RSA Implementation Attacks
RSA

- **RSA**
 - Public key: \((e, N)\)
 - Private key: \(d\)

- **Encrypt** \(M\)
 \(C = M^e \pmod{N}\)

- **Decrypt** \(C\)
 \(M = C^d \pmod{N}\)

- **Digital signature**
 - Sign \(h(M)\)

- **In protocols, sign “challenge”:**
 \(S = M^d \pmod{N}\)
Implementation Attacks

- Attacks on RSA implementation
 - Not attacks on RSA algorithm per se
- Timing attacks
 - Exponentiation is very expensive computation
 - Try to exploit differences in timing related to differences in private key bits
- Glitching (fault induction) attack
 - Induced errors may reveal private key
Modular Exponentiation

- Attacks we discuss arise from precise details of modular exponentiation.
- For efficiency, modular exponentiation uses some combination of:
 - Repeated squaring
 - Sliding window
 - Chinese Remainder Theorem (CRT)
 - Montgomery multiplication
 - Karatsuba multiplication
- Next, we briefly discuss each of these.
Repeated Squaring

- Modular exponentiation example
 - $5^{20} = 95367431640625 = 25 \pmod{35}$

- A better way: repeated squaring
 - $20 = 10100 \text{ base } 2$
 - $(1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)$
 - Note that $2 = 1 \cdot 2$, $5 = 2 \cdot 2 + 1$, $10 = 2 \cdot 5$, $20 = 2 \cdot 10$
 - $5^1 = 5 \pmod{35}$
 - $5^2 = (5^1)^2 = 5^2 = 25 \pmod{35}$
 - $5^5 = (5^2)^2 \cdot 5^1 = 25^2 \cdot 5 = 3125 = 10 \pmod{35}$
 - $5^{10} = (5^5)^2 = 10^2 = 100 = 30 \pmod{35}$
 - $5^{20} = (5^{10})^2 = 30^2 = 900 = 25 \pmod{35}$

- No huge numbers and it is efficient
 - In this example, 5 steps vs 20 for naïve method
Repeated Squaring

- **Repeated Squaring algorithm**

 // Compute $y = x^d \pmod{N}$
 // where, in binary, $d = (d_0, d_1, d_2, \ldots, d_n)$ with $d_0 = 1$

 $s = x$

 for $i = 1$ to n

 $s = s^2 \pmod{N}$

 if $d_i == 1$ then

 $s = s \cdot x \pmod{N}$

 end if

 next i

 return s
Sliding Window

- A simple time memory tradeoff for repeated squaring
- Instead of processing each bit...
- ...process block of n bits at once
 - Use pre-computed lookup tables
 - Typical value is n = 5
Chinese Remainder Theorem

- Chinese Remainder Theorem (CRT)
- We want to compute
 \[C^d \pmod{N} \text{ where } N = pq \]
- With CRT, we compute \(C^d \) modulo \(p \) and modulo \(q \), then “glue” them together
- Two modular reductions of size \(N^{1/2} \)
 - As opposed to one reduction of size \(N \)
- CRT provides significant speedup
CRT Algorithm

- We know C, d, N, p and q
- Want to compute
 \[C^d \pmod{N} \text{ where } N = pq \]
- Pre-compute
 \[d_p = d \pmod{(p - 1)} \text{ and } d_q = d \pmod{(q - 1)} \]
- And determine a and b such that
 \[a = 1 \pmod{p} \text{ and } a = 0 \pmod{q} \]
 \[b = 0 \pmod{p} \text{ and } b = 1 \pmod{q} \]
CRT Algorithm

- We have d_p, d_q, a and b satisfying

 $d_p = d \pmod{(p - 1)}$ and $d_q = d \pmod{(q - 1)}$

 $a = 1 \pmod{p}$ and $a = 0 \pmod{q}$

 $b = 0 \pmod{p}$ and $b = 1 \pmod{q}$

- Given C, want to find $C^d \pmod{N}$

- Compute: $C_p = C \pmod{p}$ and $C_q = C \pmod{q}$

- And: $x_p = C_p^{d_p} \pmod{p}$ and $x_q = C_q^{d_q} \pmod{q}$.

