1. In each of the fragments of code below, how many times is the instruction \(\text{sum++} \) executed? In a, and b give an order of magnitude only, in c you need the exact number. You may use the formula \(\sum_{j=1}^{n} j = \frac{1}{2}n(n + 1) \)

a) \[\text{for}(i = 1; i <= n; i++) \]
 \[\text{for}(j = 1; j < i * i; j++) \text{ sum++;} \]

b) \[\text{for}(i = 1; i <= n; i++) \]
 \[\text{for}(j = 1; j <= i * i; j++) \text{ sum++;} \]

c) \[\text{for}(i = 17; i <= 23; i++) \]
 \[\text{for}(k = 0; k < 2 * i; k++) \text{ sum++;} \]

2. Give the rate of growth for each of the following functions. Your answer should be of the form \(\Theta(f(n)) \) for some fairly simple function \(f(n) \).

a) \(n^2 + (\ln(2^n))^3 \)

b) \(5^n + 2^n + \sqrt{n} \) \hspace{1cm} // \(n + \sqrt{n} \) is in the exponent

c) \(n^3 + n^4 \left(\frac{\ln n}{\sqrt{n}} \right)^3 \)

d) \(n \sqrt{n} + 1^{0.8} + 2^{0.8} + 3^{0.8} + \ldots + n^{0.8} \)

e. \((\ln(n!))^3 + (\sqrt{n})^{6.2} \)

3. The following sequence of numbers is inserted into an AVL tree. Show the shape of the tree after each insertion.

 \[10, 20, 30, 25, 26, 27 \]

4. Suppose you start with an empty AVL tree and insert a sequence of numbers. After each insertion, either no adjustments are made, or a rotation is performed. Give an example of a situation in which the first two successive rotations are \(RR \) and \(LR \). There maybe no rotations after some insertions.
5. Describe in some reasonable details how you remove a node from a binary search tree. Illustrate your explanation on the tree below: Show what happens after you remove the root. You should not write any code, just explain the “philosophy” of what happens.

![Binary Search Tree Diagram]

6. Suppose a binary tree contains an `int` as the data at each node. Write a method

```java
int nPositive(BNode r);
```

which will take as the parameter a reference `r` to a root of a binary tree, and return the number of nodes of the tree with root `r`, which contain a positive data.

7. Consider the iterative version of the merge sort, and consider the following array:

```
3, 18, 4, 45, 2, 6, 19, 5, 24, 6, 9
```

Show the state of the array after each insertion

8. Suppose you use the insertion sort to sort the following array:

```
2, 4, 6, 8, 10, 1
```

How many comparisons will be made? Exact answer please.

9. In a few sentences describe the advantages and disadvantages of the QuickSort.