consistency with the English text
examples in [16] and [17], which were trained using Baum-Welch re-estimation.
In data-limited problems, such as the classic cryptanalysis problems considered
in [18], vast numbers of models are trained with random initial conditions, and
the best model is selected. It would be interesting to compare the performance
of Baum-Welch and gradient ascent training on such data-limited problems.
Intuitively, it seem likely that for optimal choices of 𝜏 and 𝜌, the gradient
ascent would, on average, converge to an equivalent or better solution than
Baum-Welch. Of course, it may be difficult to determine optimal values for the
parameters in general, but it might be possible to find near-optimal values in
some interesting special cases.

39

Table 2: Initial and final weights in 𝑉 (transposed)

Initial Final
State 0 State 1 State 0 State 1

a 2.00000 2.00000 3.22750 0.95100
b 1.00000 1.00000 0.67290 1.68933
c 1.00000 2.00000 0.88350 2.04444
d 1.00000 2.00000 0.71186 2.12596
e 2.00000 2.00000 3.40646 0.75535
f 1.00000 2.00000 0.57337 1.86240
g 1.00000 2.00000 0.90313 1.75979
h 2.00000 1.00000 1.92843 2.12216
i 1.00000 1.00000 3.18567 0.32958
j 1.00000 1.00000 0.47211 0.90600
k 2.00000 1.00000 1.30889 1.24483
l 1.00000 1.00000 1.40761 2.14610
m 1.00000 1.00000 0.74382 1.89906
n 1.00000 2.00000 0.84075 2.32939
o 2.00000 2.00000 3.21378 0.57570
p 2.00000 1.00000 1.13639 1.87137
q 2.00000 2.00000 0.60648 0.55095
r 1.00000 1.00000 0.90378 2.28106
s 1.00000 2.00000 0.80650 2.31661
t 1.00000 1.00000 1.44821 2.44446
u 2.00000 2.00000 2.77354 0.42467
v 1.00000 1.00000 0.60466 1.54489
w 1.00000 1.00000 0.55860 1.68829
x 2.00000 1.00000 0.78836 1.01365
y 1.00000 2.00000 0.75138 1.72812
z 2.00000 2.00000 0.54381 0.43223

space 2.00000 1.00000 3.59852 0.96260

Table 3: Initial and final 𝐴

Initial Final
State 0 0.50000 0.50000 0.26043 0.73957
State 1 0.07586 0.92414 0.71086 0.28914

40

Table 4: Initial and final 𝐵 (transposed)

Initial Final
State 0 State 1 State 0 State 1

a 0.08121 0.07068 0.13537 0.00364
b 0.00667 0.00580 0.00023 0.02307
c 0.00667 0.07068 0.00039 0.05605
d 0.00667 0.07068 0.00025 0.06873
e 0.08121 0.07068 0.21176 0.00223
f 0.00667 0.07068 0.00018 0.03556
g 0.00667 0.07068 0.00041 0.02751
h 0.08121 0.00580 0.00526 0.06808
i 0.00667 0.00580 0.12193 0.00077
j 0.00667 0.00580 0.00014 0.00326
k 0.08121 0.00580 0.00112 0.00759
l 0.00667 0.00580 0.00143 0.07227
m 0.00667 0.00580 0.00027 0.03897
n 0.00667 0.07068 0.00035 0.11429
o 0.08121 0.07068 0.13081 0.00143
p 0.08121 0.00580 0.00073 0.03637
q 0.08121 0.07068 0.00019 0.00134
r 0.00667 0.00580 0.00041 0.10128
s 0.00667 0.07068 0.00032 0.11069
t 0.00667 0.00580 0.00158 0.15238
u 0.08121 0.07068 0.04352 0.00098
v 0.00667 0.00580 0.00019 0.01608
w 0.00667 0.00580 0.00017 0.02301
x 0.08121 0.00580 0.00030 0.00426
y 0.00667 0.07068 0.00028 0.02542
z 0.08121 0.07068 0.00017 0.00100

space 0.08121 0.00580 0.34226 0.00375

41

Appendix B: Lagrangian for HMM Training

As a first example of backpropagation, we turn to a seemingly unlikely source,
namely, our old friend, the hidden Markov model (HMM).12 The presentation
here was stimulated by the stimulating discussion in Section 7.4.2 of Rojas’
book [13]. Before we get to backpropagation, we’ll provide a very brief overview
of HMMs. The reader who is not intimately familiar with HMMs is encour-
aged to review your humble author’s fine tutorial [16], or the equally stellar
presentation in Chapter 2 of your modest author’s most excellent book [17].