- Solution is: $C^d \pmod{N} = (ax_p + bx_q) \pmod{N}$.
CRT Example

- Suppose \(N = 33, p = 11, q = 3 \) and \(d = 7 \)
 - Then \(e = 3 \), but not needed here
- Pre-compute
 \[
 d_p = 7 \pmod{10} = 7 \quad \text{and} \quad d_q = 7 \pmod{2} = 1
 \]
- Also, \(a = 12 \) and \(b = 22 \) satisfy conditions
- Suppose we are given \(C = 5 \)
 - That is, we want to compute \(C^d = 5^7 \pmod{33} \)
 - Find \(C_p = 5 \pmod{11} = 5 \) and \(C_q = 5 \pmod{3} = 2 \)
 - And \(x_p = 5^7 = 3 \pmod{11}, x_q = 2^1 = 2 \pmod{3} \)
- Easy to verify: \(5^7 = 12 \cdot 3 + 22 \cdot 2 = 14 \pmod{33} \)
CRT: The Bottom Line

- Looks like a lot of work
- But it is actually a big “win”
 - Provides a speedup by a factor of 4
- Any disadvantage?
 - Factors p and q of N must be known
 - Violates “trap door” property?
 - Used only for private key operations
Montgomery Multiplication

- Very clever method to reduce work in modular multiplication
 - And therefore in modular exponentiation
- Consider computing $a^b \pmod{N}$
- Expensive part is modular reduction
- Naïve approach requires division
- In some cases, no division needed...
Montgomery Multiplication

- Consider product $ab = c \pmod{N}$
 - Where modulus is of form $N = m^k - 1$
- Then there exist c_0 and c_1 such that
 $$c = c_1 m^k + c_0$$
- Can rewrite this as
 $$c = c_1(m^k - 1) + (c_1 + c_0) = c_1 + c_0 \pmod{N}$$
- In this case, if we can find c_1 and c_0, then no division is required in modular reduction
Montgomery Multiplication

- For example, consider $3089 \pmod{99}$

 $3089 = 30 \cdot 100 + 89$

 $= 30(100 - 1) + (30 + 89)$

 $= 30 \cdot 99 + (30 + 89)$

 $= 119 \pmod{99}$

- Only one subtraction required to compute $3089 \pmod{99}$

- In this case, no division needed
Montgomery Multiplication

- Montgomery analogous to previous example
 - But Montgomery works for any modulus N
 - Big speedup for modular exponentiation
- Idea is to convert to “Montgomery form”,
do multiplications, then convert back
 - Montgomery multiplication is highly efficient way
to do multiplication and modular reduction
 - In spite of conversions to and from Montgomery form, this is a BIG win for exponentiation
Montgomery Form

- Consider \(ab \pmod{N} \)
- Choose \(R = 2^k \) with \(R > N \) and \(\gcd(R,N) = 1 \)
- Also, find \(R' \) and \(N' \) so that \(RR' - NN' = 1 \)
- Instead of \(a \) and \(b \), we work with
 \[
 a' = aR \pmod{N} \quad \text{and} \quad b' = bR \pmod{N}
 \]
- The numbers \(a' \) and \(b' \) are said to be in **Montgomery form**
Montgomery Multiplication

- **Given**
 \[a' = aR \pmod{N}, \ b' = bR \pmod{N} \text{ and } RR' - NN' = 1 \]

- **Compute**
 \[a'b' = (aR \pmod{N})(bR \pmod{N}) = abR^2 \]

- Then, \(abR^2 \) denotes the product \(a'b' \) without any additional \(\text{mod } N \) reduction

- **Note** that \(abR^2 \) need not be divisible by \(R \) due to the \(\text{mod } N \) reductions
Montgomery Multiplication

