Modems, DSL, and Multiplexing

CS158a
Chris Pollett
Outline

• Finish up Modems
• DSL
• Multiplexing
The fastest modems

- Last day, we say the combinations and phases used to code symbols on a 2400 baud line to get speeds up to 9600 bps (after error correction).
- The next step after this was QAM-128 which gives a speed with error correction of 14,400 bps.
- To additional standards after that V.34 and V.34bis achieved speeds up to 28,800 and 33,600 bps.
- This is closed to the Shannon limit due to noise on the line.
- However, if one puts the ISP end of the line on a digital loop rather than a traditional loop, the Shannon limit can be raised to about 70 kbps.
- The currently the best used standard V.90 achieves 56kbps because it uses some of the bits per symbol as control bits.
- A line is called **full duplex** if it allows traffic in both directions at the same time, **half duplex** if it allows traffic in both directions provided one has turn taking, and **simplex** if traffic in only one direction is allowed.
- Modern modems are full duplex.
Digital Subscriber Line

• To compete with cable broadband and with satellite transmission speeds, the phone companies needed a new approach to sending a signal over the local loop.
• So digital subscriber lines (DSL) were developed, the most common of these being ADSL (asymmetric DSL).
• The reason why modems are so slow is that at the end office the signal is passed through a filter which attenuates signal below 300Hz and above 3400 Hz. As the signal outside of these frequencies is not complete destroyed, one gets about 4000Hz of bandwidth on a good day.
• With DSL the incoming line is connected to a different kind of switch at the end office without this filter. (A filter is added to lines that will be used for phone: G.999.2 standard)
• The bandwidth then is limited by physical properties of the local loop, such as how far one is from the end office.
Bandwidth of DSL
More on DSL

- The local loop has a typical spectrum of about 1.1 MHz.
- Initially, ADSL this is split into three bands, one for phone, one for upstream and one for downstream. The encoding to/decoding from these bands is called **frequency division multiplexing (FDM)**.
- Another approach is called **Discrete MultiTone (DMT)**, splits the total bandwidth into 256 independent channels each of bandwidth 4312.5Hz. Channel 0 is used for voice, Channels 1-5 are not used, and the remaining channels are for data and use V.34 at 4000 baud as the means of communication.
- The signal is reconstructed at the end office by a **digital subscriber line access multiplexer (DSLAM)**, packets are formed and sent onto the ISP.
- In both schemes most of the bandwidth is allocated for downstream. This is where the A in ADSL comes from.
- The current standard allows speeds up to 8Mbps, if a splitter (rather than just subscriber installed filters) at the home is used.
Multiplexing

- The phone companies have developed a variety of schemes to send several phone calls over one trunk line.
- These fall into two basic categories: **Frequency Division Multiplexing (FDM)**, which we’ve seen, and **Time Division Multiplexing (TDM)**.
- In TDM, the users take turns in a round-robin fashion, each one periodically getting the entire bandwidth for a little burst of time.
- As an example, the allocation of different frequencies for different AM radio channels is an example of FDM. The alternation between songs and advertisements is an example of TDM.
Frequency Division Multiplexing

• When many phone channels are multiplexed together 4000Hz is allocated to each channel.
• Frequencies of channels are translated by different amounts to put them all on the same line.
• Typically 60 channels are but into a 108kHz band called a group.
• For further bigger trunk line five groups are multiplexed into one supergroup. The highest level is when five or ten such groups are multiplexed together to create a mastergroup.
Wavelength Division Multiplexing

- FDM over optic fiber used a technique called Wavelength Division Multiplexing (WDM).
- In WDM, basically input signals at different wavelength are linearly added together by a combiner and at the other split out by a splitter.
- As of 2001, 96 channels were typically combined each with a capacity of 10Gbps.
- Such techniques allow one to use more of the capacity of fiber, which typically far exceeds the rate at which it can be driven by a single electrical to optical conversion.
Time Division Multiplexing

