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{lastname}@inf.ethz.ch
3 Department of Computer Science, San Jose State University,

San Jose, CA 95192, USA
taylor@cs.sjsu.edu

Abstract. We consider problems of (new) station placement along (ex-
isting) railway tracks, so as to increase the number of users. We prove
that, in spite of the NP-hardness for the general version, some inter-
esting cases can be solved exactly by a suitable dynamic programming
approach. For variants in which we also take into account existing con-
nections between cities and railway tracks (streets, buses, etc.) we instead
show some hardness results.

1 Models and Problems

There are many instances when public or private sector bodies are faced with
making decisions on how to allocate facilities optimally. Such problems with
mathematically quantifiable optimization constraints have been studied exten-
sively in the scientific literature (e.g., see the book [3]). Recently the European
Union has been encouraging the privatization of railway assets in various EU
countries in order to improve system efficiency as well as customer satisfaction.
In this paper we approach one such problem by studying how customer prox-
imity can affect the railway station location. More specifically, given a set of
settlements and an existing track, one wishes to build a set of new stations such
that (some of) the settlements can easily access those stations and, thus, use the
railway. This gives a gain in terms of (potentially) new users, but it also turns
into a cost for the old ones (for instance, a new station results into a delay for
those trains travelling on the track). Let us consider the following problem:
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Input: A set of P = {p1, . . . , pn} of settlements (i.e. points) on the Euclidean
plane, each of them with an associated demand di, and an existing railway,
that is, a set of straight-line segments forming a connected polygonal and whose
endpoints represent existing stations.
Solution: A set of new stations along the track.

Given a solution to this problem, we have a gain and a cost function due to
the new stations. The cost of building a new station, in general, depends on the
position we are placing it. In the sequel, we describe some possible definitions
for the gain function. All such definitions are distance-based, that is, the gain
due to the new stations depends on how far a settlement is from its closest new
station. We will first assume that the distance is the Euclidean one (although,
some of the results can be extended to other metrics).

Single radius. We first consider the following (simplified) scenario. A certain
settlement pi is far away from every existing station. So, for the people living
there it is not worth to use the railway. If we build a new station which is close
enough to pi (let us say at distance less than R) then the railway transportation
becomes “competitive” with respect to other transportations and all the people
in pi (let their number be di) will use this new station. We then have the following
model: a settlement pi uses a (newly built) station if and only if (a) this station
is at distance less than or equal to some radius R and (b) no existing station
was at distance less than R.

Notice that we can assume w.l.o.g. that no settlement in P is currently “cov-
ered” by the existing stations. Hence, the gain of a set S of new stations is the
sum of the demands di of those pi that are covered by the radius of some s ∈ S.
Formally,

n∑

i=1

di · cover(S, pi),

where cover(S, pi) equals 1 if there exists an s ∈ S at distance less than or equal
to R from pi, and it equals 0 otherwise.

Distance based costs. Notice that the single radius model is, in some cases, too
unrealistic since it assumes that a station at distance R = 500m, for instance, is
accessible, while a station at distance R′ = 550m is not. A more realistic model
should take into account the fact that the closer a station is the more (potential)
customers from a settlement are expected. For instance, we could say that the
expected number of users from pi is di/(δ + 1), where δ is the distance of pi to
the closest station. More generally, given a monotone (decreasing) function α(·),
the gain of a set of new stations can be expressed as

∑n
i=1 di ·α(δ(pi, S)), where

δ(pi, S) is the distance between pi and the closest station in S.

Multiple radii. This setting is somewhat in between the two previous ones. In-
deed, it can be used to approximate any distance based cost function with a
fixed set of radii. Roughly speaking, these radii result from a “discretization” of
an arbitrary function α(·). For instance, the function α(δ) = 1/(δ + 1) can be
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approximated by two (or more) radii. Clearly, the more radii we consider, the
better we approximate α(·).

Two optimization problems for single radius. We now focus on the single radius
model and we assume the cost of building a new station to be constant. For this
version, one can envision the following two optimization problems:

– Min Number of Stations (Min Station): minimize the number of sta-
tions needed to cover all the settlements.