- **Given**
 \[a' = aR \pmod{N}, b' = bR \pmod{N} \text{ and } RR' = NN' = 1 \]
- **Then** \[a'b' = (aR \pmod{N})(bR \pmod{N}) = abR^2 \]
- **Want** \[a'b' \text{ to be in Montgomery form} \]
 - That is, want \[abR \pmod{N} \], not \[abR^2 \]
 - Note that \[RR' = 1 \pmod{N} \]
- **Looks easy, since** \[abR^2R' = abR \pmod{N} \]
- **But, want to avoid costly mod N operation**
 - Montgomery algorithm provides clever solution
Montgomery Multiplication

- Given \(abR^2, RR' - NN' = 1 \) and \(R = 2^k \)
- Want to find \(abR \pmod{N} \)
 - Without costly \(\mod{N} \) operation (division)
- Note: “\(\mod{R} \)” and division by \(R \) are easy
 - Since \(R \) is a power of 2
- Let \(X = abR^2 \)
- Montgomery algorithm on next slide
Montgomery Reduction

- Have $X = abR^2$, $RR' - NN' = 1$, $R = 2^k$
- Want to find $abR \pmod{N}$
- **Montgomery reduction**

 $$m = (X \pmod{R}) \cdot N' \pmod{R}$$
 $$x = (X + mN)/R$$

 if $x \geq N$ then
 $$x = x - N \ // \text{extra reduction}$$

 end if

 return x
Montgomery Reduction

- Why does Montgomery reduction work?
 - Recall that input is $X = abR^2$
 - Claim: output is $x = abR \pmod{N}$

- Must carefully examine main steps of **Montgomery reduction** algorithm:

 $m = (X \pmod{R}) \cdot N' \pmod{R}$

 $x = (X + mN)/R$
Montgomery Reduction

- Given $X = abR^2$ and $RR' - NN' = 1$
 - Note that $N'N = -1 \pmod{R}$
- Consider $m = (X \pmod{R}) \cdot N' \pmod{R}$
 - In words: m is product of N' and remainder of X/R
- Therefore, $X + mN = X - (X \pmod{R})$
 - Implies $X + mN$ divisible by R
 - Since $R = 2^k$, division is simply a shift
- Consequently, it is trivial to compute $x = (X + mN)/R$
Montgomery Reduction

- Given $X = abR^2$ and $RR' - NN' = 1$
 - Note that $R'R = 1 \pmod{N}$
- Consider $x = (X + mN)/R$
- Then $xR = X + mN = X \pmod{N}$
- And $xRR' = XR' \pmod{N}$
- Therefore

 $x = xRR' = XR' = abR^2R' = abR \pmod{N}$
Montgomery Example

- Suppose $N = 79$, $a = 61$ and $b = 5$
- Use Montgomery to compute $ab \pmod{N}$
- Choose $R = 10^2 = 100$
 - For human readability, R is a power of 10
 - For computer, choose R to be a power of 2
- Then
 - $a' = 61 \cdot 100 = 17 \pmod{79}$
 - $b' = 5 \cdot 100 = 26 \pmod{79}$
Montgomery Example

- Consider $ab = 61 \cdot 5 \pmod{79}$
 - Recall that $R = 100$
 - So $a' = aR = 17 \pmod{79}$ and $b' = bR = 26 \pmod{79}$
- Euclidean Algorithm gives
 $$64 \cdot 100 - 81 \cdot 79 = 1$$
- Then $R' = 64$ and $N' = 81$
- Monty reduction to determine $abR \pmod{79}$
- First, $X = a'b' = 17 \cdot 26 = 442 = abR^2$
Montgomery Example

