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ABSTRACT
Support for exploratory interaction with databases in ap-
plications such as data mining requires that the first few
results of an operation be available as quickly as possible.
We study the algorithmic side of what can and what can-
not be achieved for processing join operations. We develop
strategies that modify the strict two-phase processing of the
sort-merge paradigm, intermingling join steps with selected
merge phases of the sort. We propose an algorithm that pro-
duces early join results for a broad class of join problems, in-
cluding many not addressed well by hash-based algorithms.
Our algorithm has no significant increase in the number of
I/O operations needed to complete the join compared to
standard sort-merge algorithms.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; F.2.3 [Analysis of Algorithms
and Problem Complexity]: Tradeoffs between Complex-
ity Measures

General Terms
Query Processing, Data Mining, Spatial Data

Keywords
Join Processing, Non-Blocking

1. INTRODUCTION
We study the problem of performing a join operation in a

database while producing result tuples as early as possible.
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This will allow for piping output elsewhere (to give another
process a head start) or for estimates of total output size,
which may help lead to earlier abortions of joins which ap-
pear to be delivering undesired results, e.g. too many or too
few result tuples.

A commonly used algorithm for joins is the Sort Merge

Join: based on the join attribute, each of the sets is sorted
(such as by external mergesort, Knuth [13], Graefe [9]), and
then both sets are joined by a merge operation that requires
only a single I/O pass over each set, under the assumption
that tuples with matching attributes for the join (i.e. equal
for an equi join) fit in main memory at once. Here, the
efficiency goal is to minimize the total number of I/O oper-
ations.

While several studies analyze the overall efficiency of join
algorithms, the efficiency in terms of early result produc-
tion has — to the best of the authors’ knowledge — never
been considered analytically. Our algorithm produces join
results early (progressively) without sacrificing overall I/O-
efficiency. We present the first analysis to quantify the trade-
off between I/O-efficiency and early join result production
for sort-merge joins.

The results presented in this work hold for a large class
of joins based on sorting, such as equi joins, spatial joins
(plane sweep), temporal joins, band joins, similarity joins
and more.

1.1 Previous Work
Here, we give an overview of related work on join process-

ing with a focus on techniques that deal with early result
creation. Graefe [9] contains an excellent general overview
of join techniques.

Sort-Merge Joins vs. Hash-Joins
For equi joins the hash-join was found to be more efficient
than the sort-merge join (Graefe [10]). For non-equi joins,
however, many state-of-the-art algorithms are based on sort-
merge. For spatial intersection joins, the algorithms of [19,
1, 5] are extensions of the sort-merge join. Arge et al. [1]
shows the sort-merge join to be more efficient than a hash-
based method (Patel and DeWitt [21]), even without ex-
ploiting the join-during merge technique proposed by Negri
and Pelagatti [18] (see Section 1.1). The most efficient al-
gorithms for similarity joins are also sort based [20, 15, 3,
6].



Even for equi joins, there exist important cases when sort-
merge joins are more efficient: for multiple joins, when mul-
tiple sort-merge join operators are combined to run in a
pipeline (Selinger et al. [23]), consequent operators can ex-
ploit the “interesting ordering” established by a single sort-
ing operation.

Additionally, Li, Gao and Snodgrass [16] recently explored
techniques to increase efficiency of the traditional sort-merge
join in the presence of high intrinsic skew, which is known to
adversely effect hash-based algorithms. Their experiments
show that these new sort-merge join variants are much more
efficient in the presence of skew than traditional sort-merge
join for equi joins found in current commercial database sys-
tems.

Hashing Based Algorithms
Wilschut and Apers [25] present the Symmetric Hash-Join
(shj) for pipelined processing of equi joins. A similar idea
has been proposed by Raschid and Su [22]. For each data
set shj builds a hash-table simultaneously in main memory.
Whenever a tuple arrives, it is first inserted into its corre-
sponding hash-table and then probed against the other. No
assumption is made about the arrival frequency of tuples.
Even for the case that one input is temporary blocked, the
other can deliver tuples that allow the continuous produc-
tion of result tuples.

The most serious limitation of shj is that two hash-tables
have to be kept in main memory. Obviously, this require-
ment can not be met with very large data sets. Urhan and
Franklin [24] propose XJoin, a multi-threaded extension of
shj that can keep the hash-tables in secondary memory.
A similar approach is presented by Ives et al. [12] where
the algorithm is used for data integration of different active
sources.

Haas and Hellerstein [11] address online aggregation when
the input is received from a join. In order to produce accu-
rate results quickly, they introduce Ripple Joins. The basic
idea is to control the join processing using quality measures
of the approximated aggregate value.

Luo, Naughton and Ellmann [17] recently proposed a non-
blocking parallel spatial join algorithm. To the best of the
authors’ knowledge, this is the only work focusing on the
early production of results for joins other than equi join.
Their work combines techniques of shj, the Partition Based
Spatial-Merge Join of Patel and DeWitt [21], and a modi-
fied version of the reference point method of Dittrich and
Seeger [5].

Sorting Based Algorithms
Sort-based joins have previously been considered blocking
operators, where first results are produced only after a con-
siderable portion of the total runtime. This is particularly
true for the original Sort Merge Join of Blasgen and
Eswaran [2], where both inputs are entirely sorted before
being merged.

