
Alphabet Soup of Deep Learning Topics

Mark Stamp*

Department of Computer Science
San Jose State University

November 19, 2019

1 Introduction

In this tutorial, we discuss a variety of topics that are related to deep learning.
Most topics are covered relatively briefly, and in all cases, references for further
reading are provided. The material here is designed to serve as a supplement
to [42], which provides an introduction to artificial neural networks, and in-
cludes a detailed discussion of backpropagation. The material in [42] is itself a
supplement to the highly regarded (at least by me) book [40].

2 CNN

In this section, we provide an introduction to one of the most important and
widely used learning techniques—convolutional neural networks (CNN). After
a brief overview, we introduce discrete convolutions with the focus on their
specific application to CNNs. We then consider a simplified example that serves
to illustrate various aspects of CNNs.

2.1 Overview

Generically, artificial neural networks (ANNs) use fully connected layers. A fully
connected layer can deal effectively with correlations between any points within
the training vectors, regardless of whether those points are close together, far

*Email: mark.stamp@sjsu.edu. This is yet another supplement to that fine book, Intro-
duction to Machine Learning with Applications in Information Security.

1

apart, or somewhere in between. In contrast, a CNN, is designed to deal with
local structure—a convolutional layer cannot be expected to perform well when
crucial information is not local. A key benefit of CNNs is that convolutional
layers can be trained much more efficiently than fully connected layers.

For images, most of the important structure (edges and gradients, for exam-
ple) is local. Hence, CNNs would seem to be an ideal tool for image analysis
and, in fact, CNNs were developed for precisely this problem. However, CNNs
have performed well in a variety of other problem domains. In general, any
problem for which there exists a data representation where local structure pre-
dominates is a candidate for a CNN. In addition to images, local structure is
crucial in fields such as text analysis and speech analysis, for example.

2.2 Convolution and CNNs

A discrete convolution is a sequence that is itself a composition of two sequences,
and is computed as a sum of pointwise products. Let 𝑐 = 𝑥 * 𝑦 denote the con-
volution of sequences 𝑥 = (𝑥0, 𝑥1.𝑥2, . . .) and 𝑦 = (𝑦0, 𝑦1.𝑦2, . . .). Then the 𝑘th

element of the convolution is given by

𝑐𝑘 =
∑︁

𝑘=𝑖+𝑗

𝑥𝑖𝑦𝑗 =
∑︁

𝑖

𝑥𝑖𝑦𝑘−𝑖

We can view this process as 𝑥 being a “filter” (or kernel) that is applied to the
sequence 𝑦 over a sliding window.

For example, if 𝑥 = (𝑥0, 𝑥1) and 𝑦 = (𝑦0, 𝑦1, 𝑦2, 𝑦3, 𝑦4), we find

𝑐 = 𝑥 * 𝑦 =
(︀
𝑥0𝑦1 + 𝑥1𝑦0, 𝑥0𝑦2 + 𝑥1𝑦1, 𝑥0𝑦3 + 𝑥1𝑦2, 𝑥0𝑦4 + 𝑥1𝑦3

)︀

If we reverse the order of the elements of 𝑥, then we have

𝑐 =
(︀
𝑥0𝑦0 + 𝑥1𝑦1, 𝑥0𝑦1 + 𝑥1𝑦2, 𝑥0𝑦2 + 𝑥1𝑦3, 𝑥0𝑦3 + 𝑥1𝑦4

)︀

which is, perhaps, a slightly more natural and intuitive way to view the convo-
lution operation.

Again, we can view 𝑥 as a filter that is applied to the sequence 𝑦. Henceforth,
we’ll define this filtering operation as convolution with the order of the elements
of the filter reversed. For example, suppose that we apply the filter 𝑥 = (1,−2)
to the sequence 𝑦 = (0, 1, 2, 3, 4). In this case, the convolution gives us

𝑐 = 𝑥 * 𝑦 =
(︀
𝑥0𝑦0 + 𝑥1𝑦1, 𝑥0𝑦1 + 𝑥1𝑦2, 𝑥0𝑦2 + 𝑥1𝑦3, 𝑥0𝑦3 + 𝑥1𝑦4

)︀

=
(︀
1 · 0 − 2 · 1, 1 · 1 − 2 · 2, 1 · 2 − 2 · 3, 1 · 3 − 2 · 4

)︀

=
(︀
−2,−3,−4,−5

)︀

2

We can define an analogous filtering (or discrete convolution) operation in
two or three dimensions. For the two-dimensional case, suppose that 𝐴 = {𝑎𝑖𝑗}
is an 𝑁 × 𝑀 matrix representing an image and 𝐹 = {𝑓𝑖𝑗} is an 𝑛 × 𝑚 filter.
Let 𝐶 = {𝑐𝑖𝑗} be the convolution of 𝐹 with 𝐴. As in the one-dimensional case,
we denote this convolution as 𝐶 = 𝐹 *𝐴. In this two-dimensional case, we have

𝑐𝑖𝑗 =
𝑛−1∑︁

𝑘=0

𝑚−1∑︁

ℓ=0

𝑓𝑘,ℓ𝑎𝑖+𝑘,𝑗+ℓ

where 𝑖 = 0, 1, . . . , 𝑁 − 𝑛 and 𝑗 = 0, 1, . . . ,𝑀 − 𝑚. That is, we simply apply
the filter 𝐹 at each offset of 𝐴 to create the new—and slightly smaller—matrix
that we denote as 𝐶. The three-dimensional case is completely analogous to
the two-dimensional case.

We could simply define filters as we see fit, with each filter designed to
correspond to a specific feature.1 But since we are machine learning aficionados,
for CNNs, we’ll let the data itself determine the filters. Therefore, training a
CNN can be viewed as determining filters, based on the training data. As with
any respectable neural network, we can train CNNs via backpropagation.

Suppose that 𝐴 represents an image and we train a CNN on the image 𝐴.
Then the first convolutional layer is trained directly on the image. The filters
determined at this first layer will correspond to fairly intuitive features, such as
edges, basic shapes, and so on. We can then apply a second convolutional layer,
that is, we apply a similar convolutional process, but the output of the first
convolutional layer is the input to this second layer. At the second layer, filters
are trained based on features of features. Perhaps not surprisingly, these second
layer filters correspond to more abstract features of the original image 𝐴, such
as the “texture.” We can repeat this convolution of convolutions step again and
again, at each layer obtaining filters that correspond to features representing a
higher degree of abstraction, as compared to the previous layer. The final layer
of a CNN is not a convolution layer, but is instead a typical fully-connected layer
that can be used to classify based on complex image characteristics (e.g., “cat”
versus “dog”). In addition, so-called pooling layers can be used between some
of the convolutional layers. Pooling layers are simple—no training is involved—
and serve primarily to reduce the dimensionality of the problem. Below, we’ll
give a simple example that includes a pooling layer.

In addition to having multiple convolutional layers, at each layer we can (and
generally will) stack several convolutions on top of each other. These filters are
all initialized randomly, so they can all learn different features. In fact, for
a typical color image, the image itself can be viewed as consisting of three

1We’ll see examples of filters applied to simple images in Section 2.3.

3

layers, corresponding to the R, G, and B components in the RGB color scheme.
Hence, for color images, the filters for the first convolutional layer will be three
dimensional, while subsequent convolutional layers can—and, typically, will—be
three dimensional as well, due to the stacking of multiple convolutions/filters at
each layer. For simplicity, in our example we’ll only consider a black-and-white
two-dimensional image, and we’ll only apply one convolution at each layer.

Before considering a simple example, we note that there are advantages of
CNNs that are particularly relevant in the case of image analysis. For a generic
neural network, each pixel would typically be treated as a separate neuron,
and for any reasonable size of image, this would result in a huge number of
parameters, making training impractical. In contrast, at the first layer of a
CNN, each filter is applied over the entire image, and at subsequent layers, we
apply filters over the entire output of the previous layer. One effect of this
approach is that it greatly reduces the number of parameters that need to be
learned. Furthermore, by sliding the filter across the image as a convolution,
we obtain a degree of translation invariance, i.e., we can detect image features
that appears at different offsets. This can be viewed as reducing the overfitting
that would otherwise likely occur.

The bottom line is that CNNs represent an efficient and effective technique
that was developed specifically for image analysis. However, CNNs are not
restricted to image data, and can be useful in any problem domain where local
structure is dominant.

2.3 Example

Now we turn our attention to a simple example that serves to illustrate some
of the points discussed above. Suppose that we’re dealing with black-and-white
images, where each pixel is either 0 or 1, with 0 representing white and 1
representing black.2 Further, suppose that the black-and-white images under
consideration are 16 × 16 pixels in size. An example of such an image appears
in Figure 1.

In Figure 2, we give some 3 × 3 filters. For example, the output of the
filter in Figure 2 (a) is maximized when it aligns with a diagonal segment.
Figure 3 shows the result of applying the convolution represented by the filter
in Figure 2 (a) to the smiley face image in Figure 1.

2Color and grayscale images are more complex. For grayscale, a nonlinear encoding (i.e.,
gamma encoding) is employed, so as to make better use of the range of values available. For
color images, the RGB (red, green, and blue, respectively) color scheme implies that each pixel
is represented by 24 bits (in an uncompressed format), in which case convolutional filters can
be viewed as operating over a three-dimensional box that is three bytes deep.

4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(a) Pixels (b) Numeric pixel values

Figure 1: A 16 × 16 black-and-white image

−1
2

−1

−1 2

−1 −1
2 −1

(a) Diagonal

−1
2

−1

2 −1
−1 −1
−1 2

(b) Vertical

−1
2

−1

−1 −1
2 2

−1 −1

(c) Horizontal

2

2

2

−1 −1
−1 −1
−1 −1

(d) Anti-diagonal

Figure 2: Examples of filters

We note that the for the convolution in Figure 3, the maximum value of 6
does indeed occur only at the three offsets where the (main) diagonal segments
are all black and the off-diagonal elements are all white. These maximum values
correspond to convolutions over the red boxes in Figure 4.

In a CNN, so-called pooling layers are often intermixed with convolutional
layers. As with a convolutional layer, in a pooling layer, we slide a window of
a fixed size over the image. But whereas the filter in a convolutional layer is
learned, in a pooling layer an extremely simple filter is specified and remains
unchanged throughout the training. As the name implies, in max pooling, we
simply take the the maximum value within the filter window. An illustration
of max pooling is given in Figure 5.

Instead of a max pooling scheme, sometimes average pooling is used. In any
case, pooling can be viewed as a downsampling operation, which has the effect
of reducing the dimensionality, and thus easing the computational burden of

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0 0 2 1 0 0 0 0 −2 −1 0 0 0

0 0 2 −2 0 0 0 0 0 3 −2 −1 0 0

0 2 −2 0 −3 0 0 0 0 0 6 −2 −1 0

0 1 0 −3 4 −1 −1 2 −1 −2 0 3 −2 0

0 0 0 0 −1 2 −1 −1 2 −1 0 0 0 0

0 0 0 2 −2 −2 2 −1 1 1 −1 0 0 0

0 0 0 −1 4 −2 −1 2 −2 1 −1 0 0 0

0 0 0 −1 −2 6 0 −3 0 −2 2 0 0 0

0 −2 3 0 −2 −2 3 0 −2 4 −3 0 1 0

0 −1 −2 6 0 −1 −2 1 2 −3 0 −2 2 0

0 0 −1 −2 3 0 0 0 0 0 −2 2 0 0

0 0 0 −1 −2 0 0 0 0 1 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

filter

Figure 3: First convolutional layer (3 × 3 filter from Figure 2 (a))

Figure 4: Maximum convolution values in Figure 3

training subsequent convolutional layers.3 To increase the downsampling effect,
pooling usually uses non-overlapping windows. Note that the dimensionality
reduction of pooling could also be achieved by a convolutional layer that uses a
larger stride through the data, and in [37], for example, it is claimed that such
an approach results in no loss in accuracy for the resulting CNN.