– Budget Constrained Max Gain (Max Gain): given an integer k, with
1 ≤ k ≤ n, find the placement of k stations that maximizes the gain.

We first observe that the second problem can be easily used to solve the first
one: one just has to try all the k from 1 up to the smallest one for which the gain
is the biggest possible, that is, we cover all the settlements. On the other hand,
the other way round does not necessarily work. The limitation on the number of
new stations seems to complicate things: with only k new stations at hand, we
may not be able to cover all the settlements. In this case, our task is to find the
best subset of settlements that can be covered with k stations only.

1.1 Previous Work

Our model is inspired by [6]. In that paper, the authors consider two different
variants. The first one corresponds to what we here (re-) named single radius
model (accessibility model in [6]). For this model the authors proved that, when
a line set L (i.e., tracks) and a set S of integer points (i.e., settlements) are
given, finding the best placements for k stations is NP-hard. The second model,
named travel time model, takes into account the saved travel time over all the
travellers. In contrast with the accessibility model, here it is assumed that all
people in a settlement use the closest station and there is no a priori limit on the
number of new stations we are allowed to build. As also mentioned above, there
is a clear trade-off between the saved travel time due to a new station closer to
some settlements, and the increased travel time due to the fact that trains must
stop several times. Minimizing the saved travel time is also NP-hard [6].

The geometric disk cover problem [8] (related to the single radius model)
asks to cover a set of points in the plane with the minimum number of disks
of unit radius. This and other variants, in which the possible locations for the
center of the disks is given in the input, admit a polynomial-time approximation
scheme [8,4], which easily applies also to the Min Station problem. As for
more general distance based functions, we observe that placing the minimum
number of stations to maximize the gain is a restriction of uncapacitated facility
location with metric spaces [5]. The latter problem (and hence our problem(s))
admits constant-ratio approximation algorithms [5,17]. Moreover, the case in
which the service cost is the Euclidean distance (in our model this corresponds
to choose α = 1/δ) has a polynomial-time approximation scheme [1] (in short
PTAS). The same paper also gives (with the same technique) a PTAS for the k-
median problem, while constant-factor approximation algorithms for the metric
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version are presented in [2,10]. Notice that the Max Gain problem is a special
case of the k-median one (while in the facility location problem there is no such
restriction for the number of new facilities to open). Noticeably, the Euclidean
version of the k-median problem is already NP-hard [14].

The main difference between the above (more general) problems and our
problem(s) concerns the restriction on the possible locations for the new stations.
Indeed, in practice it is quite unlikely that the radius associated with a settlement
crosses several tracks far apart from one another: if somebody walks to a station,
then the distance he/she can cover is relatively small; if he/she goes by car, then
probably driving for more than, let us say, 10 minutes to reach such a station
would already make the railway transportation not that convenient (with respect
to simply driving to the destination). This is confirmed by the data from the
Deutsche Bahn AG used for the experiments in [6] and from the Swiss Federal
Railways SBB [11].

Therefore, in many cases the whole network can be broken down into simpler
smaller components. These components are nothing but single segments (i.e.
parts of a track) and the solution of one segment does not affect the others.
Actually, as already observed in [6], if every radius intersects the railway network
in at most one interval, then the Min Station problem is polynomially solvable.
Also, the Max Gain problem can be formulated as (uncapacitated) k-facility
location problem with unimodular matrices [16], which is solvable in polynomial
time [13, Chapt. 3.1] (see also [15] for more efficient methods). In [9] the case of
facilities and customers located both on a line at n given points and cost service
function satisfying the unimodal property (a generalization of Euclidean case
[7]) an efficient dynamic programming approach is given. This result can be also
used to obtain efficient algorithms for the single track versions in which we do
no have a single radius per settlement (namely monotone cost functions, which
include the multiple radii case). In the same paper, the authors also proved the
NP-hardness of generalization of the unimodal case (namely, bimodal functions).

Finally, in [16] several variant problems have been studied, including non-
continuous versions in which the possible locations of the stations is not given a
priori.

1.2 Our Results

In this work we focus on the Max Gain problem in the single radius model. In
particular, we aim in finding efficient exact algorithms for interesting cases that
do not satisfy the unimodular property assumption [6].