Sort Merge Join has been investigated for a large num-
ber of special circumstances (Graefe [9]), such as when one
of the sets is small enough to fit in main memory, or when
the set sizes differ substantially (Graefe [8]). Here, we con-
sider the problem when both sets are too large to fit in main
memory.

Negri and Pelagatti [18] observed that the sorted lists may
be an unnecessary byproduct of the Sort Merge Join pro-

cedure. In this case, it is easy to slightly reduce the total
number of I/O operations. For each of the two input se-
quences, the tree of external merge operations for mergesort
should be modified so that for the root level, only half of
the fan-in is needed. Next, the final level of each of these
sorting procedures should be replaced with a single “vir-
tual merge” in which the lists from both sets are loaded
into memory, but instead of outputting two sorted lists, the
lists are stepped through in linear time, outputting only
the successful join tuples. As in [18], this final operation
is called Join-during-Merge. In fact, Negri and Pella-
gatti call their entire algorithm Join-during-Merge, but
we will refer to it as Budgeted Sort Merge Join, for
reasons explained in Section 2.3. The number of I/O op-
erations saved in this approach varies, and depends on the
fan-in of the sort, and the completeness of the leaf level of
the original sort trees. In the most common case, when only
one merge node is needed for the two mergesorts combined,
this approach eliminates one read and one write of all the
data. This optimal case maximizes savings. For multi-level
mergesort operations, the diminished fan-in of the mergesort
root reduces the I/O operations saved, but in most cases the
savings are comparable to the optimal case.

In [7] we presented a generic non-blocking technique to
produce early join results. This is achieved by intermingling
the sorting steps with tuple comparisons across both sets,
without significantly increasing total runtime. [7] presents
a basic algorithm, shows how to apply our technique to a
large class of different join operations and examines a special
case variant of the algorithm presented here. A series of
experiments with different data sets show the efficiency of
our technique.

1.2 Contributions
We examine the algorithmic side of progressively report-

ing result tuples as the Sort Merge Join proceeds, in-
stead of waiting for the sorting process to complete. Our
pmsj algorithm is an extension and improvement over that
of [7], which focuses on experimental results. pmsj draws its
improved efficiency from an intricate interleaving of tuple
comparisons for sort and for join. For instance, to further
increase the rate at which results are reported, we create
imbalanced external mergesort trees, with different fan-in
values at different parts of the tree. The novel way we do
this balances the need for immediate results against total
runtime, simultaneously achieving near best-known values
for each. We define a framework for measuring the overall
and progressive performance of our algorithm against the
currently best known algorithms. Using this framework, we
provide full analysis of our algorithm, the first such analysis
of a non-blocking Sort Merge Join approach.

1.3 Outline
In Section 2, we make the ultimate goal of our work tech-

nically precise. In Section 3 we present our Progressive

Mergesort Join (pmsj) algorithm and its analysis. It
closely matches the I/O efficiency of Blasgen and Eswaran’s
original Sort Merge Join algorithm [2]. We further dis-
cuss practical and implementation details in Section 4. In
particular, we show variants to produce all final results in
sorted order, and to reduce the number of I/O operations to
almost exactly match those of Negri and Pelagatti’s Bud-

geted Sort Merge Join. We conclude in Section 5.



2. PRELIMINARIES
We begin by presenting the general framework, terminol-

ogy, and variable definitions for our algorithm. Next, we pro-
pose some related problems, which serve not only to further
motivate the pmsj problem, but also to give us an “ideal”
standard against which we will formally compare pmsj.

2.1 Elementary Calculations
We consider two large sets of data, R and S. For sim-

plicity, we will assume that they are equal sized sets of N
elements each, though this is not required. Records are read
B elements per page, and let n = �N/B� be the total num-
ber of I/O operations to read (or write) all of the data from
one of the sets once. For main memory of size M (in input
items), and m = �M/B� the number of pages which fit in
main memory, the fan-in F of an external mergesort can be
as large as as m − O(1). Higher fan-in tends to lead to
a smaller number of passes over the data, i.e., a shallower
mergesort tree, and hence shorter runtime. While full main
memory might be used for the evaluation of the leaf nodes of
the sort tree induced by external memory mergesort, we use
F to denote the fan-in, allowing the option to use a smaller
fan-in1. To simplify notation, we may assume B divides
larger values from here forward.

For the standard external memory mergesort of N items,
initial runs of size M2 can be created internally. There will
be �N/M� such runs, which constitute the leaf nodes of the
external mergesort tree, and in total they will require n reads
and n writes for their creation. With fan-in F , there will
be �logF � N

M
�� complete levels of merging within the sort

tree. Each of these levels will need to read and write all
of the input. (For a tree with a single merge node, we let
F = � N

M
�.) Further, there will be one incomplete level of

merges with �(� N
M
� − F �logF �N/M��)/(F − 1)� merge nodes

of full F fan-in, each of which will use Fm read and write
operations. Finally, if the above do not account for all of the
leaf nodes, there will be one additional merge node, with fan-
in < F . (There may also be one incomplete leaf node, with
input size < M .) This assumes that the mergesort tree is
constructed from the root towards the leaves, such that all
levels of the tree are full except perhaps for the lowest.

This is precise but cumbersome. To simplify notation dur-
ing informal discussion, we will allow “fractional” values in
our calculations for the levels within the mergesort. Instead
of calculating the exact number of I/O operations needed
for the final, incomplete level of an F -way mergesort, we
approximate the full process as needing (logF � N

M
� + 1)n

reads, and writes. We use more precise values in our formal
analysis (Section 3.1).

