WEP Concepts and Vulnerabilities

By
Advait Kothare
Introduction

- Wireless Networks in wide spread use
- Based on the IEEE 802.11 standard
- Confidentiality and Integrity issues
 - Different issues from wired networks
- Eavesdropping a major issue
- Attacks could be launched from the car park
WEP

- Wired Equivalent Privacy
- Optional protocol as part of the 802.11 standard
- Intended to prevent unauthorized access by a casual eavesdropping
- Intention to provide privacy equivalent to a wired network
WEP Design goals

- Confidentiality
 - Prevent casual eavesdropping
- Access control
 - Prevent unauthorized access to network resources
- Data Integrity
 - Prevent tampering of data frames
- Self-synchronizing, Efficient, Exportable
WEP in the Protocol Stack

TCP/IP Protocol stack

Application
Transport
Network
Data Link
WEP and Protocol Stack

- Implemented in the Link layer
 - Also called Medium Access Control layer
- Link layer includes the device driver in the operating system and the radio interface card
WEP Overview
WEP Overview

• Use RC4 encryption algorithm
 – Stream cipher
 – Shared symmetric key used to encrypt and decrypt
• RC4 takes the shared key and generates a key stream
• Key stream is bitwise XOR with the plain text to produce cipher text
WEP Operation

Data frame view

- Plaintext
- Message
- CRC
- XOR
- Keystream = RC4(v,k)
- v
- Ciphertext
- Transmitted Data
WEP Operation - Integrity

- Calculate the checksum value ICV
 - Uses CRC-32
 - Integrity protection
- Concatenate with data frame to get plain text
 - To get the MPDU
WEP Operation - Confidentiality

- The shared key is concatenated with a Initialization Vector
- Seed value to the WEP Pseudo Random Number Generator (PRNG)
- PRNG pseudo random octet stream equal in length to the number of octets in the MPDU
WEP Operation – All together

- Key stream is bit wise XORed with the MPDU to get the Cipher text
- IV consists of an initialization vector
- Concatenate IV with Cipher text to produce the data frame ready for transmission over the radio link
Extended MPDU

- **Init. Vector**: 3
- **IV**: 4
- **Data (PDU)**: >=1
- **ICV**: 4
- **Sizes in Octets**
- **Encrypted (Note)**

The diagram shows the structure of the extended MPDU with the corresponding fields and sizes in octets.
Extended MPDU

- The Integrity Check Value is also encrypted
- Key Id selects 1 of 4 shared secret key values
- The Initialization vector is limited to 24 bits in size
Weakness

- Shared keys limited to 40 bits by US government export restrictions
 - Practical to launch a brute force attack on the key of this size
 - Manufacturers added extensions to lengthen the key length
Weakness – Stream ciphers

- Vulnerable when the IV and key are reused

\[
\begin{align*}
C_1 &= P_1 \oplus RC4(v, k) \\
C_2 &= P_2 \oplus RC4(v, k)
\end{align*}
\]

giving us:

\[
C_2 \oplus C_1 = P_1 \oplus P_2
\]

RC4 = RC4 key stream generator function

\(v\) = initialization vector, \(k\) = shared key
Weakness – Stream Ciphers

- IV values are limited by IV length (24 bits)
 - Also by implementation faults
 - Such as during interface card initialization initial value is set to a standard value

- This weakness is irrespective of the key length
 - Increasing the key size doesn’t solve this problem
Weakness – Key Distribution

- RC4 uses a shared symmetric key.
- Changing the key requires manually reconfiguring each individual Access Point and radio interface card.
- Time consuming and expensive process.
- Does not scale well in the enterprise size network.
Weakness – Message Integrity

- WEP checksum value is a linear function of the message.
- Checksum operation distributes across the encryption operation.
 \[c(x \oplus y) = c(x) \oplus c(y) \]
 which results in:
 \[c(M \oplus d') = c(M \oplus d) \]
- Cipher text C could be modified to a value C’, which would then be deciphered to plain text P \oplus d.
Weakness – Message Integrity

- Intruder to change parts of a message without disrupting the checksum.
- Controlled modification can be made to an encrypted message without fear of detection.
Next Generation Standards

- **IEEE 802.1x authentication mechanism**
 - Designed for wired networks
 - Provide authentication only
 - Encryption by SSL, IPSec or SSH

- **IEEE 802.11i**
 - Uses AES 128 for encryption, which is yet to be broken
 - Defines a Key Distribution Framework for scalability to large networks
Summary

- WEP is insecure, but still can secure networks if certain best practices are followed
 - Maintain access control lists
 - Use vendor specific key distribution schemes
 - Physically Secure Access Points
 - Change keys periodically
 - Shutdown AP when not in use
- WEP can deter casual eavesdroppers

Thanks