- **Given** \(X = a'b' = abR^2 = 442 \)
- Also have \(R' = 64 \) and \(N' = 81 \)
- **Want to determine** \(abR \pmod{79} \)
- **By Montgomery reduction algorithm**

 \[
 m = (X \pmod{R}) \cdot N' \pmod{R} \\
 = 42 \cdot 81 = 3402 = 2 \pmod{100}

 x = (X + mN)/R \\
 = (442 + 2 \cdot 79)/100 = 600/100 = 6

 Verify: \(abR = 61 \cdot 5 \cdot 100 = 6 \pmod{79} \)
Montgomery Example

- Have abR = 6 (mod 79)
- But this number is in Montgomery form
- Convert to non-Montgomery form
 - Recall R′R = 1 (mod N)
 - So abR′ = ab (mod N)
- For this example, R′ = 64 and N = 79
- Find ab = abR′ = 6 · 64 = 68 (mod 79)
- Easy to verify ab = 61 · 5 = 68 (mod 79)
Montgomery: Bottom Line

- Easier to compute $ab \pmod{N}$ directly, without using Montgomery algorithm!
- However, for exponentiation, Montgomery is much more efficient
 - For example, to compute $M^d \pmod{N}$
 - Convert M to Montgomery form
 - Do repeated (cheap) Montgomery multiplications
 - Convert final result to non-Montgomery form
Karatsuba Multiplication

- Most efficient way to multiply two numbers of about same magnitude
 - Assuming “+” is much cheaper than “∗”
- For n-bit number
 - Karatsuba work factor: $n^{1.585}$
 - Ordinary “long” multiplication: n^2
- Based on a simple observation...
Karatsuba Multiplication

- Consider the product
 \[(a_0 + a_1 \cdot 10)(b_0 + b_1 \cdot 10)\]

- Naïve approach requires 4 multiplies to determine coefficients:
 \[a_0b_0 + (a_1b_0 + a_0b_1)10 + a_1b_1 \cdot 10^2\]

- Same result with just 3 multiplies:
 \[a_0b_0 + [(a_0 + a_1)(b_0 + b_1) - a_0b_0 - a_1b_1]10 + a_1b_1 \cdot 10^2\]
Karatsuba Multiplication

- Does Karatsuba work for bigger numbers?
- For example
 \[c_0 + c_1 \cdot 10 + c_2 \cdot 10^2 + c_3 \cdot 10^3 = C_0 + C_1 \cdot 10^2 \]
- Where
 \[C_0 = c_0 + c_1 \cdot 10 \text{ and } C_1 = c_2 + c_3 \cdot 10 \]
- Can apply Karatsuba recursively to find product of numbers of any magnitude
Timing Attacks

- We discuss 3 different attacks

- Kocher’s attack
 - Systems that use repeated squaring but not CRT or Montgomery (e.g., smart cards)

- Schindler’s attack
 - Repeated squaring, CRT and Montgomery (no real systems use this combination)

- Brumley-Boneh attack
 - CRT, Montgomery, sliding windows, Karatsuba (e.g., openSSL)
Kocher’s Attack

- Attack on repeated squaring
 - Does not work if CRT or Montgomery used
 - In most applications, CRT and Montgomery multiplication are used
 - Some resource-constrained devices only use repeated squaring

- This attack aimed at smartcards
Repeated Squaring

Repeated Squaring algorithm

// Compute $y = x^d \pmod{N}$
// where, in binary, $d = (d_0,d_1,d_2,\ldots,d_n)$ with $d_0 = 1$

$s = x$
for $i = 1$ to n
 $s = s^2 \pmod{N}$
 if $d_i = 1$ then
 $s = s \cdot x \pmod{N}$
 end if
next i
return s
Kocher’s Attack: Assumptions

- Repeated squaring algorithm is used
- Timing of multiplication $s \cdot x \pmod{N}$ in algorithm varies depending on s and x
 - That is, multiplication is not constant-time
- Trudy can accurately emulate timings given putative s and x
- Trudy can obtain accurate timings of private key operation, $C^d \pmod{N}$
Kocher’s Attack

- Recover private key bits one (or a few) at a time
 - Private key: \(d = d_0, d_1, \ldots, d_n \) with \(d_0 = 1 \)
 - Recover bits in order, \(d_1, d_2, d_3, \ldots \)

