Graphs

A graph is a formalism for representing relationships among items

- Very general definition because very general concept

A graph is a pair

\[G = (V, E) \]

- A set of vertices, also known as nodes

\[V = \{v_1, v_2, \ldots, v_n\} \]

- A set of edges

\[E = \{e_1, e_2, \ldots, e_m\} \]

- Each edge \(e_i \) is a pair of vertices

\[(v_j, v_k) \]

- An edge “connects” the vertices

Graphs can be directed or undirected

\[V = \{\text{Han, Leia, Luke}\} \]

\[E = \{(\text{Luke, Leia}), (\text{Han, Leia}), (\text{Leia, Han})\} \]
An ADT?

• Can think of graphs as an ADT with operations like $\text{isEdge}((v_j, v_k))$

• But it is unclear what the “standard operations” are

• Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms

• Many important problems can be solved by:
 1. Formulating them in terms of graphs
 2. Applying a standard graph algorithm

• To make the formulation easy and standard, we have a lot of standard terminology about graphs
Some Graphs

For each, what are the vertices and what are the edges?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• ...

Wow: Using the same algorithms for problems across so many domains sounds like “core computer science and engineering”
Undirected Graphs

• In undirected graphs, edges have no specific direction
 – Edges are always “two-way”

• Thus, \((u, v) \in E\) implies \((v, u) \in E\)
 – Only one of these edges needs to be in the set
 – The other is implicit, so normalize how you check for it

• Degree of a vertex: number of edges containing that vertex
 – Put another way: the number of adjacent vertices
Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction.

Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).
- Let \((u, v) \in E\) mean \(u \rightarrow v\)
- Call \(u\) the source and \(v\) the destination
- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination
- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source
Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form \((u, u)\)
 – Depending on the use/algorithm, a graph may have:
 • No self edges
 • Some self edges
 • All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected
 – Even if every node has non-zero degree
More Notation

For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?
- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $\frac{|V|(|V|+1)}{2} \in O(|V|^2)$
 - Maximum for directed? $|V|^2 \in O(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$
Examples again

Which would use directed edges? Which would have self-edges? Which would be connected? Which could have 0-degree nodes?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- …
Weighted Graphs

• In a weighed graph, each edge has a weight a.k.a. cost
 - Typically numeric (most examples use ints)
 - Orthogonal to whether graph is directed
 - Some graphs allow negative weights; many do not

```
  Clinton -- 20 -- Mukilteo
    |
  Kingston -- 30 -- Edmonds
    |
  Bainbridge -- 35 -- Seattle
    |
  Bremerton -- 60 --
```
Examples

What, if anything, might weights represent for each of these? Do negative weights make sense?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …
Paths and Cycles

- A **path** is a list of vertices \([v_0, v_1, ..., v_n]\) such that
 \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say “a path from \(v_0\) to \(v_n\)”

- A **cycle** is a path that begins and ends at the same node \((v_0 == v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length**: Number of edges in a path
- **Path cost**: Sum of weights of edges in a path

Example where

P = [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

- $\text{length}(P) = 5$
- $\text{cost}(P) = 11.5$
Simple Paths and Cycles

• A **simple path** repeats no vertices, except the first might be the last

 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a **cycle** is a path that ends where it begins

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A **simple cycle** is a cycle and a simple path

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?
No

Does the graph contain any cycles?
No
Undirected-Graph Connectivity

• An undirected graph is **connected** if for all pairs of vertices u, v, there exists a *path* from u to v.

 ![Connected graph](image1)
 ![Disconnected graph](image2)

• An undirected graph is **complete**, a.k.a. **fully connected** if for *all* pairs of vertices u, v, there exists an *edge* from u to v plus self edges.

 ![Complete graph](image3)
Directed-Graph Connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex *ignoring direction of edges*.

- A **complete** a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex *plus self edges*.
Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• ...

19
Trees as Graphs

When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...

Example:
Rooted Trees

• We are more accustomed to rooted trees where:
 – We identify a unique root
 – We think of edges are directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 – The tree is just drawn differently and with undirected edges
Rooted Trees

• We are more accustomed to rooted trees where:
 – We identify a unique root
 – We think of edges are directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 – The tree is just drawn differently and with undirected edges

![Diagram showing rooted trees and their redrawn version]
Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree

1. Every DAG is a directed graph
2. But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

- Web pages with links
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Airline routes
- Family trees
- Course pre-requisites
- …
Density / Sparsity

- Recall: In an undirected graph, \(0 \leq |E| < |V|^2\)
- Recall: In a directed graph: \(0 \leq |E| \leq |V|^2\)
- So for any graph, \(O(|E|+|V|^2)\) is \(O(|V|^2)\)
- Another fact: If an undirected graph is connected, then \(|V|-1 \leq |E|\)
- Because \(|E|\) is often much smaller than its maximum size, we do not always approximate \(|E|\) as \(O(|V|^2)\)
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., \(|E| \in \Theta(|V|^2)\) we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If \(|E| \in O(|V|)\) we say the graph is sparse
 - More sloppily, sparse means “most possible edges missing”
What is the Data Structure?

• So graphs are really useful for lots of data and questions
 – For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:
 – Properties of the graph (e.g., dense versus sparse)
 – The common queries (e.g., “is \((u, v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

• So we’ll discuss the two standard graph representations
 1. Adjacency Matrix and Adjacency List
 – Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to \(|V| - 1\)
- A \(|V| \times |V|\) matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If \(M\) is the matrix, then \(M[u][v]\) being true means there is an edge from \(u\) to \(v\)
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- Space requirements:

- Best for sparse or dense graphs?
Adjacency Matrix Properties

- Running time to:
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- Space requirements:
 1. $|V|^2$ bits

- Best for sparse or dense graphs?
 1. Best for dense graphs
Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?

- How can we adapt the representation for *weighted graphs*?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?
 1. Undirected will be symmetric about diagonal axis

- How can we adapt the representation for *weighted graphs*?
 1. Instead of a Boolean, store a number in each cell
 2. Need some value to represent ‘not an edge’
 - In some situations, 0 or -1 works

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency List

- Assign each node a number from 0 to $|V| - 1$
- An array of length $|V|$ in which each entry stores a list of all adjacent vertices (e.g., linked list)

Adjacency List Properties

- **Running time to:**
 - Get all of a vertex’s out-edges:
 - Get all of a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- **Space requirements:**
 - Best for dense or sparse graphs?
Adjacency List Properties

• Running time to:
 – Get all of a vertex’s out-edges: \(O(d) \) where \(d \) is out-degree of vertex
 – Get all of a vertex’s in-edges: \(O(|E|) \) (but could keep a second adjacency list for this!)
 – Decide if some edge exists: \(O(d) \) where \(d \) is out-degree of source
 – Insert an edge: \(O(1) \) (unless you need to check if it’s there)
 – Delete an edge: \(O(d) \) where \(d \) is out-degree of source

• Space requirements:
 1. \(O(|V|+|E|) \)

• Best for dense or sparse graphs?
 1. Best for sparse graphs, so usually just stick with linked lists
Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

- Matrix: Can save roughly 2x space
 - But may slow down operations in languages with “proper” 2D arrays (not Java, which has only arrays of arrays)
 - How would you “get all neighbors”?

- Lists: Each edge in two lists to support efficient “get all neighbors”

Example:
Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• **Topological sort**: Given a DAG, order all the vertices so that every vertex comes before all of its neighbors

• **Shortest paths**: Find the shortest or lowest-cost path from x to y
 – Related: Determine if there even is such a path