Review

For the linear equation with constant coefficients,

\[ay'' + by' + cy = 0, \]

when the roots of the characteristic equation are equal, the general solution is

\[y = Ae^{\lambda t} + Bte^{\lambda t}. \]

For the linear homogeneous equation with not-necessarily-constant coefficients, if we have one solution \(u \), we can find the general solution \(Au + Bvu \) using the method of reduction of order.

We look for a solution \(y = vu \), and when we plug this into the equation, the coefficients of \(v \) will cancel out and leave a first-order equation for \(v' \).

Solve that equation, and then integrate to find \(v \).
The non-homogeneous equation

Consider the non-homogeneous second-order equation with constant coefficients:

\[ay'' + by' + cy = F(t). \]

▶ The difference of any two solutions is a solution of the homogeneous equation.

▶ Suppose we have one solution \(u \). Then the general solution is \(u \) plus the general solution of the homogeneous equation.

▶ Proof, let \(y \) be any solution. Then \(y - u \) solves the homogeneous equation, so \(y = u + \) a solution of the homogeneous equation.
The non-homogeneous equation

- Suppose we have one solution u. Then the general solution is u plus the general solution of the homogeneous equation.

- So, solving the equation boils down to finding just one solution.

- But there is no foolproof method for doing that (for any arbitrary right-hand side $F(t)$).

- We can do it in some useful common cases.
Constant coefficients or not?

- What we did up to now works for any second-order linear equation.
- What we will do next assumes constant coefficients.
- Textbook does not emphasize the transition
The method of undetermined coefficients

This method applies to a second-order linear equation with constant coefficients if the right-hand side $F(t)$ has one of a few particularly simple forms:

- A polynomial
- An exponential times a polynomial: $e^{\alpha t} P(t)$. The exponent is a constant times t.
- Complex exponentials are allowed, so we also can handle $P(t) \cos t$,
- $P(t) \sin t$
- $e^{\alpha t} \cos t$, etc.
Also the right-hand side can be a linear combination of expressions of those forms, since if

\[au'' + bu' + cu = F(t) \]

and

\[av'' + bv' + cv = G(t) \]

then \(y = au + bv \) satisfies

\[ay'' + by' + cy = aF(t) + bG(t) \]
The method of undetermined coefficients

- Assume that the sought-after solution y has the same form as the right-hand side $P(t)$.
- That assumption mentions some unknown coefficients.
- Plug in that solution to the differential equation and simplify.
- You get equations for the coefficients.
- If they are solvable you are done.
Example: $y'' - 3y' - 4y = 3e^{2t}$

- $3e^{2t}$ is (a constant times) an exponential.
- Assume $y = Ae^{2t}$.
- Plug and grind:

\[
\begin{align*}
y' &= 2Ae^{2t} \\
y'' &= 4Ae^{2t} \\
y'' - 3y' - 4y &= 4Ae^{2t} - 3(2Ae^{2t} - 4Ae^{2t}) \\
&= -6Ae^{2t} \\
&= 3e^{2t} \quad \text{if this is to be a solution} \\
A &= -\frac{1}{2} \quad \text{the equation is solvable, so it works.}
\end{align*}
\]
Example: \(y'' - 3y' - 4y = 3e^{2t} \)

- We found the particular solution
 \[
y = -\frac{1}{2}e^{2t}
\]

- To find the general solution we need to solve the homogeneous equation too.
- The characteristic equation is
 \[
 \lambda^2 - 3\lambda - 4 = 0
 \]
 which has roots \(\lambda = 4 \) and \(\lambda = -1 \).
- So the general solution of the homogeneous equation is
 \[
ae^{4t} + be^{-t}
 \]
- and the general solution of the non-homogeneous equation is
 \[
ae^{4t} + be^{-t} - \frac{1}{2}e^{2t}.
 \]
Special cases can cause trouble

- If the proposed solution of the non-homogeneous equation is actually already a solution of the homogeneous equation, then the equations for the coefficients cannot be solved.

