Authentication by Mouse Movements

By
Shivani Hashia

Advisor: Dr. Chris Pollett
Committee: Dr. Mark Stamp
Dr. Robert Chun

Dec 2004
Topics

• Introduction
• Design and Implementation
 • Active authentication
 • Passive authentication
• Experiments and Results
• Conclusion
• Future Work
Introduction

Authentication: Process of validating a person is who he claims to be

Aim:
- Build a secure technique to authenticate users
- Easy to use
- Cheap
Current methods of authentication

Passwords- Based on what you know

Advantages
- Easy to use
- Cheap

Disadvantages
- Difficult to remember
- Can be cracked if not chosen wisely
Current methods of authentication (cont’d)

Smart Card- Based on what you have

Advantages
- Easy to use

Disadvantages
- Expensive, requires card reader
- Can be stolen
Current methods of authentication (cont’d)

Biometrics- Based on physiological or biological characteristics

Advantages
- No one can forge unless template file changed

Disadvantages
- Current methods expensive
Related work

Researchers at Technion-Israel Institute of Technology were planning to build software, which can identify the authenticity of the users with their individual and distinct typing styles.

Ross Everitt and Peter McOwan at Queen Mary University of London did a research where they used mouse signature as the biometric to verify the authenticity of the users.
Design and Implementation

Model based on biometrics. It contains two parts:

- **Active Authentication:** One time authentication
- **Passive Authentication:** Continuous monitoring and authentication of mouse movements
Active Authentication

Login Screen

1) Press Start. 2) Follow the dots as they appear on screen with the mouse.
Active Authentication

Works in 3 phases

- **Enrollment:** For registering users. Acts like mean of data points

- **Training:** For getting as many samples as possible from users. Acts like variance of data points

- **Verification:** Actual logging in
Design

Enrollment

Template file created

Verification

Training Model Created

Authenticate /Reject

Vector.txt (stores 144 vectors of registered users)

AvSd.txt (stores average, standard deviation of 144 vectors)
Enrollment

Complete round of following points on screen with mouse four times

Record parameters- speed, deviation, angle (positive , negative)

Current mouse position

Angle

Deviation
Enrollment (cont’d)

- Find average, standard deviation, maximum and minimum of the four parameters
- For 1 pair of points, $4 \times 4 = 16$ vectors
- For 9 pair of points, $16 \times 9 = 144$ vectors
- Normalize vectors to bring on same scale
- Store vectors in file
- It acts like mean of vectors
Training

- Complete rounds 20 times
- Get variation in user’s mouse movements
- Repeat procedure as during enrollment
- Store 144 vectors in a temporary file
- Acts like variance of vectors
Training (cont’d)

- Find difference between each training phase data set and corresponding vectors in enrollment
- Average the differences of each vector
- Find standard deviation of differences for each vector
- Store average, standard deviation for each vector difference in a file
Training (cont’d)

Enrollment Vectors

\[
\begin{align*}
 r & 0.29552062240545846 & 8.31403561980209 & 172.5627504337201 \\
 r & 0.313815368652677 & 8.386129099100515 & 154.35863930928812 \\
 r & 0.313876369071465 & 5.112780770424284 & 159.4521907242159 \\
 r & 0.3465478372758716 & 4.271812610295602 & 178.0942234512897 \\
\end{align*}
\]

Subtract

Training Vectors

\[
\begin{align*}
 r & 0.313815368652677 & 8.386129099100515 & 154.35863930928812 \\
 r & 0.312876369071465 & 5.112780770424284 & 159.4521907242159 \\
 r & 0.3465478372758716 & 4.271812610295602 & 178.0942234512897 \\
\end{align*}
\]

Store average, standard deviation of differences
Verification

- User given login screen
- Has to move mouse on the screen
- Speed, deviation, angle calculated
- 144 vectors from average, standard deviation, maximum, minimum calculated
- Vectors normalized
Verification (cont’d)

- Find difference of verification vectors with corresponding vectors during enrollment
- Check if each difference lies in its corresponding range of average - 1.5*standard deviation and average + 1.5*standard deviation
Verification (cont’d)

- Count the number of vectors that lie in their defined range for each user
- Repeat same for training phase data to get range of counters for the user trying to verify
- If count falls within the range for that user and is the greatest for the user, he is authenticated
Verification (cont’d)

Enrollment Vectors (vector.txt)

\[
\begin{align*}
&\mathbf{r} \quad 0.29552062240545846 \quad 8.31403561980209 \quad 172.5627504337201 \\
&\mathbf{r} \quad 0.2821213979661169 \quad 3.078898320018175 \quad 178.2263299758116 \\
&- \quad \text{Subtract} \quad \text{Verification Vectors (tmpVector.txt)} \\
&\mathbf{r} \quad 0.2821213979661169 \quad 3.078898320018175 \quad 178.2263299758116
\end{align*}
\]

Average, standard deviation (AvSd.txt)

\[
\begin{align*}
&\mathbf{r} \quad 0.212132278976185 \quad 1.2734653494142 \quad -2.475399603822249 \\
\end{align*}
\]

Check if within range of average+- 1.5*standard deviation

For vector 1, range = 0.212132278976185+-1.5*1.2734653494142
Passive Authentication

Idea to keep eye on user’s movements
Runs in background

Two phases:
- Enrollment
- Verification
Enrollment

- Record mouse movements for 15 minutes
- Find dense regions on screen
- Draw convex hulls around dense regions
- Treat hulls as transition states
Enrollment (cont’d)