3It is also sometimes claimed that pooling improves certain desirable characteristics of
CNNs, such as translation invariance and deformation stability. However, this is disputed,
and the current trend seems to clearly be in the direction of fully convolutional architectures,
i.e., CNNs with no pooling layers [35].

6

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 1 0 0 0 0 −2 −1 0 0 0

0 0 2 −2 0 0 0 0 0 3 −2 −1 0 0

0 2 −2 0 −3 0 0 0 0 0 6 −2 −1 0

0 1 0 −3 4 −1 −1 2 −1 −2 0 3 −2 0

0 0 0 0 −1 2 −1 −1 2 −1 0 0 0 0

0 0 0 2 −2 −2 2 −1 1 1 −1 0 0 0

0 0 0 −1 4 −2 −1 2 −2 1 −1 0 0 0

0 0 0 −1 −2 6 0 −3 0 −2 2 0 0 0

0 −2 3 0 −2 −2 3 0 −2 4 −3 0 1 0

0 −1 −2 6 0 −1 −2 1 2 −3 0 −2 2 0

0 0 −1 −2 3 0 0 0 0 0 −2 2 0 0

0 0 0 −1 −2 0 0 0 0 1 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0

2 2 0 0 3 6 0

1 0 4 2 2 3 0

0 2 4 2 1 0 0

0 3 6 3 4 2 1

0 6 3 1 2 2 2

0 0 0 0 1 2 0

max

Figure 5: Max pooling layer (2 × 2, non-overlapping)

filter

Figure 6: First convolutional layer for RGB image

An illustration of the first convolutional layer for a color image is given in
Figure 6. In this case, a 3-dimensional filter is applied over the R, G, and B
components in the RGB color scheme. The example in Figure 6 is meant to
indicate that five different filters are being trained. Since each filter is initialized
randomly, they can all learn different features. At the second convolutional
layer, we can again train 3-dimensional filters, based on the output of the first
convolutional layer. This process is repeated for any additional convolutional
layers.

7

There are several possible ways to visualize the filters in convolutional layers.
For example, in [47], a de-convolution technique is used to obtain the results in
Figure 7. Here, each row is a randomly selected filter and the columns, from
left to right, correspond to training epochs 1, 2, 5, 10, 20, 30, 40, and 64. From
layer 4, we see that the training images must be faces. In general, it is apparent
that the filters are learning progressively more abstract features as the layer
increases.

Figure 7: Visualizing convolutions [47]

8

A fairly detailed discussion of CNNs can be found at [17], while the paper [5]
provides some interesting insights. For a more intuitive discussion, see [16], and
if you want to see lots of nice pictures, take a look at [6]. More details on
convolutions can be found in [32].

3 RNN

An example of a feedforward neural network with two hidden layers is give in
Figure 8. This type of neural network has no “memory” in the sense that each
input vector is treated independently of other input vectors. Hence, such a
feedforward network is not well suited to deal with sequential data.

𝑥0 𝑥1

𝑓0 𝑓0 𝑓0

𝑓1 𝑓1 𝑓1 𝑓1

𝑔 𝑔 𝑔

𝑦0 𝑦1 𝑦2

Input layer

1st hidden layer

2nd hidden layer

Output layer

Output

Figure 8: Feedforward neural network with two hidden layers

In some cases, it is necessary for a classifier to have memory. For example,
suppose that we want to tag parts of speech in English text (i.e., noun verb, and
so on). This is not feasible if we only look at words in isolation—for example,
the word “all” can be an adjective, adverb, noun, or even a pronoun, and the
only way to determine which is the case is to consider the context in which it

9

occurs. A recurrent neural network (RNN) provides a way to add memory (or
context) to a feedforward neural network.

To convert a feedforward neural network into an RNN, we treat the output
of the hidden states as another input. For the neural network in Figure 8, the
corresponding generic RNN is illustrated in Figure 9. The structure in Figure 9
implies that there is a time-step involved, that is, we train (and score) based on
a sequence of input vectors. Of course, we cannot consider infinite sequences,
and even if we could, the influence of feature vectors that occurred far back in
time is likely to be minimal.

𝑥0 𝑥1

𝑓0 𝑓0 𝑓0

𝑓1 𝑓1 𝑓1 𝑓1

𝑔 𝑔 𝑔

𝑦0 𝑦1 𝑦2

Input layer

1st hidden layer

2nd hidden layer

Output layer

Output

Figure 9: Network in Figure 8 as an RNN

The RNN in Figure 9 can be “unrolled,” as illustrated in Figure 10. Note
that in this case, we use 𝑓 to represent the hidden layer or layers, while the
notation 𝑋𝑡 is used to represent (𝑥0, 𝑥1) at time step 𝑡 from un-unrolled RNN
in Figure 9 and, similarly, 𝑌𝑡 corresponds to (𝑦0, 𝑦1, 𝑦2) at time 𝑡. From the
unrolled form, it is clear that any RNN can be treated as a special case of
a feedforward neural network, where the intermediate hidden layers (𝑓 in our
notation) all have identical structure and weights. We can take advantage of
this special structure to efficiently train an RNN using a (slight) variant of
backpropagation, known as backpropagation through time (BPTT).

10

𝑋0

𝑓

𝑔

𝑌0

𝑋1

𝑓

𝑔

𝑌1

𝑋2

𝑓

𝑔

𝑌2

· · ·

· · ·

· · ·

· · ·

𝑋𝑛−1

𝑓

𝑔

𝑌𝑛−1

Figure 10: Unrolled RNN (sequence-to-sequence model)

Before briefly turning our attention to BPTT, we illustrate some variants
of a generic RNN. An RNN such as that illustrated in Figure 10 is known
as a sequence-to-sequence model, since each input sequence (𝑋0, 𝑋1, . . . , 𝑋𝑛−1)
corresponds to an output sequence (𝑌0, 𝑌1, . . . , 𝑌𝑛−1). In Figure 11 (a), we have
illustrated a many-to-one example of an RNN, that is, the case where an input
sequence of the form (𝑋0, 𝑋1, . . . , 𝑋𝑛−1) corresponds to the single output 𝑌𝑛−1.
At the other extreme, Figure 11 (b) illustrates a one-to-many RNN, where the
single input 𝑋0 corresponds to the output sequence (𝑌0, 𝑌1, . . . , 𝑌𝑛−1).

𝑋0

𝑓

𝑋1

𝑓

𝑋2

𝑓

· · ·

· · ·

· · ·

𝑋𝑛−1

𝑓

𝑔

𝑌𝑛−1

𝑋0

𝑓

𝑔

𝑌0

𝑓

𝑔

𝑌1

𝑓

𝑔

𝑌2

· · ·

· · ·

· · ·

𝑓

𝑔

𝑌𝑛−1

(a) Many-to-one RNN (b) One-to-many RNN

Figure 11: Variants of the generic RNN in Figure 10

11

A many-to-one model might be appropriate for part-of-speech tagging, for
example, while a one-to-many RNN could be used for music generation. An
example of an application where a sequence-to-sequence (or many-to-many)
RNN would be appropriate is machine translation. There are numerous possible
variants of the sequence-to-sequence RNN. Also, note that a feedforward neural
network, such as that in Figure 8, can be viewed as a one-to-one RNN.

Multi-layer RNNs can also be considered. This can be viewed as training
multiple RNNs simultaneously, with the first RNN trained on the input data,
the second RNN trained on the hidden states of the first RNN, and so on. A two-
layer (sequence-to-sequence) RNN is illustrated in Figure 12. Of course, more
layers are possible, but the training complexity will increase, and hence only
“shallow” RNN architectures (in terms of the number of layers) are generally
considered.

𝑋0

𝑓

𝑓

𝑔

𝑌0

𝑋1

𝑓

𝑓

𝑔

𝑌1

𝑋2

𝑓

𝑓

𝑔

𝑌2

· · ·

· · ·

· · ·

· · ·

· · ·

𝑋𝑛−1

𝑓

𝑓

𝑔

𝑌𝑛−1

Figure 12: Two layer RNN

3.1 BPTT

RNNs can be viewed as neural networks that are designed specifically for time
series or other sequential data. With an RNN, the number of parameters is re-
duced so as to ease the training burden. This situation is somewhat analogous
to CNNs, which are designed to efficiently deal with local structure (e.g., in im-
ages). That is, both CNNs and RNNs serve to make training more efficient—as
compared to generic feedforward neural networks—for specific classes of prob-
lems. Backpropagation through time (BPTT) is simply an ever-so-slight varia-
tion on backpropagation that is optimized for training RNNs.

12

In Figure 13 we give a detailed view of a many-to-one (actually, two-to-
one) RNN. In this case, we see that the 10 weights, (𝑤0, 𝑤1, . . . , 𝑤9) must be
determined via training.

𝑥0 𝑥1𝑥0 𝑥1

𝑡𝑡− 1

𝑓 𝑓𝑓 𝑓

𝑔

𝑦

𝑤0
𝑤1 𝑤2 𝑤3

𝑤8 𝑤9

𝑤0
𝑤1 𝑤2 𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

Figure 13: Simple RNN example

In Figure 14 we give a neural network that is essentially the fully connected
version of the RNN in Figure 13. Note that in this fully-connected version,
there are 20 parameters to be determined. In an RNN, we assume that the data
represents sequential input and hence the reduction in the number of weights
is justified, since we are simply eliminating from consideration cases where the
past is influenced by the future.4

Next, we consider gradient issues that plague generic RNNs. Then we discuss
modified RNN architectures that help to reduce the effect of these gradient-
related problems.

3.2 Vanishing and Exploding Gradients

In Figure 15 (a), we have illustrated an RNN with a single neuron at each
layer, where 𝑓 is the activation function, 𝑋𝑡 is the input, and 𝐸𝑡 is the error at
step 𝑡. Figure 15 (b) is the unrolled version of this same RNN, where 𝑍𝑡 is the
composition of functions that occurs at step 𝑡.

4Obviously, the inventors of RNNs were not familiar with Back to the Future or Star Trek,
both of which conclusively demonstrate that the future can have a large influence on the past.

13

𝑥2 𝑥3𝑥0 𝑥1

𝑓 𝑓𝑓 𝑓

𝑔

𝑦

𝑤14 𝑤15𝑤0
𝑤1 · · · · · ·

𝑤16

𝑤17 𝑤18

𝑤19

Figure 14: Fully connected analog of Figure 13

𝑤

𝑢

𝑋𝑡

𝑓

𝐸𝑡

𝑢

𝑋0

𝑍0

𝐸0

𝑢

𝑤

𝑋1

𝑍1

𝐸1

𝑢

𝑤

𝑋2

𝑍2

𝐸2

𝑢

𝑤

𝑋3

𝑍3

𝐸3

𝑤

· · ·

· · ·

· · ·

(a) Simple RNN (b) Simple RNN unrolled

Figure 15: Simple RNN and its unrolled version

Typically, we would concatenate the input to the internal state of the RNN,
but for simplicity, we’ll just sum the states. Then we have

𝑍𝑡 = 𝑓(𝑤𝑍𝑡−1 + 𝑢𝑋𝑡) (1)

where we define 𝑍−1 = 0. To further simplify, we’ll also assume that the
weights 𝑢 and 𝑤 are scalars.