In the naive Sort Merge Join algorithm, the sort goes
through logF � N

M
� merge levels, plus the initial run creation

for each set, and performs a final read of all data for the join
step. If Z is the number of output items, and z = �Z/B� is

1Smaller fan-in values may result in more levels for the
mergesort tree, but Graefe reports that trade-offs in seek,
latency, and transfer times, in conjunction with buffering
and forecasting techniques, usually combine to make rela-
tively small fan-in sizes optimal. See [9], Section 4.2.
2If the initial sorting is done via replacement-selection (see
Knuth [13]), the initial runs are of expected size 2M , result-
ing in only half as many leaf nodes for the mergesort. It
can be added to any mergesort based algorithm (including
ours). See Graefe [9] for discussion.

the number of pages of output, it takes (2 logF � N
M
� + 4)n

reads, and (2 logF � N
M
� + 2)n + z writes. Between the two

sets, the Budgeted Sort Merge Join will save up to 2n
reads and writes each3, but will not produce the two sorted
sets.

2.2 Growing Sample Sizes
Before running a join operation on two huge data sets, it

may be desirable to sample each to see what the output will
look like, or to approximate the size of the output4 (e.g. to
estimate the similarity parameter in a similarity join). For
given samples R′ ⊂ R and S′ ⊂ S, |R′| = |S′| = X, the
join problem for R′ and S′ mimics the original join problem
with different size sets. When the subsets to join are given
with X items each, the join of those items can be computed
fastest by merely running the best algorithm known for the
usual join problem, for instance, Budgeted Sort Merge

Join from Negri and Pelagatti [18]. If we do this for a small
subset, the join completes rapidly, and we get the first few
join results quickly.

One important issue is how to choose a good sample size
X. For the purpose of getting an expectation5 of how many
join result tuples we generate on the fly, we assume that
within each set, the data is “uniformly distributed” in the
following sense: the probability of a successful join operation
between an item from each set is independent of the location
of the items from within their respective sets. This condi-
tion is implied by stronger conditions such as requiring that
the first X items from each set represent a uniform random
sample from that set. Our condition implies that if there
are Z join results within the entire R × S join, then sub-
sets of size X are expected to deliver Z(X/N)2 results. For

X < N/
√

Z, less than one result is expected. For Z = O(N),
a relatively large sample will be needed to find interesting
results, and the smaller Z is, the larger the sample must be.
The complicating factor is that Z is not known; Z is needed
to choose a good sampling size, yet it is estimated by the
sample.

The best we can hope for is a dynamic, growing sample,
produced by an algorithm which delivers join results for in-
creasing sized subsets and nevertheless completes in the best
known time. This allows sample sizes to be taken in a fully
adaptive way, in the sense that no choices for the sample
size X (or a priori estimates of Z) are needed. We propose
pmsj, which comes close to this behavior: after T I/O op-
erations, for any T , the number of joins reported is close to
the number that would be produced from a sample, if the
sample size was chosen to run in T operations. That is, we
are competitive with the above ideal standard.

3In the optimal (and most common) case, when the new tree
uses only a single merge node, the savings will be 4n total
I/O operations. In general, multi-level trees save F−2

F−1
2n to

(4 − O(1)/F )n I/O operations.
4A uniform sample of the inputs does not give a uniform
sample of the outputs. For in-depth discussion of the dif-
ficulty of efficiently and accurately sampling the output of
a query, see Chaudhuri, Motwani, and Narasayya [4]. The
input samples can still be used to estimate the total output
size. See also [7].
5We aim at expected case behavior. Worst-case results to
obtain even one result tuple for a join takes asymptotically
just as long as sorting, by reduction from external element
uniqueness.



2.3 Generalized Budgeted Sort Merge Join
Let us turn the above reasoning around: given an I/O

budget, how can one maximize the total number of success-
ful joins found from R and S? If we have a fixed budget
of I/O operations, it is reasonable to pick as large a sample
from each as can be run through the algorithm with the
fastest completion. Of course, not knowing how many re-
sults will come from the join makes precise budgeting of the
I/O impossible. In joining two subsets of size X, Z(X/N)2

result tuples are expected, at an I/O budget of approxi-
mately �X

B
�(4 logF 2� X

M
� + 2) (ignoring the output of join

result tuples). (A more precise I/O budget and full analy-
sis is given in Lemma 7, but our goal here is to introduce
intuitive ideas.)

Note that it might be impossible to progressively produce
this number of results using this number of I/O operations
as X grows. For a single, given X value, however, we can
run Budgeted Sort Merge Join to get the expected join
result tuples. Thus, our General Budgeted Sort Merge

Join performance represents a whole family of algorithms,
parameterized by the sample size X of items per list. Any
sample size corresponds to a budget of I/O operations, and
an instance with this budget produces no output at all until
the root node of General Budgeted Sort Merge Join is
reached, and during this (linear time) Join-during-Merge,
all of the output will quickly be produced. The speed at
which join result tuples are produced within that final Join-

during-Merge node depends on how large the samples are:
the larger X is, the more rapidly the tuples will come once
the final node is reached (though it will take longer to reach
that node).