For transitions within same state calculate speed, distribution of points around the center, distance from best fit line, frequency

- Mouse position
- Center of hull
Enrollment (cont’d)

For each state calculate average of speed, angular distribution and distance from best fit line

Also find standard deviation of speed, angular distribution and distance from best fit line

Store data in file
Verification

- Record movements continuously
- After every 2 minutes, calculate speed, angular distribution and distance from best fit line
- Check if they lie in the range for average-1.5*standard deviation to average +1.5*standard deviation for respective parameters
Verification (cont’d)

- If majority of the data points lie within the specified range, keep on continuing
- Update files
Experiments and Results

Performed a number of experiments to find a way to use mouse movements as authentication method

Active Authentication

- Find parameters unique to users
- Find ways to use the parameters so that users are authenticated
Experiments (cont’d)

Passive Authentication

- Find way to record mouse coordinates in background
- Filter recorded data coordinates
- Draw bounded regions around dense regions to form transition states
- Find parameters and a way to use them
Active authentication

Find parameters unique to users
Active authentication

Ways to use the parameters

1) Check if the sum of square of differences is within a certain threshold

2) Use the lowest sum of square of differences

Result: FAR of 40%, FRR of 40%

FAR = False Acceptance Rate – Forged user, system accepts (fraud rate)

FRR = False Rejection Rate – Actual user, system rejects (insult rate)
Active authentication

3) Select specific vectors

- Calculate maximum and minimum sum of square of differences between user’s registered and training phase vectors
- Use lowest sum of square of differences and check if falls within range

Result: FRR = 12%, FAR = 70%
Active authentication

4) Using specific vectors in different ways to get common set of vectors

- Compute sum of square of differences

- Check for the lowest sum of square of differences and see if lies in the range of differences
Active authentication

Results

<table>
<thead>
<tr>
<th></th>
<th>All parameters</th>
<th>Specific parameters</th>
<th>Union of specific parameters</th>
<th>Intersection of specific parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRR</td>
<td>65%</td>
<td>12%</td>
<td>50%</td>
<td>57%</td>
</tr>
<tr>
<td>FAR</td>
<td>23%</td>
<td>70%</td>
<td>47%</td>
<td>57%</td>
</tr>
</tbody>
</table>
Active authentication

5) Using difference, average, standard deviation for specific vectors
 - Calculate difference between verification and registered vectors
 - Check if they fall within the range of average+-standard deviation
 - Count number of vectors that follow the criterion
Active authentication

Results

<table>
<thead>
<tr>
<th></th>
<th>Specific parameters</th>
<th>Specific parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{Av} + 3 \times \text{sd}$</td>
<td>$\text{Av} + 2 \times \text{sd}$</td>
</tr>
<tr>
<td>FRR</td>
<td>40%</td>
<td>70%</td>
</tr>
<tr>
<td>FAR</td>
<td>36%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Active authentication

6) Using difference, average, standard deviation for all vectors
 - Count number of vectors for which difference between verification and registered vectors lies between average-1.5*standard deviation to average+1.5*standard deviation
 - Repeat for every user
 - Select one with the highest count
Active authentication

7) For each attempt of training phase, we also found the number of vectors which fall within the defined range

- Found range of counters for individual users from training phase
- Each user has his own range
- During verification, checked if the count of vectors is within the range specified
Active Authentication

Using individual ranges. Separate model for everyone

<table>
<thead>
<tr>
<th>Model 1</th>
<th>FAR</th>
<th>FRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 user</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>3 users</td>
<td>31.5%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Active authentication

Combining individual ranges and comparison with other users

<table>
<thead>
<tr>
<th>Model 2</th>
<th>FAR</th>
<th>FRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 user</td>
<td>5%</td>
<td>20%</td>
</tr>
<tr>
<td>3 users</td>
<td>13.1%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Active authentication

For single user

![Bar chart showing performance comparison between Model 1 and Model 2 for FAR and FRR metrics.]
Active authentication

For 3 users

Model 1 Model 2

FAR FRR

0 10 20 30 40 50 60 70 80 90 100
Passive authentication

1) Record coordinates in background
 - Used Windows hooks
 - Recorded data for about 4 hours
Passive authentication
Passive authentication

2) Filter data points
 1) Delete coordinates just before and after mouse went idle
 2) Delete coordinates where the speed was above a threshold

Result: Did not make a significant change in the concentration of points
Passive authentication

3) Selecting points around which density of points was above a certain number
Passive authentication

4) Enclose dense regions with a bounded figure
 - Draw a rectangular region around dense regions

 Result: Couldn’t get all the dense regions
Passive authentication
Passive authentication

- Using gift-wrapping algorithm

Result
Passive authentication

5) Find vectors for authentication
 - Checked for transitions between states
 - Limited transitions within same state
 - Recorded speed, angle, distance from best fit line
 - Stored average, standard deviation of three parameters
Passive authentication

Results

- FAR=90%
- Hopeful it would work if add more parameters to differentiate users
Conclusion

- Security important in today's world

- Need security systems that are cheap and easy to use

- Authentication by mouse movements provides both
Conclusion (cont’d)

- Active authentication has FAR and FRR of 13% and 25% respectively.

- FAR and FRR increase if users have overlapping regions of similarity.

- Passive authentication can be improved by adding more parameters.
Future Work

- Need to reduce FAR and FRR
- Can add some more parameters to make it more precise
- Make improvements in passive authentication
Q&A

Demo

Thank you