MD4
MD4

- **Message Digest 4**
 - Invented by Rivest, ca 1990
 - Weaknesses found by 1992
 - Rivest proposed improved version (MD5), 1992
 - Dobbertin found 1st MD4 collision in 1998
 - Clever and efficient attack
 - Nonlinear equation solving and differential
MD4 Algorithm

- Assumes 32-bit words
- Little-endian convention
 - Leftmost byte is low-order (relevant when generating “meaningful” collisions)
- Let M be message to hash
- Pad M so length is 448 (mod 512)
 - Single “1” bit followed by “0” bits
 - At least one bit of padding, at most 512
 - Length before padding (64 bits) is appended
MD4 Algorithm

- After padding message is a multiple of the 512-bit **block** size
 - Also a multiple of 32 bit word size
- Let N be number of 32-bit words
 - Then N is a multiple of 16
- Message \(M = (Y_0, Y_1, \ldots, Y_{N-1}) \)
 - Each \(Y_i \) is a 32-bit word
MD4 Algorithm

- For 32-bit words A,B,C, define
 \[F(A,B,C) = (A \land B) \lor (\neg A \land C) \]
 \[G(A,B,C) = (A \land B) \lor (A \land C) \lor (B \land C) \]
 \[H(A,B,C) = A \oplus B \oplus C \]

 where \land, \lor, \neg, \oplus\ are AND, OR, NOT, XOR

- Define constants: \(K_0 = 0x00000000, \)
 \(K_1 = 0x5a827999, K_2 = 0x6ed9eba1 \)

- Let \(W_i, i = 0,1,\ldots47 \) be (permuted) inputs, \(Y_j \)
MD4 Algorithm

// M = (Y_0, Y_1, ..., Y_{N-1}), message to hash, after padding
// Each Y_i is a 32-bit word and N is a multiple of 16
MD4(M)
 // initialize (A, B, C, D) = IV
 (A, B, C, D) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)
 for i = 0 to N/16 - 1
 // Copy block i into X
 X_j = Y_{16i+j}, for j = 0 to 15
 // Copy X to W
 W_j = X_{\sigma(j)}, for j = 0 to 47
 // initialize Q
 (Q_{-4}, Q_{-3}, Q_{-2}, Q_{-1}) = (A, D, C, B)
 // Rounds 0, 1 and 2
 Round0(Q, X)
 Round1(Q, X)
 Round2(Q, X)
 // Each addition is modulo 2^{32}
 (A, B, C, D) = (Q_{44} + Q_{-4}, Q_{47} + Q_{-1}, Q_{46} + Q_{-2}, Q_{45} + Q_{-3})
 next i
 return A, B, C, D
end MD4
MD4 Algorithm

Round0(Q, W)
// steps 0 through 15
for i = 0 to 15
 \(Q_i = (Q_{i-4} + F(Q_{i-1}, Q_{i-2}, Q_{i-3}) + W_i + K_0) \ll s_i \)
next i
end Round0

- Round 0: Steps 0 thru 15, uses F function
- Round 1: Steps 16 thru 31, uses G function
- Round 2: Steps 32 thru 47, uses H function
Where \(f_i(A, B, C) = \begin{cases}
F(A, B, C) + K_0 & \text{if } 0 \leq i \leq 15 \\
G(A, B, C) + K_1 & \text{if } 16 \leq i \leq 31 \\
H(A, B, C) + K_2 & \text{if } 32 \leq i \leq 47
\end{cases} \)
Notation

- Let $MD4_{i...j}(A,B,C,D,M)$ be steps i thru j
 - “Initial value” (A,B,C,D) at step i, message M
- Note that $MD4_{0...47}(IV,M) \neq h(M)$
 - Due to padding and final transformation
- Let $f(IV,M) = (Q_{44}, Q_{47}, Q_{46}, Q_{45}) + IV$
 - Where “+” is addition mod 2^{32}, per 32-bit word
- Then f is the MD4 compression function
MD4 Attack: Outline