Note that we can unroll each 𝑍𝑡 further to obtain

𝑍0 = 𝑓(𝑢𝑋0)

𝑍1 = 𝑓(𝑤𝑍0 + 𝑢𝑋1)

= 𝑓(𝑤𝑓(𝑢𝑋0) + 𝑢𝑋1)

14

𝑍2 = 𝑓(𝑤𝑍1 + 𝑢𝑋2)

= 𝑓(𝑤𝑓(𝑤𝑍0 + 𝑢𝑋1) + 𝑢𝑋2)

= 𝑓(𝑤𝑓(𝑤𝑓(𝑢𝑋0) + 𝑢𝑋1) + 𝑢𝑋2)

𝑍3 = 𝑓(𝑤𝑍2 + 𝑢𝑋3)

= 𝑓(𝑤𝑓(𝑤𝑍1 + 𝑢𝑋2) + 𝑢𝑋3)

= 𝑓(𝑤𝑓(𝑤𝑓(𝑤𝑍0 + 𝑢𝑋1) + 𝑢𝑋2) + 𝑢𝑋3)

= 𝑓(𝑤𝑓(𝑤𝑓(𝑤𝑓(𝑢𝑋0) + 𝑢𝑋1) + 𝑢𝑋2) + 𝑢𝑋3)

However, below we’ll use the expressions in equation (1).
In backpropagation, we compute the gradient of the error terms 𝐸𝑡. It is

clear from Figure 15 (b) that the gradient of 𝐸𝑡 will include 𝜕𝑍𝑡/𝜕𝑤. Computing
these partial derivatives, we find

𝜕𝑍1

𝜕𝑤
= 𝑓 ′(𝑤𝑍0 + 𝑢𝑋1)

𝜕(𝑤𝑍0 + 𝑢𝑋1)

𝜕𝑤
= 𝑍0𝑓

′(𝑤𝑍0 + 𝑢𝑋1)

𝜕𝑍2

𝜕𝑤
= 𝑓 ′(𝑤𝑍1 + 𝑢𝑋2)

𝜕(𝑤𝑍1 + 𝑢𝑋2)

𝜕𝑤

= 𝑓 ′(𝑤𝑍1 + 𝑢𝑋2)
(︁
𝑍1 + 𝑤

𝜕𝑍1

𝜕𝑤

)︁

= 𝑍1𝑓
′(𝑤𝑍1 + 𝑢𝑋2) + 𝑤𝑓 ′(𝑤𝑍1 + 𝑢𝑋2)

𝜕𝑍1

𝜕𝑤
= 𝑍1𝑓

′(𝑤𝑍1 + 𝑢𝑋2) + 𝑤𝑍0𝑓
′(𝑤𝑍0 + 𝑢𝑋1)𝑓

′(𝑤𝑍1 + 𝑢𝑋2)

𝜕𝑍3

𝜕𝑤
= 𝑓 ′(𝑤𝑍2 + 𝑢𝑋3)

𝜕(𝑤𝑍2 + 𝑢𝑋3)

𝜕𝑤

= 𝑓 ′(𝑤𝑍2 + 𝑢𝑋3)
(︁
𝑍2 + 𝑤

𝜕𝑍2

𝜕𝑤

)︁

= 𝑍2𝑓
′(𝑤𝑍2 + 𝑢𝑋3) + 𝑤𝑓 ′(𝑤𝑍2 + 𝑢𝑋3)

𝜕𝑍2

𝜕𝑤
= 𝑍2𝑓

′(𝑤𝑍2 + 𝑢𝑋3)

+ 𝑤𝑍1𝑓
′(𝑤𝑍1 + 𝑢𝑋2)𝑓

′(𝑤𝑍2 + 𝑢𝑋3)

+ 𝑤2𝑍0𝑓
′(𝑤𝑍0 + 𝑢𝑋1)𝑓

′(𝑤𝑍1 + 𝑢𝑋2)𝑓
′(𝑤𝑍2 + 𝑢𝑋3)

In general,

𝜕𝑍𝑡

𝜕𝑤
=

𝑡−1∑︁

𝑘=0

𝑤𝑡−1−𝑘𝑍𝑘

𝑡−1∏︁

𝑗=𝑘

𝑓 ′(𝑤𝑍𝑗 + 𝑢𝑋𝑗+1) (2)

holds for all 𝑡 ≥ 1.

15

Now we consider the effect of the activation function 𝑓 that appears in
equation (2). A popular choice for 𝑓 is the sigmoid function

𝜎(𝑥) =
𝑒𝑥

𝑒𝑥 + 1

It is easily verified that the first derivative of 𝜎(𝑥) can be written as

𝜎′(𝑥) = 𝜎(𝑥)
(︀
1 − 𝜎(𝑥)

)︀
.

The graphs of 𝜎(𝑥) and 𝜎′(𝑥) appear in Figure 16. From these graphs, we see
that 𝜎(𝑥) < 1.0 and 𝜎′(𝑥) < 0.25 hold for all 𝑥.

−10 −5 0 5 10

0.0

0.2

0.4

0.6

0.8

1.0

𝑥

𝑦

𝑦 = 𝜎(𝑥)
𝑦 = 𝜎′(𝑥)

Figure 16: Graph of sigmoid function 𝜎(𝑥) and its derivative 𝜎′(𝑥)

The terms on the right-hand side in equation (2) include products of the
derivative of the activation function. Observe that the number of 𝑓 ′ terms
increases the further back in time that we go.

Assuming that the weights are initialized so that 𝑤 ≤ 1, and assuming that
we choose the sigmoid as our activation function 𝑓 , then during backpropaga-
tion, the partial derivative terms in (2) “vanish,” in the sense of tending to 0
exponentially the further back in time that we go. Consequently, even though
we might design our RNN to look far back in time, in reality the distant layers
will have no effect. This problem can occur in deep neural networks as well,
that is, the deeper layers might have no effect, due to a vanishing gradient.5

5The vanishing gradient problem is somewhat reminiscent of a problem that occurs when
training a hidden Markov model (HMM) using Baum-Welch re-estimation. In the Baum-
Welch algorithm, products of probabilities are computed, which tend to 0 exponentially. To
avoid underflow in Baum-Welch, log probabilities and scaling can be used [39].

16

We could try to prevent the gradient from vanishing by initializing the
weights to large values. While this can eliminate the vanishing gradient prob-
lem, unless we are very lucky in our choice of initial values, we will now likely
have an exploding gradient, that is, the gradient will grow exponentially larger
the further back in time that we go. This growth in the gradient is due to the
exponentiated 𝑤 term that appears in equation (2).

We can also have cases where the gradient oscillates wildly. Avoiding vanish-
ing, exploding and, more generally, unstable gradients is challenging. In fact,
it has recently been shown that many of the techniques proposed to reduce
the problems caused by these types of gradient issues may be considerably less
effective than previously believed [33].

One simple way to reduce the effect of a such gradient issues is to limit how
far back in time we backpropagate. For example, in Figure 17 we illustrate
a case where we only allow the gradient to back propagate two time-steps.
Such a truncated BPTT (TBPTT) is somewhat analogous to using a minibatch
during backpropagation in a feedforward neural network. By this logic, limiting
TBPTT to a single time-step is the analog of stochastic gradient descent.

𝑋0

𝑓

𝑔

𝑌0

𝑋1

𝑓

𝑔

𝑌1

𝑋2

𝑓

𝑔

𝑌2

𝑋3

𝑓

𝑔

𝑌3

𝑋4

𝑓

𝑔

𝑌4

𝑋5

𝑓

𝑔

𝑌5

𝑋6

𝑓

𝑔

𝑌6

· · ·

· · ·

· · ·

· · ·

Figure 17: Backpropagation limited to two time steps

As an aside, we note that a hidden Markov model (HMM) of order one is
somewhat analogous to the case where we limit BPTT to a single time step.
Typically, we train HMMs using a hill climb technique (i.e., Baum-Welch re-
estimation), but HMMs can be trained using gradient ascent [1, 42] which,
perhaps, makes the connection to TBPTT even stronger.

Next, we discuss two RNN architectures that are designed to deal with van-
ishing gradients. First, we consider long short-term memory (LSTM) networks
in some detail and we then briefly discuss a variant of LSTM. In fact, a vast
number of variants of the LSTM architecture have been developed. However,
according to an extensive empirical study [9], “none of the variants can improve
upon the standard LSTM architecture significantly.”

17

3.3 LSTM

In addition to being a tongue twister, long short-term memory (LSTM) networks
are a class of RNN architectures that are designed to deal with long-range
dependencies. That is, LSTM can deal with “gaps” between the appearance of
a feature and the point at which it is needed by the model [9]. The claim to
fame of LSTM is that it can reduce the effect of a vanishing gradient, which is
what enables such models to account for longer-range dependencies [12].

Before outlining the main ideas behind LSTM, we note that the LSTM
architecture has been one of the most commercially successful learning tech-
niques ever developed. Among many other applications, LSTMs have been
used in Google Allo [19], Google Translate [45], Apple’s Siri [21], and Ama-
zon Alexa [10]. However, recently the dominance of LSTM may have begun to
wane. ResNet has been shown to have theoretical advantages over LSTM, and
it outperforms LSTM in a wide range of applications [33].

Figure 18 illustrates an LSTM. The obvious difference from a generic vanilla
RNN is that an LSTM has two lines entering and exiting each state. As in a
standard RNN, one of these lines represents the hidden state, while the second
line is designed to serve as a gradient “highway” during backpropagation. In
this way, the gradient can “flow” much further back with less chance that it will
vanish along the way.

𝑋0

𝐿0

ℎ0

𝑋1

𝐿1

ℎ1

𝑋2

𝐿2

ℎ2

𝑋3

𝐿3

ℎ3

· · ·

· · ·
· · ·

· · ·

Figure 18: LSTM

In Figure 19 we expand one of the LSTM cells 𝐿𝑡 that appear in Figure 18.
Here, 𝜎 is the sigmoid function, 𝜏 is the hyperbolic tangent (i.e., tanh) function,
the operators “×” and “ + ” are pointwise multiplication and addition, respec-
tively, while “‖” indicates concatenation of vectors. The vector 𝑖𝑡 is the “input”
gate, 𝑓𝑡 is the “forget” gate, and 𝑜𝑡 is the “output” gate. The vector 𝑔𝑡 is an
intermediate gate and does not have a cool name, but is sometimes referred to
as the “gate” gate [22], which, come to think of it, is especially cool. We have
much more to say about these gates below.

18

𝑐𝑡−1

ℎ𝑡−1

𝑋𝑡

ℎ𝑡

𝑐𝑡

ℎ𝑡‖ 𝜎
𝑊𝑜 𝑜𝑡

𝜎

𝑊𝑓

𝑓𝑡

×

𝑊𝑖

𝜎

𝑖𝑡

𝑊𝑔

𝜏

×

+

𝑔𝑡

𝜏

×

Figure 19: One timestep of an LSTM

The gate vectors that appear in Figure 19 are computed as

𝑓𝑡 = 𝜎

(︃
𝑊𝑓

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑓

)︃

𝑖𝑡 = 𝜎

(︃
𝑊𝑖

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑖

)︃
𝑔𝑡 = 𝜏

(︃
𝑊𝑔

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑔

)︃

𝑜𝑡 = 𝜎

(︃
𝑊𝑜

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑜

)︃

while the outputs are

𝑐𝑡 = 𝑓𝑡⊗ 𝑐𝑡−1 ⊕ 𝑖𝑡 ⊗ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊗ 𝜏(𝑐𝑡)

where “⊗” is pointwise multiplication and “⊕” is the usual pointwise addition.
Note that each of the weight matrices is 𝑛× 2𝑛.