- Do not need to recover all bits
 - Can efficiently recover low-order bits when enough high-order bits are known
 - Coppersmith’s algorithm
Kocher’s Attack

- Suppose bits $d_0, d_1, \ldots, d_{k-1}$, are known
- We want to determine bit d_k
- Randomly select C_j for $j = 0, 1, \ldots, m-1$, obtain timings $T(C_j)$ for $C_j^d \pmod N$
- For each C_j emulate steps $i = 1, 2, \ldots, k-1$ of repeated squaring
- At step k, emulate $d_k = 0$ and $d_k = 1$
- **Variance** of timing difference will be smaller for correct choice of d_k
Kocher’s Attack

- For example
 - Suppose private key is 8 bits
 - That is, $d = (d_0, d_1, \ldots, d_7)$ with $d_0 = 1$
- Trudy is sure that $d_0 d_1 d_2 d_3 \in \{1010, 1001\}$
- Trudy generates random C_j, for each...
 - She obtains the timing $T(C_j)$ and
 - Emulates $d_0 d_1 d_2 d_3 = 1010$ and $d_0 d_1 d_2 d_3 = 1001$
- Let τ_i be emulated timing for bit i
 - Depends on bit value that is emulated
Kocher’s Attack

- Private key is 8 bits
- Trudy is sure that $d_0d_1d_2d_3 \in \{1010, 1001\}$
- Trudy generates random C_j, for each...
- Define τ_i to be emulated timing for bit i
 - For $i < m$ let $\tau_i...m$ be shorthand for $\tau_i + \tau_{i+1} + \ldots + \tau_m$
- Trudy tabulates $T(C_j)$ and $\tau_0...3$
- She computes variances
 - Smaller variance “wins”
- See next slide for fictitious example...
Kocher’s Attack

- Suppose Trudy obtains timings

<table>
<thead>
<tr>
<th>j</th>
<th>$T(C_j)$</th>
<th>emulate 1010</th>
<th>emulate 1001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{t}_{0...3}$</td>
<td>$T(C_j) - \bar{t}_{0...3}$</td>
<td>$\bar{t}_{0...3}$</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

- For $d_0d_1d_2d_3 = 1010$ Trudy finds
 \[E(T(C_j) - \tau_{0...3}) = 6 \text{ and } \text{var}(T(C_j) - \tau_{0...3}) = 1/2 \]

- For $d_0d_1d_2d_3 = 1001$ Trudy finds
 \[E(T(C_j) - \tau_{0...3}) = 6 \text{ and } \text{var}(T(C_j) - \tau_{0...3}) = 1 \]

- Kocher’s attack implies $d_0d_1d_2d_3 = 1010$
Kocher’s Attack

- Why does small variance win?
 - More bits are correct, so less variance

- More precisely, define
 \(\tau_i \) == emulated timing for bit \(i \)
 \(t_i \) == actual timing for bit \(i \)
 - Assume \(\text{var}(t_i) = \text{var}(t) \) for all \(i \)
 - \(u \) == measurement “error”

- In the previous example,
 - Correct case: \(\text{var}(T(C_j) - \tau_{0...3}) = 4\text{var}(t) + \text{var}(u) \)
 - Incorrect case: \(\text{var}(T(C_j) - \tau_{0...3}) = 6\text{var}(t) + \text{var}(u) \)
Kocher’s Attack: Bottom Line

- Simple and elegant attack
 - Works provided only repeated squaring used
 - Limited utility—most RSA use CRT, Monty, etc.
- Why does this fail if CRT, etc., used?
- Timing variations due to CRT, Montgomery, etc., included in error term u
- Then $\text{var}(u)$ would overwhelm variance due to repeated squaring
 - We see precisely why this is so later...
Schindler’s Attack

- Assume repeated squaring, Montgomery algorithm and CRT are all used
- Not aimed at any real system
 - Optimized systems also use Karatsuba for numbers of same magnitude and “long” multiplication for other numbers
 - Schindler’s attack will not work in such cases
- But this attack is an important stepping stone to next attack (Brumley-Boneh)
Schindler’s Attack