- For example, in the preceding problem, the homogeneous equation had solutions e^{-t} and e^{4t}. What if the right-hand side had been e^{4t}?

$$y'' - 3y' - 4y = e^{4t}$$

- Then we would have assumed $y = Ae^{4t}$, but when we plug it in, we get 0 on the left, which can never be equal to e^{4t} on the right.

- So the method needs modification in such cases.
What to do in a special case

- If the proposed solution of the non-homogeneous equation is already a solution of the homogeneous equation, then the assumed form should be multiplied by a factor of t.

- For example:

 $y'' - 3y' - 4y = e^{4t}$

 Since e^{4t} is a solution of the homogeneous equation, we instead assume

 $$y = Ate^{4t}.$$

- Now we plug and grind:

 $$y' = Ae^{4t}(4t + 1)$$

 $$y'' = Ae^{4t}(4 + 4(4t + 1)) = Ae^{4t}(16t + 8)$$

 $$y'' - 3y' - 4y = Ae^{4t}(16t + 8) - 3Ae^{4t}(4t + 1) - 4Ate^{4t}$$

 $$= -2Ae^{4t}$$

- So if we take $A = -1/2$ we have a solution.

- Note that the te^{4t} terms canceled out. That’s because e^{4t} solves the homogeneous equation.
Another special case

- If the right-hand side is already a solution of the homogeneous equation, and
- if in addition the characteristic equation has double roots, then
- multiply by t^2 instead of only t.
- For example

$$y'' + 2y' + 1 = e^{-t}$$

- The characteristic equation is $(\lambda + 1)^2 = 0$, so the homogeneous equation has solutions e^{-t} and te^{-t}. So the right side is a solution of the homogeneous equation, but so is te^{-t} (which we would otherwise try as a solution). So instead we try

$$y = At^2 e^{-t}$$

and you can check that it works.
Summary of the Method of Undetermined Coefficients

- It’s for linear non-homogeneous second-order equations with constant coefficients.
- Assume a solution that has the same form as the right hand side.
- That is, a polynomial, or an exponential or trig function times a polynomial.
- Use letters for the polynomial coefficients and solve for them.
- Use an extra factor of t if the right side already solves the homogeneous equation, or an extra factor of t^2 if in addition the characteristic equation has multiple roots.
- For proof that it works, see pages 181-182 of the text. You just use letters for the coefficients of the right-hand side and plug and grind as you do when solving a particular example.
Variation of Parameters

- This method “works” on any second-order non-homogeneous equation, constant coefficients or not.
- But the “solution” involves an integral, so it may be harder to work with.
- Also it requires have a fundamental set of solutions of the homogeneous equation, which may not be easy if the equation doesn’t have constant coefficients.
- Therefore use the method of undetermined coefficients if it is applicable.
Variation of Parameters

We consider the equation

\[y'' + p(t)y' + q(t)y = g(t) \]

and suppose we have somehow found a fundamental set of two solutions \(y_1 \) and \(y_2 \) of the homogeneous equation

\[y'' + p(t)y' + q(t)y = 0. \]

The basic idea is to look for a solution in the form

\[y = uy_1 + vy_2 \]

where \(u \) and \(v \) are not constants, but functions of \(t \).
Variation of Parameters

Our plan is to plug

\[y = uy_1 + vy_2 \]

into the equation

\[y'' + p(t)y' + q(t)y = g(t) \]

So we start by differentiating \(y \):

\[y' = u'y_1 + u'y_1' + v'y_2 + v'y_2 \]

Now we assume \(u'y_1 + v'y_2 = 0 \). Then

\[y' = uy'_1 + vy'_2 \]

\[y'' = u'y_1 + uy''_1 + v'y_2 + v''_2 \]
So now plug the expressions for y' and y'' into the original equation. Specifically, plug

$$y' = uy'_1 + vy'_2$$
$$y'' = u'y_1 + uy''_1 + v'y_2 + v''_2$$

into

$$y'' + p(t)y' + q(t)y = g(t)$$

The coefficient of u is $y''_1 + py'_1 + qy_1$, which is zero since y_1 is a solution of the homogeneous equation. The coefficient of v is similarly zero since y_2 is a solution. We are left with

$$u'y'_1 + v'y'_2 = g(t).$$
We have proved that if we solve the equations

\[u' y_1 + v' y_2 = 0 \quad \text{which we assumed above} \]
\[u'y_1' + v'y_2' = g(t) \]

then \(y = uy_1 + vy_2 \) will solve the non-homogeneous equation.