To this aim, in Sect. 2 we present a novel dynamic programming approach
for the single straight-line track. This restriction is solvable (within a better
time complexity) using the results in [7,18]: Indeed, the result in [7] implies an
O(n2)-time extact algorithm, which can be further improved to O(kn log n) by
using orthogonal range queries [18]. However, we use the ideas contained in our
dynamic programming approach to solve more complex situations where the
results of [7,9] do not apply and do not yield exact polynomial-time algorithms.
The natural extension of the single straight-line track is the case in which we
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have two parallel tracks and radii may intersect both of them. As we discuss at
the beginning of Sect. 3, this apparently simple version of the problem already
contains some complicating factors that make a natural extension of the dynamic
approach fail. However, we are still able to modify our dynamic programming
to exactly solve the following two versions:

– There is a minimum distance between consecutive stations we want to place;
(Sect. 3.1)

– All settlements lie in between the two tracks. (Sect. 3.2)

The first variant is motivated by the practical consideration that putting two
stations very close to each other has the only negative effect of delaying trains.
The second case makes a non-trivial use of geometric properties of the radii
generated by the settlements and might be of theoretical interest towards a
characterization of those instances that admit polynomial-time exact algorithms.
In both cases, the techniques used in [7,9] do not apply.

In Sect. 4 we show how an exact algorithm for the single track problem can be
also used to exactly solve a problem of simultaneously building a new straight-
line track and new stations on it: in this case we also have to decide where the
new track should lie.

Finally, in Sect. 5, we go back to non Euclidean cases (motivated by the exis-
tence of streets/buses connecting settlements to the tracks) and show that, even
with a single track, this version of the Max Gain problem is NP-hard. Moreover,
the corresponding Min Station problem is hard to approximate within a fac-
tor c log n, for some c > 0. This highlights the role played by the “geometry” in
our solutions and indicates the need of some assumptions on the geometry of the
streets to obtain exact (in some cases even approximate) solutions in polynomial
time.

Due to lack of space some proofs are only sketched or omitted in this version.
These proofs can be found in the extended version of this work [12].

2 Dynamic Programming for One Straight-Line Track

In this section we describe our exact algorithm for the problem restricted to
single radius and constant cost per new station for the case of only a single
track. The main ideas of this algorithm will be used in the sequel to solve the
two parallel track versions.

We first observe that a circle around a settlement pi with radius R intersects
the track in an interval Ii. By construction, this interval is the only region that
can contain a new station serving pi. Moreover, if we place a station in the
intersection of two (or more) intervals Ii, Ij , then this station will cover all
the corresponding settlements. So, the Max Gain problem translates into the
following one:
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– Max Gain 1 Track: Given a collection of (weighted) intervals1 on a line
L and an integer k, find k points on L that maximize the sum of the weights
of the intervals containing at least one of such points.

Notice that there is only a finite set of points on the line that must be taken
into account to optimally place the k stations: the endpoints of the intervals.
Hence, a simple brute-force approach yields an algorithm whose complexity is
O(nk), where n is the number of intervals. However, a more efficient approach
can be used to have a running time polynomial in both n and k. Consider a set
of k stations s1, s2, up to sk from left to right. Then, we hope that the set of
intervals that contain only the station sk can be computed by looking (only) at
the position of sk−1 (i.e. it is independent from what the solution on the left of
sk−1 is). Intuitively, this will allow us to break the instance into two independent
subproblems: on the “left” of sk−1 (there we have to use at most k− 1 stations)
and on the right of it (where only one station must be located). This will be
accomplished by a suitable dynamic programming approach. Before describing
this, we first prove formally the above statement.

Lemma 1. Given a collection of intervals on a line L and given three points i1,
i2 and i3 on L, with i1 < i2 < i3, it holds that contain(i2, i3) ⊆ contain(i1, i3),
where contain(i, j) denotes the set of intervals containing j and not containing
i.