Our ultimate goal is to create a single algorithm which
progressively increases the sample size, and for each sam-
ple size compares with the best performance (measured in
join result tuples versus I/O operations), thus measuring
it against the entire family of General Budgeted Sort

Merge Join algorithms with specific I/O budgets. As one
run of our algorithm uses more and more I/O operations, it
is progressively compared to a General Budgeted Sort

Merge Join algorithm with an I/O budget to match. We
will measure our algorithm’s deviation from this ideal curve
in two ways. The first (delay) measures how many extra
I/O operations our algorithm has vs. General Budgeted

Sort Merge Join. The second (output efficiency) mea-
sures how many results we progressively produce compared
to those Budgeted Sort Merge Join could produce using
the same I/O, that is, we compare our results and I/O per-
formance to that of the entire General Budgeted Sort

Merge Join family.
It will become clear that our pmsj algorithm allows many

ways to balance output efficiency against delay. For this
common trade-off between two goals — greedy (produce
join results immediately) vs. long range (find all join re-
sults as quickly as possible) — we introduce an interesting
technique for our mergesort tree evaluation which nearly op-
timizes both simultaneously.

One fact is painfully obvious even if we could match the
entire General Budgeted Sort Merge Join performance
curve with one algorithm: the number of joins reported at
the beginning of a run is a small percentage of the whole. If
the sets are large enough to require several levels within the
mergesort, this seems to be inherent to the problem.

3. PROGRESSIVE MERGESORT JOIN
In this section we introduce our non-blocking join algo-

rithm Progressive Mergesort Join (pmsj). Ideally, we
would like to create a single algorithm which will progres-
sively produce results which match the performance of the
entire General Budgeted Sort Merge Join family as
closely as possible, rather than just matching it at one point.
In order to match the total I/O performance, no more than
(4 logF � N

M
� + 2)n + z I/O operations may be used to run

the algorithm.
Our approach is to interleave join operators within the

mergesort procedure. We extend our work from [7] in sev-
eral ways: we carefully order the evaluation of the mergesort
tree, strategically place just a few join operators, and per-
form merges much more frequently in some parts of the tree.
This new algorithm will produce many more early join re-
sults. We then quantify our efficiency using the measures
introduced in Section 2.3.

We treat sets R and S symmetrically. We first present
an internal “level” (Figure 1) within the tree of the sorting
process of pmsj, and then will describe the top and bot-
tom of the tree. In the figure, each node represents a pro-
cess which takes input streams from its children processes,
merges them, and outputs a stream with longer sorted sub-
sequences (runs). First, consider the solidly drawn nodes at
the top of the figure. Data from R will be divided equally
between these nodes for R, and the single, leftmost Join-

during-Merge node for R at the same level. The same
holds for S, using the nodes drawn with dotted lines. (To
simplify our description and analysis, we are assuming here
that N is a size which will make the bottom level of our tree
complete. More formal analysis is given in Section 3.1.) The
nodes at the bottom of the figure represent nodes the next
full level down, for which corresponding statements hold.
The tree will be evaluated by post-order traversal, starting
with the Join-during-Merge nodes on the left. Once we
finish evaluating such a node, its siblings are evaluated (any
arbitrary post-order will do), and then its parent (another
Join-during-Merge node) is evaluated.

For a node-by-node description, we begin with the nodes
on the right side of the tree. They are very much like the
external mergesort nodes in a standard Sort Merge Join

algorithm. Each node takes F sorted subsequences from its
children and merges them, producing a longer sorted subse-
quence. For each of these nodes, either all of the children
streams are from R, or they are all from S, and all of these
nodes have full fan-in F . The R and S children nodes are
drawn in an alternating way, to show a “uniform progres-
sion” through the two data sets, but many possible evalua-
tion orders (including strict left-to-right post-order) give the
same performance.

The nodes on the left side of the tree are Join-during-

Merge nodes, similar to the root node of the Budgeted

Sort Merge Join algorithm, but each is modified to pro-
duce sorted outputs for each R and S subset. They have
different fan-in values, and take streams of both R and S
values. They merge their sorted subsets from R (S) into
longer sorted subsets from R (S), and while they do this,
produce any join results between the two subsets, while they
are in memory. Care must be taken to not re-report previ-
ous join results, but this is straightforward: the values from
the leftmost substream of R have already been compared
to those in the leftmost substream from S, while no other
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Figure 1: One full level of Progressive Mergesort Join to the next (F = 64).

join results have been reported. See [7] for implementation
details, and Section 4.3 for a variant without duplication
elimination.

Notice that the left side of the tree has many more levels
than the right side. We consider the right side to define the
levels of the tree, while the left side of the tree has log2 F −1
extra intermediate levels per full level, with many different
fan-in values. To simplify later analysis, we have assumed
that F is a power of 2.

The last type of node in the tree (there is only one such
node per level) has two children from each of R and S. It
merges these two pairs into two sorted subsets. The node is
only added so that its parent node will have total fan-in F
(vs. F +2), a technical detail which is often swept aside using
the standard assumption that there are always O(1) extra
pages available in memory. More importantly, these nodes
can also be used to eliminate a more bothersome problem:
within the algorithm, if a value is repeated nearly M times
(or if there are many “similar” values in a similarity search),
it can occur that there is not enough room in the memory
to hold all of these values, and still maintain fan-in F . (Li,
Gao, and Snodgrass [16] also addresses the problem of heavy
skew.) We can use one of these nodes before each Join-

during-Merge node, and convert all Join-during-Merge

nodes into regular join nodes with fan-in two (one each from
R and S). With this conversion, there will be enough space
in memory to hold all values, unless there are more than M
repeats. While this conversion will add to the overhead of
the algorithm, this same problem must be addressed by any
join algorithm.

