CS 146

Midterm, Homework, Project, and Introduction to Graphs
Midterm

Histogram

Histogram
• Now let's go over solutions...
Homework and Project

- Homework 3 (due Tuesday Oct 20th - CANVAS)
 - Sorting problems (next slide) & no partners
- Project 4 (due Thursday Oct 22nd - CANVAS)
 - Implement sorting algorithms on Project 3 (same partners or no partners – NO WRITE UP :-)
 - Implement mergesort and quicksort
 - Add new arguments to WordCount which allows user to specify which sort to use
 - Second argument: java WordCount [-b | -a | -h] [-is | -qs | -ms] <filename>
 - is: insertion sort
 - qs: quicksort, ms: mergesort
Homework 3

1) Sort 3, 4, 5, 6, 1, 9, 2, 5, 6 using insertion sort.

2) Sort 3, 4, 5, 6, 1, 9, 2, 5, 6 using merge sort.

3) Sort 3, 4, 5, 6, 1, 9, 2, 5, 6, 5, 3 using quick sort with median of three pivot, with insertion sort cutoff at 4.

4) Sort 34, 37, 83, 51, 84, 22, 43 using radix sort with radix=10.

5) What would the runtimes of the following algorithms be if your data were all identical (ex. 7, 7, 7, 7), sorted, or reverse sorted?

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Identical</th>
<th>Sorted</th>
<th>Reverse-sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Sort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selection Sort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heapsort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergesort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quicksort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucket Sort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radix Sort</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Graphs

- A graph is a formalism for representing relationships among items
 - Very general definition because very general concept

- A graph is a pair
 \[G = (V, E) \]
 - A set of vertices, also known as nodes
 \[V = \{v_1, v_2, \ldots, v_n\} \]
 - A set of edges
 \[E = \{e_1, e_2, \ldots, e_m\} \]
 - Each edge \(e_i \) is a pair of vertices
 \[(v_j, v_k) \]
 - An edge “connects” the vertices

- Graphs can be directed or undirected
Can think of graphs as an ADT with operations like $\text{isEdge}(v_j,v_k)$

But it is unclear what the “standard operations” are

Instead we tend to develop algorithms over graphs and then use data structures that are efficient for those algorithms

Many important problems can be solved by:
1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

To make the formulation easy and standard, we have a lot of standard terminology about graphs
Some Graphs

For each, what are the vertices and what are the edges?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Wow: Using the same algorithms for problems across so many domains sounds like “core computer science and engineering”
Undirected Graphs

- In **undirected graphs**, edges have no specific direction
 - Edges are always “two-way”

- Thus, \((u, v) \in E\) implies \((v, u) \in E\)
 - Only one of these edges needs to be in the set
 - The other is implicit, so normalize how you check for it

- **Degree** of a vertex: number of edges containing that vertex
 - Put another way: the number of adjacent vertices
Directed Graphs

- In directed graphs (sometimes called digraphs), edges have a direction.

- Thus, \((u, v) \in E\) does not imply \((v, u) \in E\).

- Let \((u, v) \in E\) mean \(u \rightarrow v\).

- Call \(u\) the source and \(v\) the destination.

- In-Degree of a vertex: number of in-bound edges, i.e., edges where the vertex is the destination.

- Out-Degree of a vertex: number of out-bound edges, i.e., edges where the vertex is the source.
Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form (u, u)
 – Depending on the use/algorithm, a graph may have:
 • No self edges
 • Some self edges
 • All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected
 – Even if every node has non-zero degree
For a graph $G = (V, E)$

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum?
 - Maximum for undirected?
 - Maximum for directed?

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$

$V = \{A, B, C, D\}$
$E = \{(C, B), (A, B), (B, A), (C, D)\}$
More notation

For a graph $G = (V, E)$:

- $|V|$ is the number of vertices
- $|E|$ is the number of edges
 - Minimum? 0
 - Maximum for undirected? $|V| |V+1| / 2 \times o(|V|^2)$
 - Maximum for directed? $|V|^2 \times o(|V|^2)$
 (assuming self-edges allowed, else subtract $|V|$)

- If $(u, v) \in E$
 - Then v is a neighbor of u, i.e., v is adjacent to u
 - Order matters for directed edges
 - u is not adjacent to v unless $(v, u) \in E$
Examples again

Which would use directed edges? Which would have self-edges? Which would be connected? Which could have 0-degree nodes?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …
Weighted Graphs

• In a weighed graph, each edge has a weight a.k.a. cost
 – Typically numeric (most examples use ints)
 – Orthogonal to whether graph is directed
 – Some graphs allow negative weights; many do not
What, if anything, might weights represent for each of these?
Do negative weights make sense?

- Web pages with links
- Facebook friends
- “Input data” for the Kevin Bacon game
- Methods in a program that call each other
- Road maps (e.g., Google maps)
- Airline routes
- Family trees
- Course pre-requisites
- ...