In matrix form, ignoring the bias terms 𝑏, we have
⎛
⎜⎜⎝

𝑖𝑡
𝑓𝑡
𝑜𝑡
𝑔𝑡

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

𝜎
𝜎
𝜎
𝜏

⎞
⎟⎟⎠𝑊

(︂
ℎ𝑡−1

𝑋𝑡

)︂

19

where 𝑋𝑡 and ℎ𝑡−1 are column vectors of length 𝑛, and 𝑊 is the 4𝑛× 2𝑛 weight
matrix

𝑊 =

⎛
⎜⎜⎝

𝑊𝑖

𝑊𝑓

𝑊𝑜

𝑊𝑔

⎞
⎟⎟⎠

Further, each of the gates 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, and 𝑔𝑡 is a column vectors of length 𝑛.
Recall that the sigmoid 𝜎 squashes its input to be within the range of 0 to 1,
whereas the tanh function 𝜏 gives output within the range of −1 to +1.

To highlight the intuition behind LSTM, we follow a similar approach as that
given in the excellent presentation [22]. Specifically, we focus on the extreme
cases, that is, we assume that the output of each sigmoid 𝜎 is either 0 or 1,
and each hyperbolic tangent 𝜏 is either −1 or +1. Then the forget gate 𝑓𝑡 is a
vector of 0s and 1s, where the 0s tell us the elements of 𝑐𝑡−1 that we’ll forget
and the 1s indicate the elements to remember. In the middle section of the
diagram, the input gate 𝑖𝑡 and gate gate 𝑔𝑡 together determine which elements
of 𝑐𝑡−1 to increment or decrement. Specifically, when element 𝑗 of 𝑖𝑡 is 1 and
element 𝑗 of 𝑔𝑡 is +1, we increment element 𝑗 of 𝑐𝑡−1. And if element 𝑗 of 𝑖𝑡
is 1 and element 𝑗 of 𝑔𝑡 is −1, then we decrement element 𝑗 of 𝑐𝑡−1. This serves
to emphasize or de-emphasize particular elements in the new-and-improved cell
state 𝑐𝑡. Finally, the output gate 𝑜𝑡 determines which elements of the cell state
will become part of the hidden state ℎ𝑡. Note that the hidden states ℎ𝑡 is fed
into the output layer of the LSTM. Also note that before the cell states are
operated on by the output gate, the values are first squeezed down to be within
the range of −1 to +1 by the 𝜏 function.

Of course, in general, the LSTM gates are not simply counters that increment
or decrement by 1. But, the intuition is the same, that is, the gates keep track
of incremental changes, thus allowing relevant information to flow over long
distances via the cell state. In this way, LSTM negates some of the limitations
caused by vanishing gradients.

3.4 GRU

As mentioned above, there are large number of variants of the basic LSTM
architecture. Most such variants are slight variants, with only minor changes
from a standard LSTM. A gated recurrent unit (GRU), on the other hand, is a
fairly radical departure from an LSTM. Although the internal state of a GRU
is somewhat complex and, perhaps, less intuitive than that of an LSTM, there
are fewer parameters in a GRU, and hence it is easier to train a GRU, and less
training data is required. The wiring diagram for a GRU is given in Figure 20.

20

ℎ𝑡−1

𝑋𝑡

ℎ𝑡

ℎ𝑡

‖

×

‖

𝜎

𝑟𝑡

𝑊𝑟

𝜎

1−
×

𝑧𝑡

𝑊𝑧

𝜏

×

+

𝑔𝑡

𝑊𝑔

Figure 20: One timestep of a GRU

The gate vectors that appear in Figure 19 are computed as

𝑧𝑡 = 𝜎

(︃
𝑊𝑧

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑧

)︃

𝑟𝑡 = 𝜎

(︃
𝑊𝑟

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑟

)︃

𝑔𝑡 = 𝜏

(︃
𝑊𝑔

(︂
𝑟𝑡 ⊗ℎ𝑡−1

𝑋𝑡

)︂
+ 𝑏𝑔

)︃

while the output is
ℎ𝑡 = (1 − 𝑧𝑡)⊗ℎ𝑡−1 ⊕ 𝑧𝑡⊗ 𝑔𝑡

where “⊗” is pointwise multiplication and “⊕” is the usual pointwise addition.
Note that each of the weight matrices is 𝑛× 2𝑛.

In matrix form, ignoring the bias terms 𝑏, we have
⎛
⎝

𝑧𝑡
𝑟𝑡
𝑔𝑡

⎞
⎠ =

⎛
⎝

𝜎
𝜎
0

⎞
⎠𝑊

(︂
ℎ𝑡−1

𝑋𝑡

)︂
+

⎛
⎝

0
0
𝜏

⎞
⎠𝑊

(︂
𝑟𝑡 ⊗ℎ𝑡−1

𝑋𝑡

)︂

21

where 𝑋𝑡 and ℎ𝑡−1 are column vectors of length 𝑛, and 𝑊 is the 3𝑛× 2𝑛 weight
matrix

𝑊 =

⎛
⎝

𝑊𝑧

𝑊𝑟

𝑊𝑔

⎞
⎠

Each of the gates 𝑧𝑡, 𝑟𝑡, and 𝑔𝑡 is a column vectors of length 𝑛.
The intuition behind a GRU is that it replaces the input, forget, and output

gates of an LSTM with just two gates—an “update” gate 𝑧𝑡 and a “reset”
gate 𝑟𝑡. The GRU update gate serves a similar purpose as the combined output
and forget gates of an LSTM. Specifically, the update serves to determine what
to output (or write) and what to forget. The function 1−𝑧𝑡 in the GRU implies
that anything that is not output must be forgotten. Thus, the GRU is less
flexible as compared to an LSTM, since an LSTM allows us to independently
select elements for output and elements that are forgotten. The GRU reset
gate and the LSTM input gate each serve to combine new input with previous
memory.

The gating in a GRU is more complex and somewhat less intuitive as com-
pared to that found in an LSTM. In any case, the most radical departure of
the GRU from the LSTM architecture is that there is no cell state in a GRU.
This implies that any memory must be stored in the hidden state ℎ𝑡. This
simplification (as compared to an LSTM) relies on the fact that in a GRU, the
write and forget operations have been combined.

3.5 Recursive Neural Network

We mention in passing that recursive neural networks can be viewed as general-
izing recurrent neural networks.6 In a recursive neural network, we can recurse
over any hierarchical structure, with trees being the archetypal example. Then
training can be accomplished via backpropagation through structure (BPTS),
often using stochastic gradient descent for simplicity. In contrast, a recurrent
neural network is restricted to one particular structure—that of a linear chain.

3.6 Last Word on RNNs

RNNs are useful in cases where the input data is sequential. Generic RNN
architectures are subject to vanishing and exploding gradients, which limit
the length of the history (or gaps) that can effectively be incorporated into

6Unfortunately, “recursive neural network” is typically also abbreviated as RNN. Here,
we’ll reserve RNN for recurrent neural networks and not use any abbreviation when referring
to recursive neural networks.

22

such models. Relatively complex RNN-based architectures—such as LSTM and
its variants—have been developed that can better handle such gradient issues.
These architectures have proven to be commercially successful across a wide
range of products.

A good general discussion of RNNs can be found in [30], and an overview of
various RNN-specific topics—with links to many relevant articles—is available
at [28]. A more detailed (mathematical) description can be found in Chapter 10
of [7]. The slides at [22] provide a good general introduction to RNNs, with
nice examples and a brief, but excellent, discussion of LSTM.

4 ResNet

At the time of this writing, residual network (ResNet) is considered the state of
the art in deep learning for many image analysis problems. A residual network
is one in which instead of approximating a function 𝐹 (𝑥), we approximate the
“residual,” which is defined as 𝐻(𝑥) = 𝐹 (𝑥) − 𝑥. Then the desired solution is
given by 𝐹 (𝑥) = 𝐻(𝑥) + 𝑥.

The original motivation for considering residuals was based on the observa-
tion that deeper networks sometimes produce worse results, even when vanish-
ing gradients are not the cause [11]. This is somewhat counter-intuitive, as the
network should simply learn identity mappings when a model is deeper than
necessary. To overcome this “degradation” problem, the authors of [11] experi-
ment with residual mappings and provide extensive empirical evidence that the
resulting ResNet architecture yields improved results as compared to standard
feedforward networks for a variety of problems. The authors of [11] conjecture
that the success of ResNet follows from the fact that the identity map corre-
sponds to a residual of zero, and “if an identity mapping were optimal, it would
be easier to push the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.”

Whereas LSTM uses a complex gating structure to ease gradient flow, ResNet
defines additional connections that correspond to identity layers. This enables
ResNet to deal with vanishing gradients, as well as the aforementioned degra-
dation problem. These identity layers allow a ResNet model to skip over layers
during training, which serves to effectively reduce the minimum depth when
training. Intuitively, ResNet is able to train deeper networks by, in effect, train-
ing over a considerably shallower network in the initial stages, with later stages
of training serving to flesh out the intermediate connections. This approach was
inspired by pyramidal cells in the brain, which have a similar characteristic in
the sense that they bridge “layers” of neurons [38].

23

A very high-level illustrative example of a ResNet architecture is given in
Figure 21, where each curved edge represents an identity transformation. Note
that in this case, the identity transformations enable the model to skip over two
layers. In principle, ResNet would seem to be applicable to any flavor of deep
neural network, but in practice it seems to applied to CNNs.

𝑋 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑌

Figure 21: Example of a ResNet architecture

If a ResNet has 𝑁 identity paths, then the network contains 2𝑁 distinct
feedforward networks. For example, the ResNet in Figure 21 can be expanded
into the graph in Figure 22. Note that most of the paths in a ResNet are
relatively short.

𝑋 𝑓0 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑌

𝑓1 𝑓2

𝑓1 𝑓2 𝑓3 𝑓4

𝑓1 𝑓2

Figure 22: Another view of the ResNet architecture in Figure 21

Surprisingly, the paper [44] provides evidence that in spite of being trained
simultaneously, the multiple paths in a ResNet “show ensemble-like behavior
in the sense that they do not strongly depend on each other.” And perhaps
an even more surprising result in [44] shows that “only the short paths are
needed during training, as longer paths do not contribute any gradient.” In
other words, a deep ResNet architecture is more properly viewed as a collection
of multiple, relatively shallow networks.

24

5 GAN

Let {𝑋𝑖} be a collection of samples and {𝑌𝑖} a corresponding set of class labels.
In statistics, a discriminative model is one that models the conditional probabil-
ity distribution 𝑃 (𝑌 |𝑋). Such a discriminative model can be used to classify
samples—given an input 𝑋 of the same type as the training samples {𝑋𝑖},
the model enables us to easily determine the most likely class of 𝑋 by simply
computing 𝑃 (𝑌 |𝑋) for each class label 𝑌 .

In contrast, a model is said to be generative if it models the joint probability
distribution of 𝑋 and 𝑌 , which we denote as 𝑃 (𝑋, 𝑌). Such a model is called
“generative” because by sampling from this distribution, we can generate new
pairs (𝑋𝑖, 𝑌𝑖) that fit the probability distribution. Note that we can produce a
discriminative model from a generative model, since

𝑃 (𝑌 |𝑋) =
𝑃 (𝑋, 𝑌)

𝑃 (𝑋)

Therefore, in some sense, a generative model is inherently more general than a
discriminative model.

Consider, for example, hidden Markov models (HMM) [39], which are a
popular class of classic machine learning techniques. An HMM is defined by
the three matrices in 𝜆 = (𝐴,𝐵, 𝜋), where 𝜋 is the initial state distribution, 𝐴
contains the transition probability distributions for the hidden states, and 𝐵
consists of the observation probability distributions corresponding to the hidden
states. If we train an HMM on a given dataset, then we can easily generate
samples that match the probability distributions of the HMM. To generate such
samples, we first randomly select an initial state based on the probabilities in 𝜋.
Then we repeat the following steps until the desired observation sequence length
is reached: Randomly select an observation based on the current state, using the
probabilities in 𝐵, and randomly select the next state, based on the probabilities
in 𝐴. The resulting observation sequence will be indistinguishable (in the HMM
sense) from the data that was used to train the HMM.