But these are algebraic equations for \(u' \) and \(v' \).

The solution has the Wronskian \(W(y_1, y_2) \) in the denominator, which is nonzero.

So it’s always possible to solve for \(u' \) and \(v' \).

Then if we can integrate the answers, we have our solution.
Solving
\[u' y_1 + v' y_2 = 0 \]
\[u' y_1' + v' y_2' = g(t) \]
we get
\[u' = -\frac{y_2 g}{W} \]
\[v' = \frac{y_1 g}{W} \]
where \(W \) is the Wronskian
\[W = y_1 y_2' - y_2 y_1' \]
Therefore a solution is
\[u = -\int \frac{y_2(t)g(t)}{W(t)} dt + c_1 \]
\[v = \int \frac{y_1(t)g(t)}{W(t)} dt + c_2 \]
\[y = uy_1 + vy_2 \]
An example: \(y'' + 4y = 3 \csc t \)

- Although the coefficients are constant, the right side is not a polynomial times an exponential.
- So we can’t use the method of undetermined coefficients.
- We can solve the homogeneous equation, since the coefficients are constant.
- The details of this example are on pages 185-187, presented as a motivation for the method of variation of parameters.
An example: \(y'' - 3y' - 4y = t^2 \)

- What method should we use?

Undetermined coefficients, since we have a polynomial on the right.

- What form should we assume for the solution?

\(y = a + bt + ct^2 \). No exponential, since the right side is a polynomial.

Plugging this into the equation we find it will work if

\[
2c - 3b - 4a = 0
\]

\[
-6c - 4b = 0
\]

\[
-4c = 1
\]

It is possible to solve these equations:

\[
c = -\frac{1}{4}, \quad b = \frac{3}{8}, \quad a = -\frac{13}{32}
\]

- What is the general solution?

\(y = -\frac{13}{32} + \frac{3}{8}t - t^2 + Ae^{-t} + Be^{4t} \).
An example: $y'' - 3y' - 4y = t^2$

- What method should we use?
- Undetermined coefficients, since we have a polynomial on the right.
- What form should we assume for the solution?
An example: \(y'' - 3y' - 4y = t^2 \)

- What method should we use?
 - Undetermined coefficients, since we have a polynomial on the right.
- What form should we assume for the solution?
 - \(y = a + bt + ct^2 \). No exponential, since the right side is a polynomial.
- Plugging this into the equation we find it will work if

 \[
 \begin{align*}
 2c - 3b - 4a &= 0 \\
 -6c - 4b &= 0 \\
 -4c &= 1
 \end{align*}
 \]

- It is possible to solve these equations:
 - \(c = -1/4, b = 3/8, a = -13/32 \)
- What is the general solution?
 \[
 y = -13/32 + 3/8t - t^2 + Ae^{-t} + Be^{4t}.
 \]
An example: $y'' - 3y' - 4y = t^2$

- What method should we use?
 - Undetermined coefficients, since we have a polynomial on the right.
- What form should we assume for the solution?
 - $y = a + bt + ct^2$. No exponential, since the right side is a polynomial.
- Plugging this into the equation we find it will work if

 \[
 2c - 3b - 4a = 0 \\
 -6c - 4b = 0 \\
 -4c = 1
 \]

- It is possible to solve these equations:

 $c = -1/4, b = 3/8, a = -13/32$
- What is the general solution?

 \[
y = -\frac{13}{32} + \frac{3}{8}t - \frac{t^2}{4} + Ae^{-t} + Be^{4t}.
 \]