Intuitively, if we are given a set of stations in which the rightmost one is in
position i and we add a new station in position j on the right of i, the gain due
to the new station is given by

gain(i, j) =
∑

I∈contain(i,j)

w(I), (1)

where w(I) is the weight associated to the interval I. We are now in a position
to describe the dynamic programming algorithm to solve the problem. Given a
set of intervals, let opt(i; k) denote the minimum cost among the solutions that
use k stations with the rightmost one in position i. Then, the following lemma
states how opt(i; k) can be computed if we have already computed this value for
all the possible i′ < i and k′ < k.

Lemma 2. For any i and for any integer k ≥ 2, the following condition holds:

opt(i; k) = max
i′<i

{opt(i′; k − 1) + gain(i′, i)}, (2)

where gain(·, ·) is defined as in Eq. 1.
The above lemma allows us to efficiently compute an optimal solution. In-

deed, we first observe that we need to compute tables gain(·, ·) and opt(·; ·) only
for at most 2n values: the endpoints of the intervals. Hence in the following the
point (or position) i will denote the ith endpoint of this set from left to right.
1 The weight of interval Ii equals the demand di.
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Lemma 3. The table gain(i, j) can be computed for all 1 ≤ i < j ≤ 2n within
O(n2) time.

We are now in a position to prove the main result.

Theorem 1. The Max Gain 1 Track problem can be solved within O(k · n2)
time, where n is the number of settlements.

3 Two Parallel Tracks

We now consider the following extension of Max Gain 1 Track: instead of one
track, we are given two parallel tracks (segments) and we have to place k stations
on them. Then, the natural extension of the dynamic programming algorithm
for the single track problem is as follows. We consider two parameters iT and iB

which are the positions of the rightmost station on the top and on the bottom
track, respectively. Then, opt(iT , iB ; k) is defined accordingly. Let us observe
that every settlement pi turns into a pair of weighted intervals IT

i and IB
i (with

one of the two or both possibly empty). Moreover, such two intervals cannot be
considered separately : if a station jT intersects IT

i and a station jB intersects IB
i ,

then the gain due to such two stations is not the sum of the weights of IT
i and

IB
i . Indeed, those two stations are satisfying the same settlement pi. Because of
this, we have to measure the contribution of a station as (the sum of the weights
of) the pairs (IT

i , I
B
i ) such that IT

i and IB
i do not contain any other station.

So, we define contain(iT , iB , jT ) and contain(iT , iB , jB) accordingly. Thence, we
would like to extend Lemma 1 and prove that, for any iT1 ≤ iT < jT and iB2 ≤ iB ,

contain(iT1 , i
B
2 , j

T ) ⊆ contain(iT , iB , jT ).

Unfortunately, the above statement is false. (Fig. 1 shows a counterexample:
pj ∈ contain(iT , iB , jT ) but pj 
∈ contain(iT , iB2 , j

T ).)

It

Ib

it
pi

j

ib

track T

track B

i1b

Fig. 1. A counterexample to the extension of dynamic programming algorithm to the
case of two (parallel) tracks.
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3.1 Minimum Distance between the Stations

The above example suggests a (reasonable) restriction of the problem for which,
instead, the dynamic programming approach works. Assume we require the dis-
tance between any two consecutive stations in the solution to be at least 2R.
Then, in the example of Fig. 1, the station iB2 would be on the left of IB

j . We
can prove that this is always the case.

We start with some useful observations. For any two points i and j, let dx(i, j)
denote the distance between the respective projections on the x-axis. Then, the
following fact holds:

Fact 2 For any I = (IT , IB) and for any two points i and j on the tracks, if
dx(i, j) > 2R then not both i and j intersect I.

Lemma 4. For any iT1 ≤ iT < jT , and iB2 ≤ iB, such that d(iT1 , i
T
1 ) > R and

d(iB2 , i
B) > R, the following holds:

contain(iT1 , i
B , jT ) ∪ contain(iT , iB2 , j

T ) ⊆ contain(iT , iB , jT ). (3)

Moreover, the same holds by considering some jB > iB in place of jT .