From the discussion in the previous paragraph, it is clear that a trained
HMM is a generative model. However, it is more typical to use an HMM as a
discriminative model. In discriminative mode, we determine a threshold, then
we classify a given observation sequence as matching the model if its HMM
score is above the specified threshold. This example shows that in practice, it
is easy to use a generative model as a discriminative model.

On the other hand, while a trained SVM serves to classify samples, we could
not use such a model to generate samples that match the training set. Thus,
an SVM is an example of a discriminative model.

25

In the realm of deep learning, a discriminative network is designed to classify
samples, while a generative network is designed to generate samples that “fit”
the training data. From the discussion above, it is clear that we can always ob-
tain a discriminative model from a generative model. Intuitively, it would seem
that training a (more general) generative model in order to obtain a (more spe-
cific) discriminative model would be undesirable, since we do not need the full
generality of the model. However, reality appears to be somewhat more subtle.
In [31] it is shown that for one generative-discriminative pair (näıve Bayes and
logistic regression) the discriminative models do indeed have a lower asymptotic
error; however the generative models consistently converge faster. This suggests
that with limited training data, a generative model might produce a superior
discriminative model, as compared to directly training the corresponding dis-
criminative model. In any case, in the realm of deep learning, discriminative
models dominate, with an example of a typical application being image classifi-
cation. In contrast, generative models have only recently come into vogue, with
an example application being the creation of fake images.

Now, suppose that when training a discriminative neural network, in addi-
tion to the real training data, we generate “fake” training samples that follow
a similar probability distribution as the real samples. Further, suppose that
these fake training samples are designed to trick the discriminative network
into making classification mistakes. Such samples would tend to improve the
training of the network, thus making it stronger and more effective than if we
had restricted the training to only the real data.

Although intuitively appealing, several problem arises when trying to imple-
ment a training technique based on fake samples. For one thing, we generally
don’t know the distribution of the training set, which often lives in an extremely
high dimensional space of great complexity. Another issue is that during train-
ing, the discriminative network is constantly evolving, so determining samples
that are likely to trick the network is a moving target. Another concern is that
if the fake training samples are too difficult—or too easy—to distinguish at
any point in the training process, we are unlikely to see any improvement over
simply using the real training data

Several techniques have been proposed to try to take advantage of fake data
so as to improve the training process. In the case of a generative adversarial
network (GAN), we use a neural network to generate the fake data—a gener-
ative network is trained to defeat a discriminative network. Furthermore, the
discriminative and generative networks are trained simultaneously in a minimax
game. This approach sidesteps the complications involved in trying to model the
probability distribution of the training samples. In fact, the generative network
in a GAN simply uses random noise as its underlying probability distribution.

26

To summarize, a GAN consists of two competing neural networks—a gener-
ative network and a discriminative network—with the generative network cre-
ating fake data that is designed to defeat the discriminative network. The two
networks are trained simultaneously following a game-theoretic approach. In
this way, both networks improve, with the ultimate objective being a discrim-
inative model (and/or a generative model) that is stronger than it would have
been if it was trained only on the real training data.

We define two neural networks, namely, a discriminator 𝐷(𝑥; 𝜃𝑑), and a
generator 𝐺(𝑧; 𝜃𝑔), where 𝜃𝑑 consists of the parameters of the discriminator
network, and 𝜃𝑔 consists of the parameters of the generator network. Here,
we’ll describe the training process in terms of images, but other types of data
could be used. Also, to simplify the notation, we’ll suppress the dependence
on 𝜃𝑑 and 𝜃𝑔 in the remainder of this discussion, except where it is essential for
understanding and may not be clear from context.

The generator 𝐺(𝑧) produce a fake image (based on the random seed value 𝑧)
with the goal of tricking the discriminator into believing it is a real training
image. In contrast, the discriminator 𝐷(𝑥) returns a value in the range of 0
to 1 that can be viewed as its estimate of the probability that the image 𝑥
is real. For example, 𝐷(𝑥) = 1 means that the discriminator is completely
certain that the image is real, while 𝐷(𝑥) = 0 tells us that the discriminator is
sure that the image is fake, and 𝐷(𝑥) = 1/2 implies that the discriminator is
clueless. Note that the discriminator must deal with both real and fake images,
while the generator is only concerned with generating fake images that trick the
discriminator.

The generator 𝐺 wins if 𝐷 thinks its fake images are real. Thus, we can
train 𝐺 by making 1 −𝐷(𝐺(𝑧)) as close to zero as possible or, equivalently, by
minimizing log(1 −𝐷(𝐺(𝑧))). On the other hand, 𝐷 wins if it can distinguish
the fake images from real images so, ideally, when training 𝐷 we want 𝐷(𝑥) = 1,
when 𝑥 is a real image, and 𝐷(𝐺(𝑧)) = 0 for fake images 𝐺(𝑧). Therefore, we
can train 𝐷 by maximizing 𝐷(𝑥)(1 − 𝐷(𝐺(𝑧)) or, equivalently, by maximiz-
ing log(𝐷(𝑥)) + log(1 − 𝐷(𝐺(𝑧))). We want the 𝐷 and 𝐺 models to be in
competition, so they can strengthen each other. This can be accomplished by
formulating the training in terms of the minimax game

min
𝐺

max
𝐷

(︁
𝐸
(︀
log(𝐷(𝑥))

)︀
+ 𝐸

(︀
log(1 −𝐷(𝐺(𝑧)))

)︀)︁
(3)

where 𝐸 is the expected value, relative to the implied probability distribution.
Specifically, for the max over 𝐷, the expectation is with respect to the real
sample distribution which has parameters 𝜃𝑑, while for the min over 𝐺, the
expectation is with respect to the fake sample distribution, which is specified
by the parameters 𝜃𝑔.

27

In the case of stochastic gradient descent (or ascent), at each iteration we
consider one real sample 𝑥 and one fake sample 𝐺(𝑧). Then, due to the max
in equation (3), we first perform gradient ascent to update the discriminator
network 𝐷. This is followed by gradient descent to update generator network 𝐺.
Of course, both of these steps rely on backpropagation.

Note that for the discriminator network 𝐷, the backpropagation error term
involves

log
(︀
𝐷(𝑥)

)︀
+ log

(︀
1 −𝐷(𝐺(𝑧))

)︀

while for the generator network 𝐺, the error term involves only

log
(︀
1 −𝐷(𝐺(𝑧))

)︀
(4)

Of course, in practice, we would typically use a minibatch of, say, 𝑚 real samples
and 𝑚 fake samples at each update of 𝐷 and 𝐺, rather than a strict stochastic
gradient descent/ascent.

There is one technical issue that arises when attempting to train the genera-
tor network 𝐺 as outlined above. As illustrated in Figure 23, the gradient of the
expression in (4) is nearly flat for values of 𝐷(𝐺(𝑧)) near zero. This implies that
early in training, when the generator network is sure to be extremely weak—and
hence the discriminator can easily identify most 𝐺(𝑧) images as fake—it will be
difficult for the 𝐺 network to learn. From, Figure 23 we also see that

log
(︀
𝐷(𝐺(𝑧))

)︀
(5)

is relatively steep near zero. Hence, instead training 𝐺 based on a gradient
ascent involving equation (4), we’ll perform gradient descent based on (5). Note
that we’ve simply replaced the problem of maximizing 1 − 𝐷(𝐺(𝑧)) with the
equivalent problem of minimizing the probability 𝐷(𝐺(𝑧)).

The algorithm for training a GAN is summarized in Figure 24. In some
applications, letting iters = 1 works best, while in others, iters > 1 yields
better results. In the latter case, we update the discriminator network 𝐷 mul-
tiple times for each update of the generator network 𝐺. This implies that in
such cases, the generator might otherwise overwhelm the discriminator, that is,
the generator is in some sense easier to train. Finally, while a GAN certainly is
an advanced architecture, it is important to realize that training reduces to a
fairly straightforward application of gradient ascent.

As with LSTM, there are a vast number of variations on the basic GAN
approach outlined here; see [23] for a list of nearly 50 such variants. Additional
sources of information on GANs include the original paper on the subject [8]
and the excellent slides at [23].

28

0.1 0.3 0.5 0.7 0.9
−4

−3

−2

−1

0

1

2

3

4

𝐷(𝐺(𝑧))

log
(︀
1 −𝐷(𝐺(𝑧))

)︀

−log
(︀
𝐷(𝐺(𝑧))

)︀

Figure 23: Gradient of generator network 𝐺

0: initialize parameters 𝜃𝑑 and 𝜃𝑔 and iters ≥ 1
1: repeat
2: for 𝑘 = 1 to iters

3: randomly select 𝑛 noise samples 𝑍 = (𝑧0, 𝑧1, . . . , 𝑧𝑛−1)
4: randomly select 𝑛 real samples 𝑋 = (𝑥0, 𝑥1, . . . , 𝑥𝑛−1)
5: update 𝜃𝑑 by gradient ascent on

𝑛−1∑︀
𝑖=0

(︁
log
(︀
𝐷(𝑥𝑖)

)︀
+ log

(︀
1 −𝐷(𝐺(𝑧𝑖))

)︀)︁

6: next 𝑘
7: randomly select 𝑛 noise samples 𝑍 = (𝑧0, 𝑧1, . . . , 𝑧𝑛−1)
8: update 𝜃𝑔 by gradient ascent on

𝑛−1∑︀
𝑖=0

log
(︀
𝐷(𝐺(𝑧𝑖))

)︀

9: until stopping criteria is met
10: return(𝜃𝑑, 𝜃𝑔)

Figure 24: GAN training algorithm

6 Word2Vec

Word2Vec is a technique for embedding terms in a high-dimensional space,
where the term embeddings are obtained by training a shallow neural network.
After the training process, words that are more similar in context will tend to
be closer together in the Word2Vec space.

Surprisingly, some algebraic properties also hold for Word2Vec embeddings.
For example, according to [26], if we let

𝑤0 = “king”, 𝑤1 = “man”, 𝑤2 = “woman”, 𝑤3 = “queen”

29

and 𝑉 (𝑤𝑖) is the Word2Vec embedding of word 𝑤𝑖, then 𝑉 (𝑤3) is the vector
that is closest—in terms of cosine similarity—to

𝑉 (𝑤0) − 𝑉 (𝑤1) + 𝑉 (𝑤2)

Results such as this indicate that Word2Vec embeddings capture significant
aspects of the semantics of the language.

Before discussing the basic ideas behind Word2Vec, let’s consider a some-
what analogous approach to generating vector representations based on hidden
Markov models. And, to begin with let’s consider individual letters, as opposed
to words—we’ll call this Letter2Vec.

Recall that an HMM is defined by the three matrices 𝐴, 𝐵, and 𝜋, and is
denoted as 𝜆 = (𝐴,𝐵, 𝜋). The 𝜋 matrix contains the initial state probabilities,
𝐴 contains the hidden state transition probabilities, and 𝐵 consists of the ob-
servation probability distributions corresponding to the hidden states. Each of
these matrices is row stochastic, that is, each row satisfies the requirements of
a discrete probability distribution. Notation-wise, we’ll let 𝑁 be the number
of hidden states, 𝑀 is the number of distinct observation symbols, and 𝑇 is
the length of the observation (i.e., training) sequence. Note that 𝑀 and 𝑇 are
determined by the training data, while 𝑁 is a user-defined parameter. For more
details in HMMs, see [39] or Rabiner’s fine paper [34].

