In this paper we shall show that a unicyclic graph G is cordial if and only if $G = C_{4k+2}$, for all k and that the generalized Petersen graph $P(n,k)$ is cordial if and only if $n \equiv 2 \pmod{4}$.

Let G be a graph. Let A be a set of vertices and E a set of edges of G. We shall write $G \setminus A$ to denote the subgraph of G obtained from G by removing all vertices in A together with all edges incident with them, and write $G \setminus E$ for the subgraph obtained from G by removing all edges in E. We shall also write $C_m = [a_1, a_2, \ldots, a_m]$ to denote a cycle of order $m \geq 3$ such that $a_m a_1, a_i a_{i+1} \in E(C_m)$, $i = 1, 2, \ldots, m-1$. We shall call a tree odd or even according as its order is odd or even.

2. Unicyclic graphs

A unicyclic graph is a connected graph with exactly one cycle in it. Some unicyclic graphs are shown in Figure 1.

![Figure 1](image)

Consider a cycle $C_m = [a_1, a_2, \ldots, a_m]$. Let T_i, $i = 1, 2, \ldots, n \leq m$ be a rooted tree, that is to say, a vertex in T_i is distinguished as the root of T_i. Form a graph G from C_m and the T_i's by identifying the root of each tree T_i ($i = 1, 2, \ldots, n$) with a vertex of C_m so that different roots are