It remains to describe the top and bottom of the tree.
The top of the tree looks similar to the left side of Figure 1,
with only the single Join-during-Merge node as the root,
and that root does not need to produce the sorted subsets
of R and S. The bottom of the tree will look similar to the
bottom of two external mergesort trees (one for each of R
and S), except for the two leftmost leaf nodes. Other than
these, there will be N

M
−1 leaves from each of R and S, size M

each, and they will each sort their contents within internal

memory and output the sorted list. The leftmost leaf node
(which will be the first node in the tree to evaluate) takes
M/2 records from each of R and S, sorts the two subsets
individually, and then while they are in memory, performs
a join on them (see also Footnote 2). It produces the sorted
subsets and the join results as output. The second “leaf”
node (and the second node overall to be evaluated) is similar,
except that it also takes the sorted subsets from the first leaf
as inputs (needing only 2 more pages), reports only new join
results, and outputs a sorted subset of length M for each of
R and S. To simplify later analysis, this second “leaf” (it
does have a child, but also looks like other leaves because
it also performs an internal sort on raw, unsorted data) will
be considered to be on the bottom full level of the tree, with
all of the “regular” leaves, while the very first leaf evaluated
will be treated as a unique subleaf.

In this modified tree, the leftmost leaf gets merged more
frequently than the rightmost. In total, they are merged
log2 F logF � N

M
� + 1 and logF � N

M
� times respectively. The

fan-in of the leftmost nodes are determined by balancing
the need to produce results immediately, while not wanting
to delay future levels by too much. They also allow any
nodes within the same (full) level to have the same number
of children as descendants.

3.1 Analysis
We want to analyze pmsj in two ways: how many I/O

operations does it use, and how quickly does it produce re-
sults along the way. Let the level of the root node be 0, and
each full level node has a level 1 larger than the full level
node above it. We make several assumptions to simplify
calculations: B divides M/2, N = MF i for some integer i
(so logF � N

M
� = logF

N
M

is an integer), and F = 2j for some
integer j. (If these assumptions do not hold, similar results,
with different constant terms, will follow.)

Lemma 1. (a) All regular leaves are associated with size
M subsets of R or S. The full level leaf Join-during-

Merge node is associated with a size M subset of R and
S.



(b) Any regular non-leaf node is associated with sets F
times larger than each of its F children.

(c) The R and S subsets associated with any full level
Join-during-Merge node are (each) the same size as the
subsets associated with regular nodes at the same level. Any
Join-during-Merge node is associated with sets twice as
large as its child Join-during-Merge node.

Proof. (a) The regular leaves have size M by definition.
The very first node evaluated takes size M/2 subsets from
each of R and S. Its parent, the bottom full level Join-

during-Merge node, also takes size M/2 subsets from each,
and merges these results with those from the first node, get-
ting size M subsets from each.

(b) Every regular parent node merges the results from
each of its children, which are one full level down in the
tree.

(c) This holds at the bottom level of the tree by (a). In-
termediate level Join-during-Merge nodes are arranged
to have enough regular children nodes to match the size
of the sets of their child Join-during-Merge node: first
one R and S node are needed, then two, four, etc. Thus,
each Join-during-Merge node doubles the size of its child
Join-during-Merge node. After log2 F − 1 such interme-
diate levels, the next (full level) Join-during-Merge node
doubles the size again, bringing that node to have F times
larger subsets of R and S than the Join-during-Merge

node one full level down. These sets will again match in size
with the regular nodes on the same level by (b).

Lemma 2. The tree contains logF
N
M

full merge levels.

Level logF
N
M

contains the leaf nodes.

Proof. The leaves are associated with size M subsets
from R or S. Going up i full level merges, the nodes will
be associated with size MF i subsets. When i = logF

N
M

,

MF i = N , which matches the size of the root node sets.
The root is level 0, so the lowest merge level is level logF

N
M

−
1.

Lemma 3. (a) At full level i, for i ≤ logF
N
M

, there are

F i −1 regular nodes are associated with size MF logF
N
M

−i =
N/F i subsets of R, and the same number associated with S.
A single Join-during-Merge node is associated with size
N/F i subsets of R and S.

(b) For 0 < j < log2 F , the jth intermediate Join-during-

Merge node above full level i is associated with size 2jN/F i

subsets from R and S.

Proof. (a) This holds immediately from Lemmas 1 and 2.
(b) This holds by (a) and from the proof of Lemma 1.c.

Lemma 4. After the evaluation of a regular node at level
i, the total number of I/O operations (excluding join re-
sults) used in the evaluation of that node’s entire subtree
is (logF

N
M

− i + 1)2n/F i.

Proof. After level i, the N/F i (Lemma 3.a) data asso-
ciated with a regular node has undergone logF

N
M

− i merges
(Lemma 2). For each merge level within the node’s subtree,
all of the data is read and written, at n/F i reads and writes
each. All data of the subtree is also read and written within
the leaves of the subtree.

Lemma 5. (a) During the evaluation of a Join-during-

Merge node at full level i, for i > 0, 4n/F i I/O operations
take place (excluding join results).