Suppose that we train an HMM on a sequence of letters extracted from
English text, where we convert all upper-case letters to lower-case and discard
any character that is not an alphabetic letter or word-space. Then 𝑀 = 27,
and we select 𝑁 = 2 hidden states, and we’ll use 𝑇 = 50,000 observations for
training. Note that each observation is one of the 𝑀 = 27 symbols (letters
plus word-space). For the example discussed below, the sequence of 𝑇 = 50,000
observations was obtained from the Brown corpus of English [3]. Of course, any
source of English text could be used.

For one specific case, an HMM trained with the parameters listed in the
previous paragraph yields the 𝐵 matrix in Table 1. Observe that this 𝐵 matrix
gives us two probability distributions over the observation symbols—one for each
of the hidden states. We observe that one hidden state essentially corresponds to
vowels, while the other corresponds to consonants. This simple example nicely
illustrates the concept of machine learning, as no a priori assumption was made
concerning consonants and vowels, and the only parameter we selected was the
number of hidden states 𝑁 . Through the training process, the model learned
a crucial aspect of English directly from the data. This illustrative example is
discussed in more detail in [39] and originally appeared in Cave and Neuwirth’s
classic paper [4].

30

Table 1: Final 𝐵𝑇 for HMM

Letter State 0 State 1 Letter State 0 State 1
a 0.13537 0.00364 n 0.00035 0.11429
b 0.00023 0.02307 o 0.13081 0.00143
c 0.00039 0.05605 p 0.00073 0.03637
d 0.00025 0.06873 q 0.00019 0.00134
e 0.21176 0.00223 r 0.00041 0.10128
f 0.00018 0.03556 s 0.00032 0.11069
g 0.00041 0.02751 t 0.00158 0.15238
h 0.00526 0.06808 u 0.04352 0.00098
i 0.12193 0.00077 v 0.00019 0.01608
j 0.00014 0.00326 w 0.00017 0.02301
k 0.00112 0.00759 x 0.00030 0.00426
l 0.00143 0.07227 y 0.00028 0.02542

m 0.00027 0.03897 z 0.00017 0.00100
space 0.34226 0.00375 — — —

Suppose that for a given letter ℓ, we define its Letter2Vec representation 𝑉 (ℓ)
to be the corresponding row of the matrix 𝐵𝑇 in Table 1. Then, for example,

𝑉 (a) =
(︀

0.13537 0.00364
)︀

𝑉 (e) =
(︀

0.21176 0.00223
)︀

𝑉 (s) =
(︀

0.00032 0.11069
)︀

𝑉 (t) =
(︀

0.00158 0.15238
)︀ (6)

Next, we consider the distance between these Letter2Vec representations. In-
stead of using Euclidean distance, we’ll measure the cosine similarity.7

The cosine similarity of vectors 𝑋 and 𝑌 is the cosine of the angle between
the two vectors. Let 𝑆(𝑋, 𝑌) denote the cosine similarity between vectors 𝑋
and 𝑌 . Then for 𝑋 = (𝑋0, 𝑋1, . . . , 𝑋𝑛−1) and 𝑌 = (𝑌0, 𝑌1, . . . , 𝑌𝑛−1),

𝑆(𝑋, 𝑌) =

𝑛−1∑︁

𝑖=0

𝑋𝑖𝑌𝑖

⎯⎸⎸⎷
𝑛−1∑︁

𝑖=0

𝑋2
𝑖

⎯⎸⎸⎷
𝑛−1∑︁

𝑖=0

𝑌 2
𝑖

In general, we have −1 ≤ 𝑆(𝑋, 𝑌) ≤ 1, but since our Letter2Vec encoding vec-
tors consist of probabilities—and hence are non-negative values—we’ll always
have 0 ≤ 𝑆(𝑋, 𝑌) ≤ 1.

7Cosine similarity is not a true metric, since it does not, in general, satisfy the triangle
inequality.

31

When considering cosine similarity, the length of the vectors is irrelevant,
as we are only considering the angle between vectors. Consequently, we might
want to consider vectors of length one, ̃︀𝑋 = 𝑋/‖𝑋‖ and ̃︀𝑌 = 𝑌/‖𝑌 ‖, in which
case the cosine similarity simplifies to the dot product

𝑆(̃︀𝑋, ̃︀𝑌) =
𝑛−1∑︁

𝑖=0

̃︀𝑋𝑖
̃︀𝑌𝑖

Henceforth, we’ll use the notation ̃︀𝑋 to indicate a vector 𝑋 that has been
normalized to be of length one.

For the vector encodings in (6), we find that for the vowels “a” and “e”, the
cosine similarity is 𝑆(𝑉 (a), 𝑉 (e)) = 0.9999. In contrast, the cosine similarity of
the vowel “a” and the consonant “t” is 𝑆(𝑉 (a), 𝑉 (t)) = 0.0372. The normalized
vectors 𝑉 (a) and 𝑉 (t) are illustrated in Figure 25. Using the notation in this
figure, cosine similarity is 𝑆(𝑉 (a), 𝑉 (t)) = cos(𝜃)

̃︀𝑉 (a)

̃︀𝑉 (t)

𝜃

Figure 25: Normalized vectors ̃︀𝑉 (a) and ̃︀𝑉 (t)

These results indicate that these Letter2Vec encodings—which are derived
from a trained HMM—provide useful information on the similarity (or not) of
pairs of letters. Note that we could obtain a vector encoding of any dimension
by simply training an HMM with the number of hidden states 𝑁 equal to the
desired dimension.

Our HMM-based approach to Letter2Vec encoding is interesting, but we
want to encode words, not letters. Analogous to the Letter2Vec embeddings
discussed above, we could train an HMM on words and then use the columns
of the resulting 𝐵 matrix (equivalently, the rows of 𝐵𝑇) to define word vectors.
The state of the art for Word2Vec uses a dataset corresponding to 𝑀 = 10,000,
𝑁 = 300 and 𝑇 = 109. Training an HMM with similar parameters would be
decidedly non-trivial, as the work factor is on the order of 𝑁2𝑇 .

32

While the word embedding technique discussed in the previous paragraph—
let’s call it HMM2Vec—is plausible, it has some potential limitations. Perhaps
the biggest issue with HMM2Vec is that we typically train an HMM based on
a Markov model of order one. This means that the current state only depends
on the immediately-preceding state. By basing our word embeddings on such
a model, the resulting vectors would likely provide only a very limited sense
of context. While we can train HMMs using models of higher order, the work
factor would be prohibitive.

Word2Vec uses a similar approach as the HMM2Vec concept outlined above.
But, instead of using an HMM, Word2Vec is based on a shallow (one hidden
layer) neural network. Analogous to HMM2Vec, in Word2Vec, we are not in-
terested in the resulting model itself, but instead we make use the learning that
is represented by the trained model to define word embeddings. Next, we con-
sider the basic ideas behind Word2Vec. Our presentation is fairly similar to
that found in the excellent tutorial [25].

Suppose that we have a vocabulary of size 𝑀 . We’ll encode each word as
a “one-hot” vector of length 𝑀 . For example, suppose that our vocabulary
consists of the set of 𝑀 = 8 words

𝑊 = (𝑤0, 𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7)

= (“for”, “giant”, “leap”, “man”, “mankind”, “one”, “small”, “step”)

Then we encode “for” and “man” as

𝐸(𝑤0) = 𝐸(“for”) = 10000000 and 𝐸(𝑤3) = 𝐸(“man”) = 00010000

respectively.
Now, suppose that our training data consists of the phrase

“one small step for man one giant leap for mankind” (7)

To obtain training samples, we specify a window size, and for each offset we
use all pairs of words within the specified window. For example, if we select a
window size of two, then from (7), we obtain the training pairs in Table 2.

Consider the pair “(for,man)” from the fourth row in Table 2. As one-hot
vectors, this training pair corresponds to input 10000000 and output 00010000.

A neural network similar to that in Figure 26 is used to generate Word2Vec
embeddings. The input is a one-hot vector of length 𝑀 representing the first
element of a training pair, such as those in Table 2, and the network is trained
to output the second element of the ordered pair. The hidden layer consists
of 𝑁 linear neurons and the output layer uses a softmax function to generate 𝑀

33

Table 2: Training data

Offset Training pairs

“ one small step . . .” (one,small), (one,step)

“one small step for . . .” (small,one), (small,step), (small,for)

“one small step for man . . .” (step,one), (step,small), (step,for), (step,man)

“. . . small step for man one . . .” (for,small), (for,step), (for,man), (for,one)

“. . . step for man one giant . . .” (man,step), (man,for), (man,one), (man,giant)

“. . . for man one giant leap . . .” (one,for), (one,man), (one,giant), (one,leap)

“. . . man one giant leap for . . .” (giant,man), (giant,one), (giant,leap), (giant,for)

“. . . one giant leap for mankind” (leap,one), (leap,giant), (leap,for), (leap,mankind)

“. . . giant leap for mankind” (for,giant), (for,leap), (for,mankind)

“. . . leap for mankind ” (mankind,leap), (mankind,for)

· · ·

𝑉

ℓ0 ℓ𝑁−1

𝜔0 · · · 𝜔𝑀−1

𝑝0 · · · 𝑝𝑀−1

Input vector

Hidden layer

Output layer

Probability

Figure 26: Neural network for Word2Vec embeddings

probabilities, where 𝑝𝑖 is the probability of the output vector corresponding
to 𝑤𝑖 for the given input.

Observe that the Word2Vec network in Figure 26 has 𝑁𝑀 weights that are
to be determined, as represented by the blue lines from the hidden layer to
the output layer. For each output node 𝜔𝑖, there are 𝑁 edges (i.e., weights)
from the hidden layer. The 𝑁 weights that connect to output node 𝜔𝑖 form the
Word2Vec embedding 𝑉 (𝑤𝑖) of the word 𝑤𝑖.

34

As mentioned above, the state of the art in Word2Vec for English text
is based on a vocabulary of 𝑀 = 10,000 words, and embedding vectors of
length 𝑁 = 300. These embeddings are obtained by training on a set of
about 109 samples. Clearly, training a model of this magnitude is an extremely
challenging computational task, as there are 3 × 106 weights to be determined,
not to mention a huge number of training samples to deal with. Most of the
complexity of Word2Vec comes from tricks that are used to make it feasible to
train such a large network with a massive amount of data.

One trick that is used to speed training in Word2Vec is subsampling of
frequent words. Common words such as “a” and “the” contribute little to the
model, so these words can appear in training pairs at a much lower rate than
they are present in the training text.

The most significant work-saving trick that is used in Word2Vec is so-called
“negative sampling.” When training a neural network, each training sample
potentially affects all of the weights of the model. Instead of adjusting all of the
weights, in Word2Vec, only a small number of “negative” samples have their
weights modified per training sample. For example, suppose that the output
vector of a training pair corresponds to word 𝑤0. Then the “positive” weights
are those of output node 𝜔0, and all of the corresponding weights are modified.
In addition, a small subset of the 𝑀 − 1 “negative” words (i.e., every word in
the dataset except 𝑤0) are selected and only the weights of the corresponding
output nodes are modfied. The distribution used to select the negative subset
is biased towards more frequent words.

A high level discussion of Word2Vec can be found in [2], while a very nice and
intuitive—yet reasonably detailed—introduction is given in [25]. The original
paper describing Word2Vec is [26] and an immediate followup paper discusses a
variety of improvements that mostly serve to make training practical for large
datasets [27].