As the name suggests, a hidden Markov model includes a Markov process
that is “hidden,” in the sense that it is not directly observable. An HMM also
includes a series of observations that are probabilistically related to the hidden
states. A generic view of an HMM is given in Figure 19, where the 𝑋𝑖 are the
hidden states, the 𝒪𝑖 are observations, 𝐴 is the matrix that drives the (hidden)
Markov process, 𝐵 contains the probabilities that relate the hidden states to
the observations, and 𝑇 is the number of observations. The dashed line can
be thought of as a “curtain” that we cannot see through—we can observe the
observations,13 but we cannot (directly) view the hidden states.

𝒪0 𝒪1 𝒪2 · · · 𝒪𝑇−1

𝑋0 𝑋1 𝑋2 · · · 𝑋𝑇−1
𝐴 𝐴 𝐴 𝐴

𝐵 𝐵 𝐵 𝐵

Figure 19: Generic view of a hidden Markov model

In an HMM, the 𝐴 matrix is 𝑁×𝑁 , where 𝑁 is the number of hidden states,
while the 𝐵 matrix is 𝑁 ×𝑀 , where 𝑀 is the number of distinct observation
symbols. There is also a 1 × 𝑁 initial state distribution matrix denoted as 𝜋.
All three of the matrices 𝐴, 𝐵, and 𝜋 are row stochastic, which is a four-dollar

12If you don’t view HMMs as your friend—old or otherwise—then you obviously have not
read [16] or [17].

13This sentence is brought to you courtesy of the Department of Redundancy Department.

42

word14 meaning that each row satisfies the requirements of a discrete probability
distribution. These three matrices define an HMM, which we denote as the
triple 𝜆 = (𝐴,𝐵, 𝜋).

The practical utility and widespread usage of HMMs derives largely from the
fact that there are efficient algorithms to solve the following three problems.

1. Given a trained HMM, 𝜆 = (𝐴,𝐵, 𝜋), and an observation sequence 𝒪𝑖,
for 𝑖 = 0, 1, . . . , 𝑇 − 1, we can score the observation sequence against the
model.

2. Given a trained HMM, 𝜆 = (𝐴,𝐵, 𝜋), and an observation sequence 𝒪𝑖,
for 𝑖 = 0, 1, . . . , 𝑇 − 1, we can determine the “best” hidden state se-
quence 𝑋𝑖, for 𝑖 = 0, 1, . . . , 𝑇 − 1. Here, “best” is defined in terms of
expectation maximization (EM), that is, we maximize the expected num-
ber of correct states. Note that this is in contrast to the definition of
“best” used in a dynamic program, where we determine the highest scor-
ing overall path.

3. Given an observation sequence 𝒪𝑖, for 𝑖 = 0, 1, . . . , 𝑇 − 1, we can train a
model 𝜆 = (𝐴,𝐵, 𝜋) to fit the observations. In this training process, we
must specify 𝑁 , the number of hidden states, but otherwise the process
is entirely data driven. This is the sense in which HMMs are a machine
learning technique.

Often, we’ll train a model using the algorithm alluded to in problem 3, above,
then use the resulting model to score sequences via the algorithm correspond-
ing to problem 1. For example, we might train an HMM on opcode sequences
extracted from a collection of known malware samples, all of which belong to a
specific malware family. Then, given an unknown sample that we want to clas-
sify, we can extract its opcode sequence and score this sequence of observations
against the HMM. If the sequence scores high, then the sample closely matches
the training samples, and we would classify it as belonging to the same malware
family that was used for training. On the other hand, if the sample does not
score well against the model, we would conclude that it does not belong to the
same malware family that was used to train the HMM.15 Using an HMM in
this way, the model acts essentially as a higher-level “signature,” in the sense
that the model can be used to classify an entire malware family, rather than an
individual malware sample.

14Yes, I do realize that “row stochastic” is a phrase, not a word. But, “four-dollar phrase”
just doesn’t sound right.

15That’s a long-winded way of saying that an HMM yields a binary classifier.

43

The usual way to train an HMM is via the well-known Baum-Welch re-
estimation algorithm [17], which is an iterative hill climb procedure. In this
process, we initialize the 𝐴, 𝐵, and 𝜋 matrices, then compute new elements
for these matrices—in a fairly straightforward and intuitive way—based on the
observation sequence. By simply repeating this re-estimation process, we climb
to a local maximum in the parameter space, where the “parameters” are the
elements of the matrices that define the HMM.