The above lemma easily implies that the dynamic programming algorithm
for the single track can be extended for two parallel tracks if we impose this
restriction on the minimum distance between two consecutive stations. Let us
consider the following problem restriction:

Max Gain r-St: We require any solution S = {sT1 , . . . , sTl , sB1 , . . . , sBm}
to satisfy d(sTi , s

T
i+1) ≥ 2R/r and d(sBj , s

B
j+1) ≥ 2R/r, for any 1 ≤ i ≤

l − 1 and 1 ≤ j ≤ m− 1.

Also Max Gain r-St admits a polynomial-time exact algorithm:

Theorem 3. The Max Gain r-St problem can be solved within O(n2r+2)-time.

3.2 Settlements in between the Tracks

We now consider the following problem:
Max Gain Inner: We consider instances in which all the settlements are located
in between the two parallel tracks.

The remaining of this section is devoted to the proof of the following result:

Theorem 4. The Max Gain Inner problem can be solved within O(n6) time,
where n is the number of settlements.

We will provide a polynomial-time algorithm for the Max Gain Inner as
follows: (i) we first restrict to solutions that have a particular structure and
show that the optimum can be found in polynomial time via (a variant of) our
dynamic programming used for Max Gain r-St; (ii) then, we show that every
instance of Max Gain Inner has an optimal solution with the same structure.
We begin with some definitions (see Fig. 2):
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j

I long

Ishort

i1 i2

I long
right � Ishort

right

Fig. 2. A non essential solution.

Definition 1. For a pair I = (IT , IB), we denote by I long (resp., Ishort) the
longer (resp., shorter) between IT and IB. Moreover, for every interval I∗, I∗

right

denotes its right half. We say that an interval is long if it is the longer in its
pair.

Definition 2 (Essential solution). Let I long
right � Ishort

right denote the interval ob-
tained by the projection of I long

right on the other track minus Ishort
right . A station

placement is essential if, for every pair I = (I long, Ishort), if I long
right contains a

station, then no two stations fall in I long
right � Ishort

right .

We first show that optimal essential solutions are computable in polynomial
time.

Lemma 5. The optimal essential solution can be computed in O(n6) time.

Proof. For each track we consider the two rightmost stations, provided that
their position satisfies Def. 2. Let iT = (iT1 , i

T
2 ), and iB = (iB1 , i

B
2 ) denote such

stations. Also let i′T = (i′1, i
T
2 ) where i′1 ≤ iT1 . (Similarly, we define i′′T with

respect to iT2 .) Def. 2 easily implies the following fact:

contain(i′T , iB , jT ) ∪ contain(iT , i′′B , jT ) ⊆ contain(iT , iB , jT ), (4)

where contain(i, j) denotes those intervals intersecting j and not intersecting any
of the stations in i. Notice that the above inclusion is similar to that of Lemma 4,
and it also holds by considering some jB > iB in place of jT . This guarantees
that the two rightmost stations are all we need to compute the contribution of
a new station jT (or jB) when added to a partial essential solution. Therefore
we can define a function gain(iT , iB , j) and solve the problem in a similar way
of Max Gain r-St for r = 2.

The next technical lemma will be used to prove the optimality of the essential
solutions vs. more general ones.

Lemma 6. Let I = (IT , IB) and J = (JT , JB) be two pairs of intervals such
that I long and J long lie on the same track. Also, let Jshort ⊆ I long

right � Ishort
right .

Then, I long
right ⊆ J long.
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Lemma 7. Every instance of Max Gain Inner has an optimal solution which
is also essential.

Proof. We show that any solution not satisfying Def. 2 can be transformed into
an essential one that covers the same set of intervals. Let I be an interval pair
for which Def. 2 is violated and let i1 and i2 > i1 be two stations both in
I long � Ishort. We will show that moving i1 on the right endpoint i′ of Ishort

yields a (essential) solution that covers the same set of interval pairs. Let J be
an interval pair covered by i1 but not covered by i2 nor by i′. If i1 ∈ Jshort,
then we can apply Lemma 6 and conclude that J long must contain the station in
I long
right. Otherwise, it must be the case that J long is on the same track of Ishort.
It is then easy to see that Lemma 6 implies that J long covers Ishort

right (simply
consider the interval J ′ obtained by exchanging Jshort with J long). Therefore,
we have i2 ∈ Ishort

right ⊆ J long. In both cases, the interval J is still covered in the
transformed solution.