7 Transfer Learning

Suppose that we have thoroughly trained a model and it performs well for a
given task. Then, if we have a closely related task, we might be able to reuse
most of the previously-trained model to solve this new problem. Specifically,
we can attempt to take advantage of the learning embedded in the pre-trained
model, and simple retrain the output layer, keeping all other layers fixed. This
approach, which is known as transfer learning, has the advantages of being much
faster than training a new model completely from scratch, and it also requires
far less data.

35

For example, suppose that we have a deep neural network that was trained
on a massive dataset of generic images. Now suppose that we want to distin-
guish between road signs for an autonomous vehicle application. Then we could
simply retrain the output layer on road signs, thus taking advantage of all of
the general image learning embedded in the deeper layers of the existing model.
As a somewhat less intuitive example, we can treat executable files as images,
in which case transfer learning has been applied to distinguish malware from
benign, and to classify malware samples into their respective families [46].

8 Ensemble Techniques

In many situations, improved results can be obtained by ensembles, that is,
by employing various combinations of deep learning and/or machine learning
techniques. Many—if not all—recent machine learning/deep learning compe-
titions have been won by ensembles. For example, the winning strategy for
the famous Netflix Prize included a restricted Boltzmann machine (RBM) and
gradient boosted decision trees, along with several other techniques [20].

Broadly speaking, we can classify ensembles as bagging, boosting, or stack-
ing, or some combination thereof [43]. Next, we briefly describe each of these
three general approaches to constructing ensembles.

Bagging, which is short for “boostrap aggregation,” consists of using different
subsets of the data or features (or both) to generate distinct scoring functions or
classifiers. The results are then combined in some way, which could be as simple
as a sum of the scores or a majority vote of the corresponding classifications. In
the case of bagging, we assume that the same scoring (or classification) method
is used for all scores in the ensemble. For example, bagging is used when
generating a random forest, where each individual scoring function is based on
a simple decision tree. One benefit of bagging is that it can reduce overfitting,
which is a particular problem for decision trees.

Boosting is a process whereby a collection of distinct classifiers are combined
to produce a stronger classifier. Often, boosting deals with weak classifiers that
are combined in an adaptive or iterative manner that yields a stronger overall
classifier. We restrict our definition of boosting to cases where the classifiers
are closely related, in the sense that they differ only in terms of parameters.
From this perspective, boosting can be viewed as “bagging” based on classifiers,
rather than data or features. That is, the scoring (or classification) functions are
simply re-parametrized versions of one technique. Popular boosting techniques,
such as AdaBoost, can produce arbitrarily strong classifiers, given a sufficient
number of weak classifiers [41].

36

Stacking is a generic ensemble method that combines disparate techniques
using a meta-classifier [36]. The scoring functions or classifiers used in stacking
can be significantly different from each other. By this definition, both bagging
and boosting can be considered to be special cases of stacking.

Because stacking generalizes both bagging and boosting, it is not surpris-
ing that stacking-based ensembles can often outperform ensembles that are re-
stricted to bagging or boosting. This is clear from recent competitions, including
the KDD Cup [18] and Kaggle competitions [15], as well as the aforementioned
Netflix prize [29]. However, Frankenstein-like ensembles are not the end of the
story, as efficiency and practicality are often ignored in machine learning compe-
titions. In contrast, when building classifiers in practice, it is virtually always
necessary to consider efficiency. A good example of the difference between a
competition and a real-world application is provided by the Netflix Prize. The
approach that was used to win the Netflix Prize was never fully implemented
by Netflix because the improvements over existing techniques “did not seem
to justify the engineering effort needed to bring them into a production en-
vironment” [14]. Of course, the appropriate tradeoff between efficiency and
practicality will depend on the specifics of the problem at hand.

9 Combination Architectures

It is possible—and often highly desirable—to combine various neural network-
based architectures. While this could certainly be done in an ensemble ap-
proach, sometimes architectures are combined to form a single, non-ensemble
technique. For example, suppose that we want to train a network to caption
images. Then we might train a CNN on the images and use some flavor of
an RNN (e.g., LSTM) to learn captions [13]. The result of the CNN and RNN
could be combined via a final fully connected layer to generate captions for given
images. This specific type of combination is referred to as an encoder-decoder
architecture, since the image is first “encoded” via the CNN, as is the text using
an RNN, with the final result “decoded” to generate the captions.

As another example of a combination architecture, we could combine a deep
neural network (DNN) with a classic machine learning technique, such as a
hidden Markov model (HMM) to create a DNN-HMM architecture [24]. In
this case, we might train a DNN, then use the resulting model to generate
sequential output by applying the DNN to a sequence of inputs. We would
then train an HMM on the output sequence generated by the DNN. In this
particular architecture, the HMM would, in effect, be acting as an RNN-like
output layer for the DNN. One potential advantage of such an approach is that

37

HMMs are far more analyzable than neural networks, and hence we might be
able to improve the overall model by carefully consider the cases where it makes
mistakes.

10 TF-IDF

Term frequency-inverse document frequency (TF-IDF) was developed to serve
as a simple method for weighting terms in a document according to their signif-
icance, with the goal of automatically indexing documents. Actually, there are
several different ways to compute TF-IDF. We describe one of the more popular
approaches here.

The general idea behind TF-IDF is fairly simple. First, we compute the rel-
ative frequency of a term within a particular document (TF), and then multiply
the TF by the inverse of the fraction of documents—within the set of documents
under consideration—that include the term (IDF). Below, we give the precise
form of both the TF and IDF calculations, and we also discuss the motivation
for (and intuition behind) the resulting formulae.

Let 𝐷 = {𝑑0, 𝑑1, . . . , 𝑑𝑛−1} be a collection of documents, and let 𝑁𝑖 be the
number of terms in document 𝑑𝑖. Let 𝑇 = {𝑡0, 𝑡1, . . . , 𝑡𝑀−1} be the distinct
terms in 𝐷, and let 𝑁𝑖,𝑗 denote the number of times that term 𝑡𝑗 appears in
document 𝑑𝑖. In addition, we define the indicator function

𝐼(𝑁𝑖,𝑗) =

{︂
1 if 𝑁𝑖,𝑗 > 0
0 otherwise

That is, 𝐼(𝑁𝑖,𝑗) simply indicates whether term 𝑡𝑗 is present in document 𝑑𝑖.
At this point, we could simply define the term frequency of term 𝑡𝑗 in doc-

ument 𝑑𝑖 as 𝑁𝑖,𝑗. However, since documents can be of different lengths, we will
calculate the term frequency as a relative frequency, that is,

tf(𝑖, 𝑗) =
𝑁𝑖,𝑗

𝑁𝑖

Obviously, tf(𝑖, 𝑗) tells us which terms occur most frequently in a given doc-
ument. But, frequent terms are not always the most informative. For example,
if the word “the” occurs frequently in a document, then its term frequency will
be high, but this does not provide much useful information as to the content of
the document. So, we’ll also consider how common a term is over the entire set
of documents.

38

There are several possible ways to determine whether a term is rare or
common in 𝐷. We’ll use the inverse document frequency formula

idf(𝑖, 𝑗) = log2

(︃
𝑛∑︁

𝑖

𝐼(𝑁𝑖,𝑗)

)︃
= log2

(︀
𝑛
)︀
− log2

(︁∑︁

𝑖

𝐼(𝑁𝑖,𝑗)
)︁

for this purpose. Recall that 𝑛 is the number of documents in 𝐷 and observe that
the summation term simply counts the number of these 𝑛 document that include
the term 𝑡𝑗. The logarithm serves to dampen the effect of the idf(𝑖, 𝑗), which
would otherwise tend to dominate the calculation. Then TF-IDF is computed
as the product

TF-IDF(𝑖, 𝑗) = tf(𝑖, 𝑗) · idf(𝑖, 𝑗).

When TF-IDF(𝑖, 𝑗) is “large,” the term 𝑡𝑗 occurs relatively often in docu-
ment 𝑑𝑖, while 𝑡𝑗 is not too common (on a per-document basis) in the set 𝐷. The
intuition is that such a term should be important for indexing the document 𝑑𝑖
as it should have special significance within 𝑑𝑖.

TF-IDF has many potential uses in learning, beyond finding index terms in
documents. It can be used, for example, in feature engineering as a means of
determining the relative importance of various features.

11 Problems

1. Consider the CNN example in Section 2.

a) Repeat the convolution in Figure 3, using the filter in Figure 2 (d)
instead of the filter in Figure 2 (a).

b) Apply a max pooling layer to the right-hand side of Figure 3, using a
pool of size 4 × 4.

2. In this problem, we determine the number of parameters in the CNN
example outlined in Section 2.3.

a) TBD

b) TBD

c) TBD

3. Consider a three-to-one recurrent neural network (RNN).

a) Draw the equivalent diagrams as in Figures 13 and 14 for the case of
a three-to-one RNN.

39

b) How many weights must be estimated in a three-to-one RNN, and how
many weights are there in the fully connected analog to a three-to-one
RNN?

c) In general, how many weights are there in an 𝑛-to-one RNN, and how
many weight are there in the fully connected analog of such an RNN?

4. Rewrite the partial derivative expression in equation (2) without any 𝑍𝑖

terms appearing on the right-hand side. Hint: Rewrite 𝑍𝑘 and 𝑍𝑗 that
appear on the right-hand side in terms of 𝑓 , 𝑤, 𝑢, and inputs 𝑋𝑖, then
simplify the result.

5. LSTM problem.

6. Consider a ResNet architecture where each identity path skips 𝑛 nodes,
and there are 𝑚 identity paths, so that the total depth of the network
is 𝑁 = 𝑚𝑛 + 2. Note that this includes an initial node 𝑓0 and a final
node 𝑓𝑚𝑛+1. For example, for the ResNet in Figure 21, we have 𝑛 = 2
and 𝑚 = 3.

a) Prove that a ResNet with the specified parameters consists of ex-
actly 2𝑚 feedforward networks.

b) Prove that for this ResNet,
(︀
𝑚
𝑘

)︀
of its feedforward networks are of

length 2 + 𝑘𝑛, for 𝑘 = 0, 1, . . . ,𝑚.

c) Determine the average length of the feedforward paths that comprise
this ResNet.

7. Another ResNet problem.

8. GAN problem.

9. Another GAN problem.

10. In contrast to the shallow neural network used in Word2Vec, in Section 6
we mentioned that an HMM could be used to generate letter encod-
ings (which we called Letter2Vec) or word encodings (which we called
HMM2Vec). We observed that for Letter2Vec, consonants and vowels
formed two distinct groups, based on cosine similarity.

a) Implement Letter2Vec for 𝑁 = 3 and 𝑀 = 27, which results in em-
bedding vectors of length three. Group the letters based on cosine
similarity. Discuss the letter relationships within and between your
letter groupings.

40

b) Repeat part a), but using 𝑁 = 4.

c)* Implement HMM2Vec and train on the Brown Corpus with 𝑁 = 100.
Let 𝑉 (𝑤) be the HMM2Vec embedding of word 𝑤 and let

𝑤0 = “king”, 𝑤1 = “man”, 𝑤2 = “woman”, 𝑤3 = “queen”

Measure the distance, in terms of cosine similarity, from 𝑉 (𝑤3) to the
vector

𝑉 (𝑤0) − 𝑉 (𝑤1) + 𝑉 (𝑤2) (8)

List all words 𝑤 in your training set, for which 𝑉 (𝑤) is closer in cosine
similarity to (8) than 𝑉 (𝑤3).

11. In Section 8 we categorize ensembles as bagging, boosting, or stacking.
Give a plausible example—different from those found in the book—for
each of the following.

a) An application where bagging is used.

b) An application where boosting is used.

c) An application where stacking is used.

d) An application where both bagging and stacking are used.

e) An application where both boosting and stacking are used.

f) An application where bagging, boosting, and stacking are all used.