(b) During the evaluation of the jth intermediate level
Join-during-Merge node following level i, 2j4n/F i I/O
operations take place (excluding join results).

(c) The “bookkeeping node” which evaluates just before
the Join-during-Merge node at level i uses 8n/F i+1 I/O
operations.

Proof. (a) The Join-during-Merge node is associated
with size N/F i sized sets from each of R and S (Lemma 3.a),
and all of this data is read once, merged (no I/O), and out-
put in two sorted lists.

(b) This holds as in (a), except that the intermediate level
Join-during-Merge nodes are associated with size 2jN/F i

subsets from each of R and S (Lemma 3.b).
(c) The node has 4 children nodes (two from R, two from

S) of size N/F i+1 each, and all data is read, merged (no
I/O), and written.

Lemma 6. Let T [i] be the total number of I/O operations
(excluding join results) used to evaluate the entire subtree
rooted at the Join-during-Merge node at full level i.
(a) T [logF

N
M

] = 6m = 6n

F
logF

N
M

(b) For 0 < i < logF
N
M

:

T [i] = n


 4(logF

N
M

− i + 2)

F i
+

logF
N
M

−1∑
k=i+1

4

F k
+

2

F logF
N
M




Proof. (a) The very first node evaluated (the subleaf)
reads two sets of M/2 unsorted data, and writes two sets
of M sorted data, for 2m total I/O operations. The sec-
ond node evaluated, the first full-level Join-during-Merge

node, does the same, and also reads and writes the data
from the first node, for 4m I/O operations, and 6m total in
this subtree.

(b) Within the subtree, we will sum the I/O operations
for the subtrees rooted one full level down, the root node,
the intermediate level Join-during-Merge nodes evaluated
since the last full level nodes, and the last bookkeeping node.
We will use induction on the subtree rooted at the Join-

during-Merge node one level down, which uses T [i+1] I/O
operations. The tree has 2(F −1) regular subtrees (split be-
tween type R and S) one full level down (which can be seen
indirectly by Lemmas 1.c and 3), and to evaluate each uses
(logF

N
M

−(i+1)+1)2n/F i+1 I/O operations (Lemma 4), for

4n(F − 1)(logF
N
M

− i)/F i+1 total. By Lemma 5, the num-
bers of I/O operations used by the root node, the intermedi-
ate level Join-during-Merge nodes, and the bookkeeping

node are 4n/F i,
∑log2 F−1

k=1 2k4n/F i+1 = (F − 2)4n/F i+1,
and 8n/F i+1 respectively. Summing these 3 terms gives
8n/F i. With the subtrees, this gives the recursive equation:

T [i] = T [i + 1] +
4n(F − 1)(logF

N
M

− i)

F i+1
+

8n

F i

Proof by induction follows. For the base case, the recur-
sive equation with T [logF

N
M

] = 6m gives T [logF
N
M

− 1] =
12Fm + 2m.

Theorem 1. The total number of I/O operations used in
pmsj is

n


4 logF

N

M
+ 6 +

logF
N
M

−1∑
k=1

4

F k
+

2

F logF
N
M


 + z

< 4n
(
logF

N
M

+ 3/2 + 1
F−1

)
+ z



Proof. The fundamental difference between the full pmsj

analysis and a subtree rooted at the Join-during-Merge

node at level i is that the root does not output the sorted
“subsets” of R and S. Thus, it uses 2n fewer write opera-
tions than a subtree of the same size would. Plugging i = 0
into the equation in Lemma 6.b, and subtracting 2n gives
the initial equation. The rewrite is an upperbound on the
telescoped summation terms.

We can now compare our total I/O operations against
those of Budgeted Sort Merge Join: in Budgeted Sort

Merge Join, there are logF
N
M

merge levels (this allows
Budgeted Sort Merge Join to use double fan-in on the
top level, giving it a slight advantage, but otherwise the
size of N would allow a full bottom level in our algorithm
but not theirs). Each merge level reads in all of the data
(2n reads) and all but the root level write all of the data
(2n writes). The leaf level also reads and writes all of the
data, for n(4 logF

N
M

+ 2) + z I/O operations. This nearly
matches the I/O operations for pmsj, if we allow for one
extra read and write of all the data (4n I/O operations).
(We note that without the bookkeeping node at each level,
the recursion gives less than n(4 logF

N
M

+6) I/O operations.
To implement this would require fan-in F + 2 at each full
level Join-during-Merge node, or similarly, increasing the
fan-in from F/2+2 to F/2+4 at the previous Join-during-

Merge node.)
In order to accurately compare how quickly our algo-

rithm generates join tuples compared to General Bud-

geted Sort Merge Join, we need to be more precise with
I/O calculations for Budgeted Sort Merge Join than we
have been previously.

Lemma 7. Let X be divisible by M . Budgeted Sort

Merge Join uses 4X
B

(�logF
X
M
� + 3/2) − 2mF �logF

X
M

� or
more I/O operations to join two sets of size X, excluding
those used for join results.