Examples
Paths and Cycles

- A path is a list of vertices \([v_0, v_1, ..., v_n]\) such that \((v_i, v_{i+1}) \in E\) for all \(0 \leq i < n\). Say “a path from \(v_0\) to \(v_n\)”

- A cycle is a path that begins and ends at the same node \((v_0 == v_n)\)

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]
Path Length and Cost

- **Path length**: Number of edges in a path
- **Path cost**: Sum of weights of edges in a path

Example where

\[P = [\text{Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}] \]

\[
\begin{align*}
\text{length}(P) &= 5 \\
\text{cost}(P) &= 11.5
\end{align*}
\]
Simple Paths and Cycles

• A simple path repeats no vertices, except the first might be the last
 [Seattle, Salt Lake City, San Francisco, Dallas]
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a cycle is a path that ends where it begins
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A simple cycle is a cycle and a simple path
 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?
Example:

Is there a path from A to D? No

Does the graph contain any cycles? No
• An undirected graph is **connected** if for all pairs of vertices u, v, there exists a *path* from u to v.

- **Connected graph**
- **Disconnected graph**

• An undirected graph is **complete**, a.k.a. fully connected if for *all* pairs of vertices u, v, there exists an *edge* from u to v.

plus self edges
Directed-Graph Connectivity

- A directed graph is **strongly connected** if there is a path from every vertex to every other vertex.

- A directed graph is **weakly connected** if there is a path from every vertex to every other vertex ignoring direction of edges.

- A **complete** a.k.a. **fully connected** directed graph has an edge from every vertex to every other vertex plus self edges.
Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

• Web pages with links
• Facebook friends
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Road maps (e.g., Google maps)
• Airline routes
• Family trees
• Course pre-requisites
• …
When talking about graphs, we say a tree is a graph that is:
- undirected
- acyclic
- connected

So all trees are graphs, but not all graphs are trees

How does this relate to the trees we know and love?...
Rooted Trees

• We are more accustomed to rooted trees where:
 – We identify a unique root
 – We think of edges are directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 – The tree is just drawn differently and with undirected edges
Rooted Trees

• We are more accustomed to rooted trees where:
 – We identify a unique root
 – We think of edges are directed: parent to children

• Given a tree, picking a root gives a unique rooted tree
 – The tree is just drawn differently and with undirected edges
Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with no (directed) cycles
 - Every rooted directed tree is a DAG
 - But not every DAG is a rooted directed tree
- Every DAG is a directed graph
 - But not every directed graph is a DAG
Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links
• “Input data” for the Kevin Bacon game
• Methods in a program that call each other
• Airline routes
• Family trees
• Course pre-requisites
• …
Density / Sparsity

- Recall: In an undirected graph, $0 \leq |E| < |V|^2$
- Recall: In a directed graph: $0 \leq |E| \leq |V|^2$
- So for any graph, $O(|E|+|V|^2)$ is $O(|V|^2)$
- Another fact: If an undirected graph is connected, then $|V|-1 \leq |E|$
- Because $|E|$ is often much smaller than its maximum size, we do not always approximate $|E|$ as $O(|V|^2)$
 - This is a correct bound, it just is often not tight
 - If it is tight, i.e., $|E| \in \Theta(|V|^2)$ we say the graph is dense
 - More sloppily, dense means “lots of edges”
 - If $|E|$ is $O(|V|)$ we say the graph is sparse
 - More sloppily, sparse means “most possible edges missing”
What is the Data Structure?

• So graphs are really useful for lots of data and questions
 – For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:
 – Properties of the graph (e.g., dense versus sparse)
 – The common queries (e.g., “is \((u, v)\) an edge?” versus “what are the neighbors of node \(u\)?”)

• So we’ll discuss the two standard graph representations
 – **Adjacency Matrix** and **Adjacency List**
 – Different trade-offs, particularly time versus space
Adjacency Matrix

- Assign each node a number from 0 to $|V|-1$
- A $|V| \times |V|$ matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)
 - If M is the matrix, then $M[u][v]$ being **true** means there is an edge from u to v

```
A B C D
A F T F F
B T F F F
C F T F T
D F F F F
```
Adjacency Matrix Properties

- **Running time to:**
 - Get a vertex’s out-edges:
 - Get a vertex’s in-edges:
 - Decide if some edge exists:
 - Insert an edge:
 - Delete an edge:

- **Space requirements:**

- **Best for sparse or dense graphs?**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency Matrix Properties

- **Running time to:**
 - Get a vertex’s out-edges: $O(|V|)$
 - Get a vertex’s in-edges: $O(|V|)$
 - Decide if some edge exists: $O(1)$
 - Insert an edge: $O(1)$
 - Delete an edge: $O(1)$

- **Space requirements:**
 - $|V|^2$ bits

- **Best for sparse or dense graphs?**
 - Best for dense graphs
Adjacency Matrix Properties

- How will the adjacency matrix vary for an *undirected graph*?
- How can we adapt the representation for *weighted graphs*?

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?
 – Undirected will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?
 – Instead of a Boolean, store a number in each cell
 – Need some value to represent ‘not an edge’
 • In some situations, 0 or -1 works

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>