- Dobbertin’s attack strategy
 - Specify a differential condition
 - If condition holds, probability of collision
 - Derive system of nonlinear equations: solution satisfies differential condition
 - Find efficient method to solve equations
 - Find enough solutions to yield a collision
MD4 Attack: Motivation

- Find one-block collision, where
 \[M = (X_0, X_1, \ldots, X_{15}), \quad M' = (X'_0, X'_1, \ldots, X'_{15}) \]
- Difference is subtraction mod \(2^{32}\)
- Blocks differ in only 1 word
 - Difference in that word is exactly 1
- Limits avalanche effect to steps 12 thru 19
 - Only 8 of the 48 steps are critical to attack!
 - System of equations applies to these 8 steps
More Notation

- Spse \((Q_j, Q_{j-1}, Q_{j-2}, Q_{j-3}) = MD4_{0...j}(IV,M)\)
 and \((Q'_j, Q'_{j-1}, Q'_{j-2}, Q'_{j-3}) = MD4_{0...j}(IV,M')\)

- Define
 \[\Delta_j = (Q_j - Q'_j, Q_{j-1} - Q'_{j-1}, Q_{j-2} - Q'_{j-2}, Q_{j-3} - Q'_{j-3})\]
 where subtraction is modulo \(2^{32}\)

- Let \(\pm 2^n\) denote \(\pm 2^n \mod 2^{32}\), for example,
 \[2^{25} = 0x02000000 \text{ and } -2^5 = 0xfffffffe0\]
MD4 Attack

- All arithmetic is modulo 2^{32}
- Denote $M = (X_0, X_1, ..., X_{15})$
- Define M' by $X'_i = X_i$ for $i \neq 12$ and $X'_{12} = X_{12} + 1$
- Word X_{12} last appears in step 35
- So, if $\Delta_{35} = (0,0,0,0)$ we have a collision
- Goal is to find pair M and M' with $\Delta_{35} = 0$
MD4 Attack

- Analyze attack in three phases
 1. Show: $\Delta_{19} = (2^{25}, -2^5, 0, 0)$ implies probability at least $1/2^{30}$ that the Δ_{35} condition holds
 - Uses differential cryptanalysis
 2. “Backup” to step 12: We can start at step 12 and have Δ_{19} condition hold
 - By solving system of nonlinear equations
 3. “Backup” to step 0: And find collision
MD4 Attack

- In each phase of attack, some words of M are determined
- When completed, have M and M’
 - Where M ≠ M’ but h(M) = h(M’)
- Equation solving step is tricky part
 - Nonlinear system of equations
 - Must be able to solve efficiently
Steps 19 to 35

- Differential phase of the attack
- Suppose \(M \) and \(M' \) as given above
 - Only differ in word 12
- Assume that \(\Delta_{19} = (2^{25}, -2^5, 0, 0) \)
 - And \(G(Q_{19}, Q_{18}, Q_{17}) = G(Q'_{19}, Q'_{18}, Q'_{17}) \)
- Then we compute probabilities of “\(\Delta \)” conditions at steps 19 thru 35
Steps 19 to 35