- Montgomery algorithm

```plaintext
// Find Montgomery product a'b'
// where a' = aR (mod N) and b' = bR (mod N)
// Given RR' - NN' = 1
Montgomery(a', b')
    z = a'b'
    r = (z (mod R))N' (mod R)
    s = (z + rN)/R (mod N)
    if s ≥ N then
        s = s - N // EXTRACT SIGN
    end if
    return(s)
end Montgomery
```
Schindler’s Attack

- Repeated squaring with Montgomery

```plaintext
// Find \( y = x^d \pmod{N} \)
// where \( d = (d_0, d_1, d_2, \ldots, d_{n-1}) \) with \( d_0 = 1 \)
\( t' = xR \pmod{N} \) // Montgomery form
\( s' = t' \)
for \( i = 1 \) to \( n - 1 \)
  \( s' = \text{Montgomery}(s', s') \)
  if \( d_i == 1 \) then
    \( s' = \text{Montgomery}(s', t') \)
  end if
next \( i \)
\( t = s'R' \pmod{N} \) // convert to non-Montgomery form
return(\( t \))
```
Schindler’s Attack

- CRT is also used
 - For each mod N reduction, where $N = pq$
 - Compute mod p and mod q reductions
 - Use repeated squaring algorithm on previous slide for both

- Trudy chooses ciphertexts C_j
 - Obtains accurate timings of $C_j^d \pmod N$
 - Goal is to recover d
Schindler’s Attack

- Takes advantage of “extra reduction”
- Suppose $a' = aR \pmod{N}$ and B random
 - That is, B is uniform in $\{0, 1, 2, \ldots, N-1\}$
- Schindler determined that

\[
P(\text{extra reduction in Montgomery}(a', B)) = \frac{a'}{2R}.
\]
\[
P(\text{extra reduction in Montgomery}(B, B)) = \frac{N}{3R}.
\]
Schindler’s Attack

- Repeated squaring aka *square and multiply*
 - Square: \(s' = \text{Montgomery}(s', s') \)
 - Multiply: \(s' = \text{Montgomery}(s', t') \)

- Probability of extra reduction in “multiply”:
 \[
P(\text{extra reduction in Montgomery}(a', B)) = \frac{a'}{2R}.
\]

- Probability of extra reduction in “square”:
 \[
P(\text{extra reduction in Montgomery}(B, B)) = \frac{N}{3R}.
\]
Schindler's Attack

- Consider $a^d \pmod{N}$ using CRT
- First step is $a^{d_p} \pmod{p}$
- Where $d_p = d \pmod{(p - 1)}$
- Suppose in this computation there are k_0 multiples and k_1 squares
- Expected number of extra reductions:

 $$k_0 \frac{a' \pmod{p}}{2R} + k_1 \frac{p}{3R}.$$
Schindler’s Attack

- Expected extra reductions:
 \[k_0 \frac{a' \pmod p}{2R} + k_1 \frac{p}{3R}. \]

- Discontinuity at every integer multiple of \(p \)
Schindler’s Attack

- How to take advantage of this?
- If chosen ciphertext C_0 is close to C_1
 - By continuity, timing $T(C_0)$ close to $T(C_1)$
- However, if $C_0 < kp < C_1$, then
 \[|T(C_0) - T(C_1)| \]
 is “large” due to discontinuity
- Note: total number of extra reductions include those for factors p and q
 - Discontinuities at all multiples of p and $q
Schindler’s Attack: Algorithm

- Select initial value x and offset Δ
- Let $C_i = x + i\Delta$ for $i = 0, 1, 2, \ldots$
- Compute $t_i = T(C_{i+1}) - T(C_i)$ for $i = 0, 1, 2, \ldots$
- Eventually, “bracket” a multiple of p
 - That is, $C_i < kp < C_{i+1}$
 - Detect this since t_i is large
- Then compute $\gcd(n, N)$ for all $C_i \leq n \leq C_{i+1}$
 - $\gcd(kp, N) = p$ and $\gcd(n, N) = 1$ otherwise
Schindler’s: Bottom Line