By putting together Lemmata 5 and 7 we obtain Theorem 4.

4 Building Tracks and Stations

Here we consider the following problem: we are allowed to build a new track
and to place new stations on it. (Again, we are given a maximum budget for
the new track and stations.) Rather than solving the whole realistic problem,
we aim at showing some interesting cases in which an efficient algorithm for the
Max Gain problem immediately translates into an efficient algorithm for this
track-station placement problem.

In the sequel we show how to optimally decide the location of a new track:
we are allowed to build a straight line track (no matter how long) and to place
at most k stations on it so as to maximize the gain (defined in the usual way).
We denote this problem as Max Track Gain.

The main idea is to show that, given n settlements, there are at most O(n4)
lines to be considered. One among those gives an optimal solution. In particu-
lar, given a straight line track, what really matters is the underlying weighted
interval graph. The latter changes whenever (i) the line crosses the border of
some settlement radius or (ii) it crosses the intersection of two radius borders.
We thus obtain the following result (see [12] for the details):

Theorem 5. Let t(n) be the running time of an algorithm for the Max Gain
problem. Then the Max Track Gain problem can be solved within O(n4t(n))
time.

Notice that, if one of the endpoints of the line is given in input, then the
running time is O(n2t(n)). Indeed, we only have to consider lines passing through
some of the O(n2) points defined above.
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5 Existing Streets: Even a Single Track Is Hard

We consider the following generalizations of Min Station/Max Gain: every
settlement is connected to the track by means of a certain number of streets.
Moreover, whenever two streets leading to different settlements intersect, one
street passes over the other by using a bridge. So, people traveling on one street
cannot switch to another one2. We prove that this variant of Min Station,
denoted as Generalized Min Station, is hard to approximate within c lnn,
for some c > 0. Although this problem looks quite unnatural, it gives us a
strong indication: even if we only want to have good (i.e. constant ratio) approx-
imate solutions, we have to take into account some “geometry” of the streets,
in particular how they intersect. Since this result also implies the NP-hardness
of Generalized Max Gain, similar geometric properties should be considered
(at least) in deriving polynomial-time exact algorithms.

Our hardness proof is an adaptation of the NP-hardness proof given in [7] for
the k-facility location problem restricted to bimodal matrices. For the details we
refer the reader to [12].

Theorem 6. It is NP-hard to approximate Generalized Min Station within
c lnn, for some c > 0. Moreover, the Generalized Max Gain problem is
NP-hard, even when all settlements have the same demand.

Finally, our reduction implies the same hardness results even if we assume
the existence of a (common) street l parallel to the track: people from pi first
take some street from pi leading to l and then walk (i.e. move along the track)
up to some distance R.

6 Open Problems

We mention here some problems whose solution does not seem to be a straight-
forward consequence of our results:

– Consider non-Euclidean distances (e.g., existing streets connecting settle-
ments to the track might be considered). For the simple case of one street
leading to the track per settlement, the problem can be solved in the same
way: every pi still corresponds to one weighted interval on the track; the
length of such an interval depends on the “cost” of travelling through that
street. On the other hand, if we make no assumption on the way settlements
are connected to the track, then the problem becomes NP-hard, or even
worse if we look at the extension of Min Station (see Sect. 5).

– Consider the variant of the Max Track Gain problem in which the new
track(s) must connect two cities: Which is the best placement of a new track
between, let us say, Konstanz and Zürich if we consider polylines, or even
1-bend segments?

2 Or at least we can assume the majority of the people not able to jump from a bridge.
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– The complexity of some of the above extensions is not polynomial if the
budget value B or the number t of parallel tracks is not bounded. Are those
problems NP-hard for some values of B and t?

– As a cost function of a set of new stations, consider how much a train is
slowed down, with respect to the previous configuration without such sta-
tions. Clearly, the speed of the train will depend on the relative position of
the new stations and, in general, cannot be expressed as the sum of costs bi
of building a new station in position i.
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16. A. Schöbel, H.W. Hamacher, A. Liebers, and D. Wagner. The continuous stop
location problem in public transportation networks. Submitted to international
journal, 2002.
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