<table>
<thead>
<tr>
<th>j</th>
<th>ΔQ_j</th>
<th>ΔQ_{j-1}</th>
<th>ΔQ_{j-2}</th>
<th>ΔQ_{j-3}</th>
<th>i</th>
<th>s_j</th>
<th>p</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>2^{25}</td>
<td>-2^{25}</td>
<td>0</td>
<td>0</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>2^{25}</td>
<td>-2^{25}</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>X_1</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0</td>
<td>2^{25}</td>
<td>-2^{5}</td>
<td>1</td>
<td>5</td>
<td>1/9</td>
<td>X_5</td>
</tr>
<tr>
<td>22</td>
<td>-2^{14}</td>
<td>0</td>
<td>0</td>
<td>2^{25}</td>
<td>1</td>
<td>9</td>
<td>1/3</td>
<td>X_9</td>
</tr>
<tr>
<td>23</td>
<td>2^{6}</td>
<td>-2^{14}</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>1/3</td>
<td>X_{13}</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>2^{6}</td>
<td>-2^{14}</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1/9</td>
<td>X_2</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0</td>
<td>2^{6}</td>
<td>-2^{14}</td>
<td>1</td>
<td>5</td>
<td>1/9</td>
<td>X_6</td>
</tr>
<tr>
<td>26</td>
<td>-2^{23}</td>
<td>0</td>
<td>0</td>
<td>2^{6}</td>
<td>1</td>
<td>9</td>
<td>1/3</td>
<td>X_{10}</td>
</tr>
<tr>
<td>27</td>
<td>2^{19}</td>
<td>-2^{23}</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>1/3</td>
<td>X_{14}</td>
</tr>
<tr>
<td>28</td>
<td>0</td>
<td>2^{19}</td>
<td>-2^{23}</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1/9</td>
<td>X_3</td>
</tr>
<tr>
<td>29</td>
<td>0</td>
<td>0</td>
<td>2^{19}</td>
<td>-2^{23}</td>
<td>1</td>
<td>5</td>
<td>1/9</td>
<td>X_7</td>
</tr>
<tr>
<td>30</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>2^{19}</td>
<td>1</td>
<td>9</td>
<td>1/3</td>
<td>X_{11}</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>1/3</td>
<td>X_{15}</td>
</tr>
<tr>
<td>32</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1/3</td>
<td>X_9</td>
</tr>
<tr>
<td>33</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>9</td>
<td>1/3</td>
<td>X_8</td>
</tr>
<tr>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>1/3</td>
<td>X_4</td>
</tr>
<tr>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>15</td>
<td>1</td>
<td>$X_{12}, X_{12} + 1$</td>
</tr>
</tbody>
</table>

- Differential and probabilities
Steps 19 thru 35

- For example, consider Δ_{35}
- Spse $j = 34$ holds: Then $\Delta_{34} = (0,0,0,1)$ and
 \[
 Q_{35} = (Q_{31} + H(Q_{34}, Q_{33}, Q_{32}) + X_{12} + K_2) \ll 15
 \]
 \[
 = ((Q'_{31} + 1) + H(Q'_{34}, Q'_{33}, Q'_{32}) + X_{12} + K_2) \ll 15
 \]
 \[
 = (Q'_{31} + H(Q'_{34}, Q'_{33}, Q'_{32}) + (X_{12} + 1) + K_2) \ll 15
 \]
 \[
 = Q'_{35}
 \]

- Implies $\Delta_{35} = (0,0,0,0)$ with probability 1
 - As summarized in $j = 35$ row of table
Steps 12 to 19

- Analyze steps 12 to 19, find conditions that ensure $\Delta_{19} = (2^{25}, -2^5, 0, 0)$
 - And $G(Q_{19}, Q_{18}, Q_{17}) = G(Q'_{19}, Q'_{18}, Q'_{17})$, as required in differential phase

- Step 12 to 19—equation solving phase

- This is most complex part of attack
 - Last phase, steps 0 to 11, is easy
Steps 12 to 19

- Info for steps 12 to 19 given here
- If $i = 0$, function F, if $i = 1$, function G

<table>
<thead>
<tr>
<th>j</th>
<th>i</th>
<th>s_j</th>
<th>M Input</th>
<th>M' Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>0</td>
<td>3</td>
<td>X_{12}</td>
<td>$X_{12} + 1$</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>7</td>
<td>X_{13}</td>
<td>X_{13}</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>11</td>
<td>X_{14}</td>
<td>X_{14}</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>19</td>
<td>X_{15}</td>
<td>X_{15}</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>3</td>
<td>X_0</td>
<td>X_0</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>5</td>
<td>X_4</td>
<td>X_4</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>9</td>
<td>X_8</td>
<td>X_8</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>13</td>
<td>X_{12}</td>
<td>$X_{12} + 1$</td>
</tr>
</tbody>
</table>
Steps 12 to 19