- Clever attack if repeated squaring, Montgomery multiplication and CRT used
 - Crucial insight: extra reductions in Montgomery algorithm create timing issue

- However, attack not applicable to any real-world implementation
 - Optimized implementations also use Karatsuba
 - Karatsuba tends to counteract timing difference caused by extra reduction
Brumley-Boneh Attack

- CRT, Montgomery multiplication, sliding windows and Karatsuba
- Optimized RSA uses all of these
- Brumley-Boneh attack is robust
 - Works against OpenSSL over a network
 - Network timing variations are large
- The ultimate timing attack (to date)
Brumley-Boneh Attack

- Designed to attack RSA in OpenSSL
 - Highly optimized implementation
 - CRT, repeated squaring, Monty multiply, sliding window (5 bits)
 - Karatsuba multiply for numbers of same magnitude; long multiplication otherwise

- Kocher’s attack fails due to CRT
- Schindler’s attack fails due to Karatsuba
- Brumley-Boneh extends Schindler’s attack
Brumley-Boneh Attack

- RSA in OpenSSL has two timing issues
 - Montgomery extra reductions
 - Karatsuba versus long multiplication
- These 2 tend to counteract each other
 - More extra reductions (slower) occur when Karatsuba multiply (faster) is used
 - Fewer extra reductions (faster) occur when long multiply (slower) is used
Brumley-Boneh Attack

- Consider C', the Montgomery form of C
- Suppose C' is close to p with $C' > p$
 - Number of extra Montgomery reductions is small
 - Since $C' \pmod{p}$ is small, long multiply is used
- Suppose C' is close to p with $C' < p$
 - Number of extra Montgomery reductions is large
 - Since $C' \pmod{p}$ also close to p, Karatsuba multiply
- What to do?
Brumley-Boneh Attack

- Two timing effects: Montgomery extra reductions and Karatsuba effect
 - Each dominates at different points in attack
- Implies Schindler’s could not recover bits where Karatsuba effect dominates
- Brumley-Boneh recovers factor p of modulus $N = pq$ one bit at a time
 - In this sense, analogous to Kocher’s attack, but unlike Schindler’s attack
Brumley-Boneh Attack: Step 1

- Denote bits of p as $p = (p_0, p_1, p_2, \ldots, p_n)$
 - Where $p_0 = 1$
- Suppose $p_1, p_2, \ldots, p_{i-1}$ have been determined
- Choose $C_0 = (p_0, p_1, \ldots, p_{i-1}, 0, 0, \ldots, 0)$
- Choose $C_1 = (p_0, p_1, \ldots, p_{i-1}, 1, 0, \ldots, 0)$
- Note
 - If p_i is 1, then $C_0 < C_1 \leq p$
 - If p_i is 0, then $C_0 \leq p < C_1$
Brumley-Boneh Attack: Step 2

- Obtain decryption times $T(C_0)$ and $T(C_1)$
- Let $\Delta = \left| T(C_0) - T(C_1) \right|
- If $C_0 < p < C_1$ then Δ is large $\Rightarrow p_i = 0$
- If $C_0 < C_1 < p$ then Δ is small $\Rightarrow p_i = 1$
 - Previous Δ used to set large/small thresholds
- Works provided that extra reduction or Karatsuba dominates at each step
 - See next slide...
Brumley-Boneh Attack: Step 2

- If $p_i = 1$ then $C_0 < C_1 < p$
 - Extra reductions are about the same
 - Karatsuba multiply used since mod p magnitudes are same
 - Expect Δ to be “small”

- If $p_i = 0$ then $C_0 < p < C_1$
 - If extra reduction dominate, $T(C_0) - T(C_1) > 0$
 - If Karatsuba vs long dominates, $T(C_0) - T(C_1) < 0$
 - In either case, expect Δ to be “large”
Brumley-Boneh Attack: Step 3

- Repeat steps 1 and 2
- Recover bits $p_{i+1}, p_{i+2}, p_{i+3}, \ldots$
- When half of bits of p recovered, use Coppersmiths algorithm to factor N
- Then exponent d easily recovered
Brumley-Boneh Attack: Real-World Issues

- In OpenSSL, sliding windows used
 - Greatly reduces number of multiplies
 - Statistical methods must be used—repeated measurements, test nearby values, etc.