Proof. For integer j, k and 0 ≤ j < log2 F and 1 ≤
α < 2, let X = α2jF kM/2. If j = 0 and α = 1, the
algorithm needs 4X

B
(�logF

2X
M

� + 1/2) and the inequality

holds, so assume that j > 0 or α > 1. There will be 2X
M

leaves in the tree (size M each), which are spread between

two levels. At most F �logF
2X
M

� can be on the higher of
the two levels, and each of these will undergo �logF

2X
M

�
merges. The data in these leaves is read and written at
the leaves, and within every merge level (without a write

at the root), which will use 2mF �logF
2X
M

�(�logF
2X
M

�+ 1/2)

I/O operations. The bottom level will contain at least 2X
M

−
F �logF

2X
M

� leaves, and these will undergo one extra level

of merges, for 2m( 2X
M

− F �logF
2X
M

�)(�logF
2X
M

� + 3/2) I/O
operations. Summing these two and cancelling terms, we

get 4X
B

(�logF
2X
M

� + 3/2) − 2mF �logF
2X
M

�, at least as large
as the number in the lemma.

Lemma 8. Let X = 2lM ≤ N for some positive integer
l. To join X elements from each set, pmsj needs at most

4X
B

(�logF
X
M
�+3)−2mF �logF

X
M

� I/O operations, excluding
those used for join results.

Proof. Define integers i, j such that for 0 ≤ j < log2 F ,

X = 2j N
F i (= 2jF logF

N
M

−iM). To analyze X elements, pmsj

must complete j Join-during-Merge nodes following full

level i. (If j = 0, it must just complete the full level Join-

during-Merge node.) Summing the I/O operations needed
to perform the subtrees rooted at the full level (T [i]+2(2j −
1)(logF

N
M

− i + 1)2n/F i by Lemma 4) and any interme-

diate level Join-during-Merge nodes (
∑j

k=1 2k4n/F i =

(2j − 1)8n/F i by Lemma 5.b), a total of T [i] + 4n(2j −
1)(logF

N
M

− i + 3)/F i I/O operations are used. Filling in
T [i] from Lemma 6 and telescoping the summation terms,

this is fewer than 4 2jn
F i (logF

N
M

−i+3)− 4n
F i + 4n

F i(F−1)
. Com-

bining the last terms and making replacements ( 2jn
F i = X

B

and �logF
X
M
� = logF

N
M

− i) gives at least 4X
B

(�logF
X
M
� +

3− F−2
2j(F−1)

). Finally, X/2jB = mF �logF
X
M

�, and we assume

that F > 2, so the inequality holds.
Comparing Lemma 8 to 7, the extra I/O operations come

from 2X/B writes for last Join-during-Merge node (which
are piped to the next level here, but not in Budgeted

Sort Merge Join), and from the additional Join-during-

Merge nodes near the top of the tree, which do not use
their full fan-in, causing about 2X/B extra reads and writes
each.

Lemma 9. After joining size X subsets from R and S,
Z(X/N)2 results are expected.

Proof. Any join result from the X2 possibilities will be
reported. By assumption, the probability of a successful join
for each is Z/N2.

Theorem 2. Suppose that in its progression, pmsj has
used T I/O operations, and has joined size X subsets from
R and S. If Budgeted Sort Merge Join is run on a
sample size chosen to use T I/O operations, let BestCase[X]
and WorstCase[X] be the best and worst number of results
expected from it, as a ratio, compared to those produced by
pmsj. (T excludes join results).

(a) BestCase[X] ≤
(

�logF
X
M
� + 3

�logF
X
M
� + 3/2

)2

(b) WorstCase[X] ≤ 4

(
�logF

X
M
� + 3

�logF
X
M
� + 3/2

)2

Proof. (a) The best performance for pmsj comes just
after it has completed a Join-during-Merge node. Let
that node have size X. At this time, pmsj has used at most
the number of I/O operations in Lemma 8. Assuming that
the other algorithm has processed sets of size αX, we plug
into Lemma 7. For α ≥ (�logF

X
M
�+3)/(�logF

X
M
�+3/2), it

will have more I/O operations than pmsj. We can see from
Lemma 9 that squaring this result gives the comparative
number of results expected.

(b) Let X be such that 4X
B

(�logF
X
M
�+3)−2mF �logF

X
M

� =
T . If a Join-during-Merge node has just completed, we
are done by (a). Otherwise, consider X ′ to be the size of the
sets of the next Join-during-Merge node to complete if the
algorithm were to proceed. After that node, performance
would be BestCase[X ′]. Instead, the last Join-during-

Merge node to have completed had size X ′/2 (Lemma 1.c),
and it must have produced 1/4 of the output expected from
the size X ′ sets (Lemma 9). Allowing General Budgeted

Sort Merge Join the number of I/O operations pmsj needs
to process X ′ sized sets, yet only allowing pmsj to process
size X ′/2 sets gives the result.



If performance is only measured at the completion (or the
start) of nodes from within pmsj, the worst case performance
improves slightly: the numerator term of �logF

X
M
� + 3 can

be replaced by �logF
X
M
�+2. In this case, the worst time to

measure will be just before the evaluation of a Join-during-

Merge node, while above it may actually take place during
the evaluation of a Join-during-Merge node.

Corollary 1. For any fixed I/O budget T > m, pmsj

and General Budgeted Sort Merge Join (only the lat-
ter with T specified) are expected to produce the same order
of results.

4. VARIANTS AND PRACTICAL ISSUES
We view our final approach as a balance between the

greedy and long term goals. Such a balance is often bet-
ter than either extreme: once some results are in hand, it is
easier to be a bit more patient until the next “big payoff”
(the join at the next level in the tree). In our pmsj al-
gorithm, the intermediate level Join-during-Merge nodes
work towards producing immediate results. (Rather than
being lazy or eager, these merges might be classified as over-
eager, as they are performed with a lower fan-in than the
other merge nodes. Budgeted Sort Merge Join is at
the other extreme (long term), trying to complete the entire
process as early as possible.