- To apply differential phase, must have

\[\Delta_{19} = (2^{25}, -2^5, 0, 0) \] which states that

\[Q_{19} = Q'_{19} + 2^{25} \]
\[Q_{18} + 2^5 = Q'_{18} \]
\[Q_{17} = Q'_{17} \]
\[Q_{16} = Q'_{16} \]

- Derive equations for steps 12 to 19...
Step 12

- At step 12 we have
 \[Q_{12} = (Q_8 + F(Q_{11}, Q_{10}, Q_9) + X_{12}) <<< 3 \]
 \[Q'_{12} = (Q'_8 + F(Q'_{11}, Q'_{10}, Q'_9) + X'_{12}) <<< 3 \]

- Since \(X'_{12} = X_{12} + 1 \) and \((Q_8, Q_9, Q_{10}, Q_{11}) = (Q'_8, Q'_9, Q'_{10}, Q'_{11}) \)
 it follows that
 \((Q'_{12} <<< 29) - (Q_{12} <<< 29) = 1 \)
Steps 12 to 19

- Similar analysis for remaining steps yields system of equations:

\[
1 = (Q'_12 \ll 29) - (Q_{12} \ll 29) \\
F(Q'_{12}, Q_{11}, Q_{10}) - F(Q_{12}, Q_{11}, Q_{10}) = (Q'_{13} \ll 25) - (Q_{13} \ll 25) \\
F(Q'_{13}, Q'_{12}, Q_{11}) - F(Q_{13}, Q_{12}, Q_{11}) = (Q'_{14} \ll 21) - (Q_{14} \ll 21) \\
F(Q'_{14}, Q'_{13}, Q'_{12}) - F(Q_{14}, Q_{13}, Q_{12}) = (Q'_{15} \ll 13) - (Q_{15} \ll 13) \\
G(Q'_{15}, Q'_{14}, Q_{13}) - G(Q_{15}, Q_{14}, Q_{13}) = Q_{12} - Q'_{12} \\
G(Q_{16}, Q'_{15}, Q'_{14}) - G(Q_{16}, Q_{15}, Q_{14}) = Q_{13} - Q'_{13} \\
G(Q_{17}, Q_{16}, Q'_{15}) - G(Q_{17}, Q_{16}, Q_{15}) = Q_{14} - Q'_{14} + (Q'_{18} \ll 23) \\
- (Q_{18} \ll 23) \\
G(Q'_{18}, Q_{17}, Q_{16}) - G(Q_{18}, Q_{17}, Q_{16}) = Q_{15} - Q'_{15} + (Q'_{19} \ll 19) \\
- (Q_{19} \ll 19) - 1
\]
Steps 12 to 19

- To solve this system must find
 \((q_{10}, q_{11}, q_{12}, q_{13}, q_{14}, q_{15}, q_{16}, q_{17}, q_{18}, q_{19}, q'_{12}, q'_{13}, q'_{14}, q'_{15}) \)
 so that all equations hold

- Given such a solution, we determine
 \(x_j \) for \(j = 13, 14, 15, 0, 4, 8, 12 \)
 so that we begin at step 12 and arrive at step 19 with \(\Delta_{19} \) condition satisfied
Steps 12 to 19

- This phase reduces to solving (nonlinear) system of equations

- Can manipulate the equations so that
 - Choose \((Q_{14}, Q_{15}, Q_{16}, Q_{17}, Q_{18}, Q_{19})\) arbitrary
 - Which determines \((Q_{10}, Q_{13}, Q'_{13}, Q'_{14}, Q'_{15})\)
 - See textbook for details

