Rather than covering Red-Black trees (as in the text), or AVL trees, I will cover 2-3 trees instead. I find them to be simpler, and the generalize more easily into B-trees, covered in the textbook. We will also cover 2-3-4 trees, which are covered in the book as a specialized version of B-trees. You may find that other write-ups of 2-3 trees differ in minor ways. I have not viewed the original (1970) presentation of 2-3 trees, but all variants are quite similar. For the purpose of your programming assignment, you should use the version we discuss in class, and written about here.

In a Binary Search Tree, each node is associated with a single key value. The node has two children, because it breaks a range into two subranges: those with smaller values, and those with larger values. It is sometimes convenient to assume that all values in the tree are distinct, and the following discussion may sometimes assume that values are distinct. For non-distinct values, if you want to allow for repetition of keys within the tree, I generally consider the values to go “to the right” when they have a choice, that is, for key \(x \), values \(v < x \) go to the left subtree, while values \(v \geq x \) go to the right. (Here, we send equal values to the right, so that an in-order traversal of the tree after insertions will result in a stable sort of the values.)

In a standard Binary Search Tree, a value may be stored in an internal node of the tree, or at a leaf node. You should all be familiar with this, as I will start from here. In a Binary Search Tree, these guide values are just single key values: if the key is \(x \), and you are searching for \(v \), you go to the left child of \(x \) if \(v < x \), and the right child if \(v \geq x \).

2-3 Trees: Binary trees seem natural because for key \(x \), value \(v \) can be \(v < x \) or \(v \geq x \). However, if an internal node has 2 key values, \(x \) and \(y \) such that \(x < y \), it is natural for the node to have 3 children: the leftmost child has values \(v < x \), the middle child has values \(x \leq v < y \), and the rightmost child has values \(v \geq y \). A 2-3 tree will allow each internal node to have 2 or 3 children, by allowing the internal nodes to each have 1 or 2 keys respectively. Note, no internal node ever has just one child, and a node with 1 (2) key values has exactly 2 (3) children.

In 2-3 trees, all leaves will be at the same level, and the number of children of various nodes are adjusted to ensure that.

Search: To search for a record with key value \(v \) is very similar to searching for the a value in a Binary Search Tree. The only difference is that instead of having a single comparison at a node to determine which of 2 children to recursively search, up to 2 comparisons may be needed to determine which of 3 children to recursively search, when a node contains two key values instead of just one.

Insertion: As in Binary Search Trees, to insert a new record, first search for that value to find where it belongs in the tree. Here, we assume that the leaf node has enough room for 2 records (keys), so if the leaf node where the value would reside has only one record, insertion is simple. Just insert this value into the same leaf node, so that it now stores 2 values.

When the leaf already has 2 key values, it doesn’t have room for the new value. Consider that the two values, plus the one to be inserted, are \(x, y, z \), such that \(x \leq y \leq z \). (We call the median value \(y \), regardless of whether it is being inserted or already in the tree. Again, for sorting stability, the new value should go “to the right” if there are repeat values, so if a new is being inserted which has a value equal to the larger of the two keys already in the tree, I would call the new key \(z \) above.)

The node has no room for 3 values, so we use \(y \) to separate \(x \) and \(z \). \(y \) “gets promoted”, at which point it is recursively inserted into its parent node, which may also split if there are already two keys there. If the node has no parent (it is the tree root), we create a new parent node, which will be the new root of the tree. (The root grows up here, leaving leaves at the same level. This is the only time that the height of the tree grows.) The root’s two children will be \(x \) and \(z \). (For non-leaf nodes, we will also need to set \(x \) and \(z \)’s children correctly when splitting a node.)

The height of the tree is logarithmic: if every internal node had 2 children, the tree would have approximately \(\log n \) levels. If every internal node had 3 children, it would have approximately \(\log_3 n \) levels.

2-3-4 Trees: You can guess what 2-3-4 trees are going to be. Here, nodes are allowed 1-3 key values, and will have 2-4 children each. When we are adding a 4th value to a node, and thus need to split it, it makes sense to promote the median of the 3 values not being inserted, just for symmetry’s sake. Also notice: during the search procedure, you need at most 2 comparisons to compare to 3 key values: first compare to the median value, and then compare to the smallest/largest value depending on the outcome of that first comparison.

Note, 2-3-4 trees are covered in the B-tree chapter, as they are just the special case of B-trees of minimum degree 2.
Top-Down Insertion: A different implementation of 2-3-4 trees allows you to split nodes with 4 children before they are forced to split, and will not need any recursive calls to traverse back up the tree. Upon traversing your way down a tree, automatically split any vertices with 4 children (3 keys), sending the middle key up one level. The parent cannot already have 3 keys, because it would have been split in the previous step if it did, and thus when you promote a value, there will always be room in its parent to take that value without needing to recurse farther up the tree.

Deletions: I will not worry about a separate procedure for deletions in 2-3 Trees. For 2-3-4 Trees, we will just use the B-Tree deletion in the book.

B-Trees: As for B-trees, there are even more variants, such as B+ trees and B* trees. For these two variants, the biggest differences with B-trees (respectively) have to do with (a) whether records are stored within regular internal nodes, compared to just storing key values in internal nodes and keeping all records in the leaf nodes of the tree (key values in internal nodes then solely guide you to the correct leaf node), and (b) how large the minimum sized node is, compared to the maximum sized node. In any case, should you refer to B-trees via a source other than our textbook, be cautious, in that terminology may differ. Some books will describe B+ trees, but call them B-trees. Other variants in terminology have to do with the order of the tree. In our book, t describes the minimum degree of an internal (non-root) node. In other books, the order of the tree may refer to the maximum degree of the node, and odd values may be possible. (In our text, the maximum degree $2t$ is always even.) Details on how nodes split may vary. While not claiming that our text is the one-and-only way, or even that it is strictly better than other presentations, we will normalize to the presentation in our text when discussing B-trees.