4.1 Less Uniform Variants
Of the many variants possible, it is useful to consider vari-

ants which are not uniform throughout the different levels
of the tree. For instance, if the goal is to optimize the worst
ratio, our scheme can be improved upon: notice that for
small X values, Theorem 2 implies an output efficiency of
1/4 down to 1/16 (or to just under 1/7 if we don’t measure
performance between nodes), while for very large X values,
it ranges from just under 1 to just under 1/4. Allowing a
small sacrifice to efficiency of large samples, the worst-case
ratio for small X can be slightly augmented, by using dif-
ferent structure for the lower levels of the tree.

In another example of how non-uniform behavior might
be useful, notice that most of the overall I/O delay comes
from the intermediate level nodes just under the root-level
merge, because these nodes process large portions of R and
S. When users reach these nodes, they should have better
estimates as to how many total join results will be produced,
and thus may be committed to running the algorithm to
completion. If the intermediate level nodes near the root
of the tree are eliminated, nearly all of the I/O overhead
also disappears. (To simplify implementation, this will work
best with separate sample and result streams as discussed
in Section 4.3.) For instance, getting rid of the intermediate
level nodes between level 0 and 1 will reduce the total I/O’s
to under n(4 logF

N
M

+2+4/(F −1))+z, only increased from
those of Budgeted Sort Merge Join by the 4n/(F − 1)
term.

4.2 Single Level Trees
While the algorithms of Sections 3 and 4.1 have good per-

formance for multilevel sort trees, many external mergesort
processes have only one merge level. (See also Footnote 1
for cases when multi-level trees may be preferred even if not
required.) In this case, the I/O overhead of our procedure
may be larger than practical. For trees which only require

one merge node with greatly reduced fan-in (≤ F/2), Bud-

geted Sort Merge Join uses only 4n reads and 2n + z
writes6.

In this case, we propose a simplified version of our pmsj

algorithm. We modify Budgeted Sort Merge Join, re-
placing all leaf nodes to look like our very first leaf node:
each will share memory between R and S, and produce join
results between the already loaded sublists. (This will result
in 2�N/M� total leaves, each with a sorted set output for R
and S.) No intermediate level Join-during-Merge nodes
are added. Just as in Budgeted Sort Merge Join, this
tree will have 4n reads, and 2n + z writes7, for a total I/O
which matches that of Budgeted Sort Merge Join. At
the beginning of the procedure, results will be produced at a
rate to match the General Budgeted Sort Merge Join

performance, but instead of accelerating, they continue to
be produced at that same rate until the final merge node.
Once that final node is reached, remaining results will be
produced quickly. Implementation details and experimental
results of this simplified, one-level version are given in [7].

4.3 Sorted Results
For some applications, it is useful to give the result tuples

in sorted order. pmsj can be easily modified to give final
results in sorted order if allowed 2 streams of output: an
unsorted sample stream, and the final sorted output stream.
The final Join-during-Merge node can be modified to out-
put all successful joins to the output stream (without elim-
inating formerly reported results by checking which input
streams the results come from), and it will output all results
in sorted order. The earlier reported results can be piped
to a sample stream, used to estimate the total number of
results expected, and to see some examples. If the sam-
ple stream allows for a few repeated results, the algorithm
runs faster due to simplified code. (The “duplicate check”
code can be eliminated, speeding runtime without changing
the I/O operations.) The total number of results projected
can be adjusted to still be accurate. Further, because each
merge node should return many more results than all of its
descendants combined, most results in the sample will still
only be reported once.

5. CONCLUSIONS
We have presented an algorithm which uses a new tech-

nique to progressively produce join tuples. After T I/O
operations, for any T > m, it is expected to produce the
same number of results which could be produced by the best
Sort Merge Join algorithm, to within an O(1) multiple.
This holds even though T is not specified to pmsj and it is
specified to the optimal Sort Merge Join algorithm. Our
technique centered on the idea of concentrating extra join
operations along the “spine” of the external mergesort tree,
which is small when compared to the whole tree. We plan
to apply this approach, which holds some similarity to that

6The merge node may also include unsorted subsets of R
and S which are not in any leaf node, decreasing the reads
and writes by up to m− �|S|/m� − �|R|/m� each. For large
data sets, this will be a small savings. See also the Graefe [9]
discussion on eager vs. lazy merging.
7As in Footnote 6, a marginal decrease of the number of
write operations may be possible. Here, there is only an
m − �2|S|/m� − �2|R|/m� decrease.



taken in Depth-First Iterative-Deepening Search (Korf [14]),
to other problems for which multi-level trees are prevalent.

There is another benefit of our method, different from
those discussed thus far. Traditional processing techniques
for joins are particularly unacceptable when joins are pro-
cessed on data items that are delivered from remote sources
in an unpredictable network. Non-blocking join algorithms
like XJoin (Urhan and Franklin [24]) suggest to activate in-
termediate steps in case of blocking input. These interme-
diate steps are based on data that is already kept temporar-
ily on disk and does not depend on the availability of data
items from the sources. The advanced processing strategies
of pmsj fit very well to such a scenario: with half of the data
from each source, it should produce one fourth of the results
(the maximum possible with this amount of data).
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