Here, we want to show that the HMM training process can also be viewed
as an artificial neural network (ANN), and hence an HMM can be trained using
backpropagation. Lagrange multipliers—another old friend of ours—also play
an important role in this story.

We denote the elements of the matrices that define an HMM as 𝐴 = {𝑎𝑖𝑗},
𝐵 = {𝑏𝑗(𝑘)}, and 𝜋 = {𝜋𝑖}. Training an HMM on 𝒪0,𝒪1, . . . ,𝒪𝑇−1 implies
that we attempt to determine the matrices of 𝜆 = (𝐴,𝐵, 𝜋) so that

𝑃 (𝒪 |𝜆) =
∑︁
𝑋

𝜋𝑋0
𝑏𝑋0

(𝒪0)𝑎𝑋0,𝑋1
𝑏𝑋1

(𝒪1) · · · 𝑎𝑋𝑇−2,𝑋𝑇−1
𝑏𝑋𝑇−1

(𝒪𝑇−1) (18)

is maximized.16 In (18), the sum is computed over all possible state sequences of
the form 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑇−1). Directly computing 𝑃 (𝒪 |𝜆) by this formula
would require about 2𝑇𝑁𝑇 operations, and hence is infeasible in almost any
realistic scenario. The HMM forward algorithm, which is also known as the
𝛼-pass, allows us to compute this probability efficiently, with only about 𝑁2𝑇
multiplications. The forward algorithm is the key to making Baum-Welch re-
estimation practical, and to efficient scoring using a trained HMM.

For example, consider the case where we have 𝑁 = 2 and 𝑇 = 3. Then the
expression (18) can be computed using the graph in Figure 20. To train the
corresponding HMM, we want to determine 𝜋𝑖, 𝑎𝑖𝑗, and 𝑏𝑗(𝑘) that maximize the
probability produced by the graph in Figure 20. All of the functions in this graph
are “nice” (we only have multiplication and addition), so it might be feasible
to train this network using the backpropagation algorithm. However, since 𝐴
and 𝐵 and 𝜋 are all row stochastic, there are constraints on the parameters
(i.e., the edge weights) in the graph. Specifically, each 𝜋𝑖, 𝑎𝑖𝑗, and 𝑏𝑗(𝑘) must
be between 0 and 1, and each row of 𝐴, 𝐵 and 𝜋 must sum to 1. Lagrange
multipliers provide a way to deal with constrained optimization problems—see
Chapter 5 in [17], for example, where Lagrange multipliers are introduced and
discussed in the context of SVMs.

16We have slightly abused the notation. While the observations are assumed to be numeric,
with 𝒪𝑖 ∈ {0, 1, 2, . . . ,𝑀 − 1}, the states 𝑋𝑖 are not necessarily numeric values. Thus, when
we write 𝑋𝑖 as an index, it should be taken to mean that the states have been ordered and 𝑋𝑖

is the position in that ordering of the hidden state that occurs at step 𝑖.

44

+

× × + × +

× × + × +
𝑏1(𝒪0) 𝑎11 𝑏1(𝒪1) 𝑎11 𝑏1(𝒪2)

𝑏0(𝒪0) 𝑎00 𝑏0(𝒪1) 𝑎00 𝑏0(𝒪2)

𝜋0

𝜋1

𝑎01

𝑎10

𝑎01

𝑎10

Figure 20: Graph to compute 𝑃 (𝒪 |𝜆) for 𝑁 = 2 and 𝑇 = 3

For the example in Figure 20, let

𝑥 = (𝑥0, 𝑥1, . . . , 𝑥11)

=
(︀
𝜋0, 𝜋1, 𝑎00, 𝑎01, 𝑎10, 𝑎11,

𝑏0(𝒪1), 𝑏0(𝒪0), 𝑏0(𝒪2), 𝑏1(𝒪1), 𝑏1(𝒪0), 𝑏1(𝒪2)
)︀
.

(19)

Then the equality constraints

𝑔0(𝑥) = 𝑥0 + 𝑥1 = 1

𝑔1(𝑥) = 𝑥2 + 𝑥3 = 1

𝑔2(𝑥) = 𝑥4 + 𝑥5 = 1

𝑔3(𝑥) = 𝑥6 + 𝑥7 + 𝑥8 = 1

𝑔4(𝑥) = 𝑥9 + 𝑥10 + 𝑥11 = 1

(20)

must be satisfied. In addition there are inequality constraints of the form

0 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 0, 1, . . . , 11.