- FDM often requires analog circuitry which can be more complicated to drive from a computer.
- TDM on the other can be done completely electronically.
- A device at the end office called a codec (coder/decoder) encodes and decodes the signal as a sequence of 8 bit numbers.
- Sampling the phone line data is done at 8000 baud. Each sample 7bits +1 control bit of info is obtained from the Voltage level of the voice signal. Called Pulse Code Modulation (PCM).
- In a T1 carrier one then has frames of 193 bits which are sent in 125 microseconds. (So 8000 a sec)
- Each frame consists on one 8 bit value from each channel for 24 channels (can think of one channel = one phone call) and a framing bit.
- The framing bit has the pattern 01010… for odd frames and is used for signaling on even frames.
- T1 lines operate at 1.5 Mbps. Four of them can then be multiplexed into a T2, 7 of those into a T3, and 6 of these into a T4 line which has a capacity of 274 Mbps. (CCITT scheme has different capacities up to 565 Mbps).
SONET/SDH

- Two variants of TDM are used for Fiber Optics: SONET (Synchronous Optical Network) and SDH (Synchronous Digital Hierarchy). Both are very similar.
- SONET uses a 1GHz master control clock.
- Frames are 810 bytes (a rectangle of 9 x 90 bits) with 8000 frames/sec (STS-1 transport signal).
- Each frame is a rectangle which looks like:

 ![Frame Diagram]

 - SONET frames are sent back to back even when there is no data. A two byte sync pattern is used to start each frame.
 - 87 columns are for user data.
 - A **synchronous payload envelope** can occur anywhere in a frame it begins on a line with a path overhead marker. It might also cross frames.
SONET Multiplex Rates

<table>
<thead>
<tr>
<th>SONET</th>
<th>Electrical</th>
<th>Optical</th>
<th>SDH</th>
<th>Optical</th>
<th>Gross</th>
<th>SPE</th>
<th>User</th>
</tr>
</thead>
<tbody>
<tr>
<td>STS-1</td>
<td>OC-1</td>
<td></td>
<td></td>
<td></td>
<td>51.84</td>
<td>50.112</td>
<td>49.536</td>
</tr>
<tr>
<td>STS-3</td>
<td>OC-3</td>
<td>STM-1</td>
<td></td>
<td></td>
<td>155.52</td>
<td>150.336</td>
<td>148.608</td>
</tr>
<tr>
<td>STS-9</td>
<td>OC-9</td>
<td>STM-3</td>
<td></td>
<td></td>
<td>466.56</td>
<td>451.008</td>
<td>445.824</td>
</tr>
<tr>
<td>STS-12</td>
<td>OC-12</td>
<td>STM-4</td>
<td></td>
<td></td>
<td>622.08</td>
<td>601.344</td>
<td>594.432</td>
</tr>
<tr>
<td>STS-18</td>
<td>OC-18</td>
<td>STM-6</td>
<td></td>
<td></td>
<td>933.12</td>
<td>902.016</td>
<td>891.648</td>
</tr>
<tr>
<td>STS-24</td>
<td>OC-24</td>
<td>STM-8</td>
<td></td>
<td></td>
<td>1244.16</td>
<td>1202.688</td>
<td>1188.864</td>
</tr>
<tr>
<td>STS-36</td>
<td>OC-36</td>
<td>STM-12</td>
<td></td>
<td></td>
<td>1866.24</td>
<td>1804.032</td>
<td>1783.296</td>
</tr>
<tr>
<td>STS-48</td>
<td>OC-48</td>
<td>STM-16</td>
<td></td>
<td></td>
<td>2488.32</td>
<td>2405.376</td>
<td>2377.728</td>
</tr>
<tr>
<td>STS-192</td>
<td>OC-192</td>
<td>STM-64</td>
<td></td>
<td></td>
<td>9953.28</td>
<td>9621.504</td>
<td>9510.912</td>
</tr>
</tbody>
</table>