12. TF-IDF problems.

References

[1] Pierre Baldi and Yves Chavin. Smooth on-line learning algorithms for
hidden Markov models. Neural Computation, 6:307–318, 1994. https:

//core.ac.uk/download/pdf/4881023.pdf.

[2] Suvro Banerjee. Word2vec — A baby step in deep learning
but a giant leap towards natural language processing. https:

//medium.com/explore-artificial-intelligence/word2vec-a-

baby-step-in-deep-learning-but-a-giant-leap-towards-natural-

language-processing-40fe4e8602ba, 2018.

[3] The Brown corpus of standard American English. http://www.cs.

toronto.edu/~gpenn/csc401/a1res.html.

41

https://core.ac.uk/download/pdf/4881023.pdf
https://core.ac.uk/download/pdf/4881023.pdf
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
https://medium.com/explore-artificial-intelligence/word2vec-a-baby-step-in-deep-learning-but-a-giant-leap-towards-natural-language-processing-40fe4e8602ba
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html
http://www.cs.toronto.edu/~gpenn/csc401/a1res.html

[4] Robert L. Cave and Lee P. Neuwirth. Hidden Markov models for En-
glish. In Hidden Markov Models for Speech, pages 16–56, IDA-CRD,
Princeton, New Jersey, 1980. https://www.cs.sjsu.edu/~stamp/RUA/

CaveNeuwirth/index.html.

[5] Daphne Cornelisse. An intuitive guide to convolutional neural net-
works. https://medium.freecodecamp.org/an-intuitive-guide-to-

convolutional-neural-networks-260c2de0a050, 2018.

[6] Adit Deshpande. A beginner’s guide to understanding convolutional neural
networks. https://adeshpande3.github.io/A-Beginner%27s-Guide-

To-Understanding-Convolutional-Neural-Networks/, 2018.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gener-
ative adversarial nets. In Proceedings of the 27th International Conference
on Neural Information Processing Systems, volume 2 of NIPS’14, pages
2672–2680, 2014.

[9] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R. Steunebrink,
and Jürgen Schmidhuber. LSTM: A search space odyssey. IEEE Transac-
tions on Neural Networks and Learning Systems, 28(10):2222–2232, 2017.
https://arxiv.org/pdf/1503.04069.pdf.

[10] Arpit Gupta. Alexa blogs: How Alexa is learning to converse more natu-
rally. https://developer.amazon.com/blogs/alexa/post/15bf7d2a-

5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-

converse-more-naturally, 2018.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep resid-
ual learning for image recognition. https://arxiv.org/pdf/1512.03385.
pdf.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997. http://www.bioinf.jku.at/
publications/older/2604.pdf.

[13] MD. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid
Laga. A comprehensive survey of deep learning for image captioning. ACM
Computing Surveys, 51(6):118:1–118:36, 2019. https://arxiv.org/pdf/

1810.04020.pdf.

42

https://www.cs.sjsu.edu/~stamp/RUA/CaveNeuwirth/index.html
https://www.cs.sjsu.edu/~stamp/RUA/CaveNeuwirth/index.html
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/
http://www.deeplearningbook.org
https://arxiv.org/pdf/1503.04069.pdf
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
https://developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-alexa-is-learning-to-converse-more-naturally
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
http://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/pdf/1810.04020.pdf
https://arxiv.org/pdf/1810.04020.pdf

[14] Casey Johnston. Netflix never used its $1 million algorithm due to engi-
neering costs. Wired, 2012. https://www.wired.com/2012/04/netflix-

prize-costs/.

[15] Welcome to Kaggle competitions. https://www.kaggle.com/

competitions, 2018.

[16] Ioannis Kalfas. Modeling visual neurons with convolutional neural net-
works. https://towardsdatascience.com/modeling-visual-neurons-

with-convolutional-neural-networks-e9c01ddfdfa7, 2018.

[17] Andrej Karpathy. Convolutional neural networks for visual recognition.
http://cs231n.github.io/convolutional-networks/, 2018.

[18] KDD Cup of fresh air. https://biendata.com/competition/kdd_2018/,
2018.

[19] Pranav Khaitan. Google AI blog: Chat smarter with Allo. https://ai.

googleblog.com/2016/05/chat-smarter-with-allo.html, 2016.

[20] Yehuda Koren. The BellKor solution to the Netflix Prize. https://www.

netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf, 2009.

[21] Steven Levy. The iBrain is here—and it’s already inside your phone.
Wired. https://www.wired.com/2016/08/an-exclusive-look-at-how-
ai-and-machine-learning-work-at-apple/, 2016.

[22] Fei-Fei Li, Justin Johnson, and Serena Yeung. Lecture 10: Recurrent
Neural Networks. http://cs231n.stanford.edu/slides/2017/cs231n_

2017_lecture10.pdf, 2017.

[23] Fei-Fei Li, Justin Johnson, and Serena Yeung. Lecture 13: Genera-
tive Models. http://cs231n.stanford.edu/slides/2017/cs231n_2017_
lecture13.pdf, 2017.

[24] Longfei Li, Yong Zhao, Dongmei Jiang, Yanning Zhang, Fengna Wang,
Isabel Gonzalez, Enescu Valentin, and Hichem Sahli. Hybrid deep neural
network-hidden Markov model (DNN-HMM) based speech emotion recog-
nition. In Proceedings of the 2013 Humaine Association Conference on
Affective Computing and Intelligent Interaction, ACII ’13, pages 312–317,
2013.

[25] Chris McCormick. Word2vec tutorial — The skip-gram model.
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-

skip-gram-model/, 2016.

43

https://www.wired.com/2012/04/netflix-prize-costs/
https://www.wired.com/2012/04/netflix-prize-costs/
https://www.kaggle.com/competitions
https://www.kaggle.com/competitions
https://towardsdatascience.com/modeling-visual-neurons-with-convolutional-neural-networks-e9c01ddfdfa7
https://towardsdatascience.com/modeling-visual-neurons-with-convolutional-neural-networks-e9c01ddfdfa7
http://cs231n.github.io/convolutional-networks/
https://biendata.com/competition/kdd_2018/
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://ai.googleblog.com/2016/05/chat-smarter-with-allo.html
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
https://www.wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

[26] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. https://arxiv.org/

abs/1301.3781, 2013.

[27] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and
Jeffrey Dean. Distributed representations of words and phrases
and their compositionality. https://papers.nips.cc/paper/5021-

distributed-representations-of-words-and-phrases-and-their-

compositionality.pdf, 2013.

[28] Abhishek Narwekar and Anusri Pampari. Recurrent neural network ar-
chitectures. http://slazebni.cs.illinois.edu/spring17/lec20_rnn.

pdf, 2016.

[29] Netflix Prize. https://www.netflixprize.com, 2009.

[30] Graham Neubig. NLP programming tutorial 8 — Recurrent neu-
ral nets. http://www.phontron.com/slides/nlp-programming-en-08-

rnn.pdf, 2018.

[31] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and näıve Bayes. In Proceed-
ings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic, NIPS’01, pages 841–848, 2001.

[32] Christopher Olah. Understanding convolutions. http://colah.github.

io/posts/2014-07-Understanding-Convolutions/, 2014.

[33] George Philipp, Dawn Song, and Jaime G. Carbonell. The exploding gradi-
ent problem demystified — Definition, prevalence, impact, origin, tradeoffs,
and solutions. https://arxiv.org/pdf/1712.05577.pdf, 2018.

[34] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286,
1989. https://www.cs.sjsu.edu/~stamp/RUA/Rabiner.pdf.

[35] Avraham Ruderman, Neil C. Rabinowitz, Ari S. Morcos, and Daniel Zo-
ran. Pooling is neither necessary nor sufficient for appropriate deformation
stability in CNNs. https://arxiv.org/abs/1804.04438, 2018.

[36] Vadim Smolyakov. Ensemble learning to improve machine learning results.
https://blog.statsbot.co/ensemble-learning-d1dcd548e936, 2017.

44

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf
http://slazebni.cs.illinois.edu/spring17/lec20_rnn.pdf
https://www.netflixprize.com
http://www.phontron.com/slides/nlp-programming-en-08-rnn.pdf
http://www.phontron.com/slides/nlp-programming-en-08-rnn.pdf
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
https://arxiv.org/pdf/1712.05577.pdf
https://www.cs.sjsu.edu/~stamp/RUA/Rabiner.pdf
https://arxiv.org/abs/1804.04438
https://blog.statsbot.co/ensemble-learning-d1dcd548e936

[37] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. Striving for simplicity: The all convolutional net. https:

//arxiv.org/abs/1412.6806, 2014.

[38] Nelson Spruston. Pyramidal neurons: Dendritic structure and synaptic
integration. Nature Reviews Neuroscience, 9:206–221, 2019. https://www.
nature.com/articles/nrn2286.

[39] Mark Stamp. A revealing introduction to hidden Markov models. https:

//www.cs.sjsu.edu/~stamp/RUA/HMM.pdf, 2004.

[40] Mark Stamp. Introduction to Machine Learning with Applica-
tions in Information Security. Chapman & Hall/CRC Press, 2017.
https://www.crcpress.com/Introduction-to-Machine-Learning-

with-Applications-in-Information-Security/Stamp/p/book/

9781138626782.

[41] Mark Stamp. Boost your knowledge of AdaBoost. https://www.cs.sjsu.
edu/~stamp/RUA/ada.pdf, 2018.

[42] Mark Stamp. Deep thoughts on deep learning. https://www.cs.sjsu.

edu/~stamp/RUA/ann.pdf, 2018.

[43] Mark Stamp and Fabio Di Troia. On ensemble learning. https://www.

cs.sjsu.edu/~stamp/RUA/ensemble.pdf, 2019.

[44] Andreas Veit, Michael Wilber, and Serge Belongie. Residual networks
behave like ensembles of relatively shallow networks. https://arxiv.org/
pdf/1605.06431.pdf.

[45] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
 Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation.
https://arxiv.org/abs/1609.08144, 2016.

[46] Sravani Yajamanam, Vikash Raja Samuel Selvin, Fabio Di Troia, and Mark
Stamp. Deep learning versus gist descriptors for image-based malware clas-
sification. In Proceedings of the 4th International Conference on Informa-
tion Systems Security and Privacy, ICISSP 2018, pages 553–561, 2018.

45

https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://www.nature.com/articles/nrn2286
https://www.nature.com/articles/nrn2286
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782
https://www.crcpress.com/Introduction-to-Machine-Learning-with-Applications-in-Information-Security/Stamp/p/book/9781138626782
https://www.cs.sjsu.edu/~stamp/RUA/ada.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ada.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ann.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ann.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ensemble.pdf
https://www.cs.sjsu.edu/~stamp/RUA/ensemble.pdf
https://arxiv.org/pdf/1605.06431.pdf
https://arxiv.org/pdf/1605.06431.pdf
https://arxiv.org/abs/1609.08144

[47] Matthew D. Zeiler and Rob Fergus. Visualizing and understand-
ing convolutional networks. https://cs.nyu.edu/~fergus/papers/

zeilerECCV2014.pdf, 2014.

46

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf
https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

	1 Introduction
	2 CNN
	2.1 Overview
	2.2 Convolution and CNNs
	2.3 Example

	3 RNN
	3.1 BPTT
	3.2 Vanishing and Exploding Gradients
	3.3 LSTM
	3.4 GRU
	3.5 Recursive Neural Network
	3.6 Last Word on RNNs

	4 ResNet
	5 GAN
	6 Word2Vec
	7 Transfer Learning
	8 Ensemble Techniques
	9 Combination Architectures
	10 TF-IDF
	11 Problems