Ignoring the inequality constraints, the Lagrangian for this problem is

𝐿(𝑥, 𝑢) = 𝑓(𝑥) +
4∑︁

𝑖=0

𝑢𝑖

(︀
𝑔𝑖(𝑥)− 1

)︀
, (21)

where 𝑓(𝑥) is the function computed in Figure 20 and the 𝑢𝑖 are the Lagrange
multipliers.17 For convenience, in Figure 21, we’ve rewritten the graph given in
Figure 20 in terms of the 𝑥𝑖 in (19).

Unfortunately, Figures 20 and 21 are not in a form that is particularly
friendly for applying the backpropagation algorithm. But, graphs such as these

17Typically, the coefficients 𝑢𝑖 are denoted as 𝜆𝑖, but here we’ll use 𝑢𝑖 so as to avoid
confusion with the HMM, for which we denote the model as 𝜆.

45

+

× × + × +

× × + × +
𝑥10 𝑥5 𝑥9 𝑥5 𝑥11

𝑥7 𝑥2 𝑥6 𝑥2 𝑥8

𝑥0

𝑥1

𝑥3

𝑥4

𝑥3

𝑥4

Figure 21: Graph in Figure 20 with 𝑥 from (19)

do enable us to fairly easily derive the HMM forward algorithm, which is the
key step in the standard HMM training technique of Baum-Welch re-estimation.
For the sake of brevity, we omit the details of the derivation of the HMM forward
algorithm; see [16] or Chapter 2 of [17] for all of the glorious details.

The HMM forward algorithm is given here in Figure 22. Note that the
observation sequence is of length 𝑇 and the model has 𝑁 hidden states.

1: for 𝑖 = 0, 1, . . . , 𝑁 − 1
2: 𝛼0(𝑖) = 𝜋𝑖𝑏𝑖(𝒪0)
3: for 𝑡 = 1, 2, . . . , 𝑇 − 1
4: for 𝑖 = 0, 1, . . . , 𝑁 − 1

5: 𝛼𝑡(𝑖) =

(︃
𝑁−1∑︁
𝑗=0

𝛼𝑡−1(𝑗)𝑎𝑗𝑖

)︃
𝑏𝑖(𝒪𝑡)

Figure 22: HMM forward algorithm (without scaling)

The probability of the observation sequence with respect to the model 𝜆 is
easily computed in terms of the 𝛼𝑡(𝑖) as

𝑃 (𝒪 |𝜆) =
𝑁−1∑︁
𝑖=0

𝛼𝑇−1(𝑖).

For the specific example in Figure 20, the forward algorithm computation is
given in Figure 23.

Rewriting the code in Figure 23 in terms of the 𝑥𝑖 in (19), and putting the
equations in the form of a program similar to those in Section 5, we obtain the
pseudo-code in Figure 24.

The code in Figure 24 enables us to efficiently compute 𝑓(𝑥) = 𝑃 (𝒪 |𝜆) for
any specified values of the parameters, i.e., the elements of the matrices of the

46

1: 𝛼0(0) = 𝜋0𝑏0(𝒪0)
2: 𝛼0(1) = 𝜋1𝑏1(𝒪0)
3: 𝛼1(0) =

(︀
𝛼0(0)𝑎00 + 𝛼0(1)𝑎10

)︀
𝑏0(𝒪1)

4: 𝛼1(1) =
(︀
𝛼0(0)𝑎01 + 𝛼0(1)𝑎11

)︀
𝑏1(𝒪1)

5: 𝛼2(0) =
(︀
𝛼1(0)𝑎00 + 𝛼1(1)𝑎10

)︀
𝑏0(𝒪2)

6: 𝛼2(1) =
(︀
𝛼1(0)𝑎01 + 𝛼1(1)𝑎11

)︀
𝑏1(𝒪2)

7: 𝑃 (𝒪 |𝜆) = 𝛼2(0) + 𝛼2(1)

Figure 23: HMM forward algorithm applied to the graph in Figure 21

1: 𝑣𝑖 = 𝑥𝑖 for 𝑖 = 0, 1, . . . , 11 // initialization
2: 𝑣12 = 𝑣0𝑣7
3: 𝑣13 = 𝑣1𝑣10
4: 𝑣14 = (𝑣12𝑣2 + 𝑣13𝑣4)𝑣6
5: 𝑣15 = (𝑣12𝑣3 + 𝑣13𝑣5)𝑣9
6: 𝑣16 = (𝑣14𝑣2 + 𝑣15𝑣4)𝑣8
7: 𝑣17 = (𝑣14𝑣3 + 𝑣15𝑣5)𝑣11
8: 𝑣18 = 𝑣16 + 𝑣17
9: 𝑧 = 𝑣18

Figure 24: Pseudocode for 𝑃 (𝒪 |𝜆) using the notation in (19)

model 𝜆 = (𝐴,𝐵, 𝜋). Note that we could also easily write code to implement
each of the equality constraints 𝑔0(𝑥) through 𝑔4(𝑥) in (20).