- Result is 3 equations must be satisfied (next slide)
Steps 12 to 19

- Three conditions must be satisfied:

 \[
 G(Q_{15}, Q_{14}, Q_{13}) - G(Q'_{15}, Q'_{14}, Q'_{13}) = 1

 F(Q'_{14}, Q'_{13}, 0) - F(Q_{14}, Q_{13}, -1) - (Q'_{15} \ll 13) + (Q_{15} \ll 13) = 0

 G(Q_{19}, Q_{18}, Q_{17}) = G(Q'_{19}, Q'_{18}, Q_{17})
 \]

- First 2 are “check” equations
 - Third is “admissible” condition

- Naïve algorithm: choose six \(Q_j \), yields five \(Q_j, Q'_j \) until 3 equations satisfied

- How much work is this?
Continuous Approximation

- Each equation holds with prob $1/2^{32}$
- Appears that 2^{96} iterations required
 - Since three 32-bit check equations
 - Birthday attack on MD4 is only 2^{64} work!
- Dobbertin has a clever solution
 - A “continuous approximation”
 - Small changes, converge to a solution
Continuous Approximation

- Generate random Q_i values until first check equation is satisfied
 - Random one-bit modifications to Q_i
 - Save if 1st check equation still holds and 2nd check equation is “closer” to holding
 - Else try different random modifications
- Modifications converge to solution
 - Then 2 check equations satisfied
 - Repeat until admissible condition holds
Continuous Approximation

- For complete details, see textbook
- Why does continuous approx work?
 - Small change to arguments of F (or G) yield small change in function value
- What is the work factor?
 - Not easy to determine analytically
 - Easy to determine empirically (homework)
 - Efficient, and only once per collision
Steps 0 to 11

- At this point, we have \((Q_8, Q_9, Q_{10}, Q_{11})\) and
 \(\text{MD4}_{12\ldots47}(Q_8, Q_9, Q_{10}, Q_{11}, X) = \text{MD4}_{12\ldots47}(Q_8, Q_9, Q_{10}, Q_{11}, X')\)

- To finish, we must have
 \(\text{MD4}_{0\ldots11}(IV, X) = \text{MD4}_{0\ldots11}(IV, X') = (Q_8, Q_9, Q_{10}, Q_{11})\)

- Recall, \(X_{12}\) is only difference between \(M, M'\)

- Also, \(X_{12}\) first appears in step 12

- Have already found \(X_j\) for \(j = 0, 4, 8, 12, 13, 14, 15\)

- Free to choose \(X_j\) for \(j = 1, 2, 3, 5, 6, 7, 9, 10, 11\) so
 that \(\text{MD4}_{0\ldots11}\) equation holds — very easy!
All Together Now

- Attack proceeds as follows...
 1. Steps 12 to 19: Find \((Q_8,Q_9,Q_{10},Q_{11})\) and \(X_j\) for \(j = 0,4,8,12,13,14,15\)
 2. Steps 0 to 11: Find \(X_j\) for remaining \(j\)
 3. Steps 19 to 35: Check \(\Delta_{35} = (0,0,0,0)\)
 - If so, have found a collision!
 - If not, goto 2.
Meaningful Collision

- MD4 collisions exist where M and M’ have meaning
 - Attack is so efficient, possible to find meaningful collisions
- Let “∗” represent a “random” byte
 - Inserted for “security” purposes
- Can find collisions on next slide...
Meaningful Collision

- Different contracts, same hash value

CONTRACT

At the price of $176,495 Alf Blowfish sells his house to Ann Bonidea …

CONTRACT

At the price of $276,495 Alf Blowfish sells his house to Ann Bonidea …
MD4 Conclusions

- MD4 weaknesses exposed early
 - Never widely used
- But took long time to find a collision
- Dobbertin’s attack
 - Clever equation solving phase
 - Also includes differential phase
- Next, MD5…