- OpenSSL attack over a network
 - Statistical methods needed
 - Attack is surprisingly robust

- Over realistic network, 1024-bit modulus factored with 1.4M chosen ciphertexts
Brumley-Boneh: Bottom Line

- A major cryptanalytic achievement
- Surprising that it is robust enough to overcome network variations
- Resulted in changes to OpenSSL
 - And other RSA implementations
- Brumley-Boneh is a realistic threat!
Preventing Timing Attack

- Several methods have been suggested
- Best solution is **RSA Blinding**
- To decrypt C generate random r then
 \[Y = r^eC \pmod{N} \]
- Decrypt Y then multiply by $r^{-1} \pmod{N}$:
 \[r^{-1}Y^d = r^{-1}(r^eC)^d = r^{-1}rC^d = C^d \pmod{N} \]
- Since r is random, Trudy cannot obtain timing info from choice of C
 - Slight performance penalty
Glitching Attack

- Induced error reveals private key
- CRT leads to simple glitching attack
- A single glitch may allow Trudy to factor the modulus!
- A realistic threat to smartcards
 - And other systems where attacker has physical access (e.g., trusted computing)
Consider CRT for signing M

- Let $M_p = M \pmod{p}$ and $M_q = M \pmod{q}$
- Let $x_p = M_p^{d_p} \pmod{p}$ and $x_q = M_q^{d_q} \pmod{q}$
 $d_p = d \pmod{(p-1)}$ and $d_q = d \pmod{(q-1)}$

Sign: $S = M^d \pmod{N} = ax_p + bx_q \pmod{N}$
 $a = 1 \pmod{p}$ and $a = 0 \pmod{q}$
 $b = 0 \pmod{p}$ and $b = 1 \pmod{q}$
Glitching Attack

- Trudy forces a single error to occur
- Suppose x'_q computed in place of x_q
 - But x_p computed correctly
 - That is, error in M_q or x_q computation
- “Signature” is $S' = ax_p + bx'_q \pmod N$
- Trudy knows error has occurred since $(S')^e \pmod N \neq M$
Glitching Attack

- Trudy has forced an error
- Trudy has $S' = ax_p + bx'_q \pmod{N}$
 - $a = 1 \pmod{p}$ and $a = 0 \pmod{q}$
 - $b = 0 \pmod{p}$ and $b = 1 \pmod{q}$
- Then $S' \pmod{p} = x_p = (M \pmod{p})^d \pmod{(p-1)}$
 - Follows from definitions of x_p and a
Glitching Attack

- Trudy has forced an error, so that $S' \pmod{p} = x_p = (M \pmod{p})^d \pmod{(p-1)}$
- It can be shown $(S')^e = M \pmod{p}$
 - That is, $(S')^e - M = kp$ for some k
- Also, $(S')^e \neq M \pmod{q}$
 - Then $(S')^e - M$ not a multiple of the factor q
- Therefore, $\gcd(N, (S')^e - M)$ reveals nontrivial factor of N, namely, p
Glitching: Bottom Line

- Single glitch can break some systems
- A realistic threat
- Even if probability of error is small, advantage lies with attacker
- Glitches can also break some RSA implementations where CRT not used
Conclusions

- Timing attacks are real!
 - Serious issue for public key (symmetric key?)
- Glitching attacks also serious in some cases
- These attacks not traditional cryptanalysis
 - Here, Trudy does not play by the rules
- Crypto security—more than strong algorithms
 - Also need “strong” implementations
 - Good guys must think outside the box
 - Attackers will exploit any weak link