Recall that our goal here is to train the model, that is, we want to find
optimal values for the model parameters, where “optimal” means that we max-
imize 𝑃 (𝒪 |𝜆). Believe it or not, we have made progress towards this goal, as
the code in Figure 24 gives us a simple (and, more importantly, programmable)
version of the function 𝑓(𝑥) that appears in the Lagrangian in (21).

To solve the constrained optimization problem defined by the Lagrangian
function 𝐿(𝑥, 𝑢) in (21), we must find vectors 𝑥 and 𝑢 that satisfy the system
of partial derivative equations

𝜕𝐿

𝜕𝑥𝑖

= 0 and
𝜕𝐿

𝜕𝑢𝑖

= 0. (22)

In fact, it is not difficult to show that any solution to (22) must occur at a
saddle point of 𝐿 with respect to the 𝑥 and 𝑢 variables [20].

When deriving the expressions that define a support vector machine (SVM),
we can set up the problem as a Lagrangian. This approach is particularly nice
in the context of SVMs, since it makes the “kernel trick” a lot less tricky; see
Chapter 5 of [17] for all of the gory details.

47

Next, we want to put the Lagrangian corresponding to the HMM training
problem into the form of a neural network. Then we’ll be in position to apply
backpropagation to train an HMM. Note that this implies that other Lagrange
multiplier problems can be solved via backpropagation. For example, SVM
training can be based on Lagrange multipliers, so we should also be able to
train an SVM using backpropagation.

The Lagrangian in (21) can be computed for any specified values of 𝑥 and 𝑢
using the graph in Figure 25, where we have defined ℎ𝑖(𝑥) = 𝑔𝑖(𝑥) − 1. Here,
the ℎ𝑖 neurons serve to enforce the constraints, keeping any solution within the
feasible region, while the purpose of the 𝑓 neuron is to enable us to maximize
the objective function, subject to the constraints.

𝑥0

𝑥1

𝑥2

...

𝑥11

ℎ0

ℎ1

ℎ2

ℎ3

ℎ4

𝑓

+

𝑢0

𝑢1

𝑢2

𝑢3

𝑢4

𝐿(𝑥, 𝑢)

Figure 25: Neural network for 𝐿(𝑥, 𝑢) in (21) where ℎ𝑖(𝑥) = 𝑔𝑖(𝑥)− 1

Again, to solve the problem in Figure 25, we need to find 𝑥 and 𝑢 for
which the partial derivative equations given in (22) are satisfied. The way we’ll
(numerically) solve this problem is fairly straightforward. First, we generate a
program to compute the gradient of 𝐿 at any specified point (𝑥, 𝑢). For this
step, we use reverse mode automatic differentiation, as discussed in Section 5.
Then we’ll initialize (𝑥, 𝑢) and compute the gradient. In the unlikely event
that the partials derivatives are all 0, we’re done; otherwise, we need to update
the point (𝑥, 𝑢) and compute the gradient at this new point. A key idea in
backpropagation is that we make smart modifications when we update (𝑥, 𝑢) so

48

as to speed convergence. Gradient descent enables us to update the point (𝑥, 𝑢)
by moving in the direction that will provide the most improvement.18 That is,
we adjust the 𝑥 and 𝑢 values in the steepest direction, according to the gradient.

18Gradient descent for the Lagrange multiplier problem is slightly complicated by the fact
that a solution occurs at a saddle point.

49

	1 Introduction
	2 A Brief History of ANNs
	3 Why Deep Learning?
	4 Decisions, Decisions
	5 Automatic Differentiation
	6 Backpropagation
	6.1 Gradient Descent
	6.2 Simple MLP Example

	7 Conclusion
	8 Problems
	A HMMs and Gradient Ascent
	A.1 Background
	A.2 HMM Training via Gradient Ascent
	A.3 Online HMM Training
	A.4 HMM Gradient Ascent Example

	B Lagrangian for HMM Training

