
Chapter 6

Advanced Cryptanalysis

For there is nothing covered, that shall not be revealed;

neither hid, that shall not be known.

— Luke 12:2

The magic words are squeamish ossifrage

— Solution to RSA challenge problem

posed in 1977 by Ron Rivest, who

estimated that breaking the message

would require 40 quadrillion years.

It was broken in 1994.

6.1 Introduction

Perhaps the best ways to gain a strong understanding of cryptography is by
trying to break ciphers. As an added bonus, breaking ciphers puts us in the
role of our all-purpose attacker, Trudy, and we need to think like Trudy if we
are going to make our systems more secure.

In previous chapters, we’ve seen a few simple cryptanalytic attacks. In
this chapter, we kick it up a few notches and examine some relatively involved
attacks. Specifically, we’ll discuss the following cryptanalytic attacks.

• An attack on the most famous World War II cipher, the Enigma

• The attack on RC4, as used in WEP

• Linear and di↵erential cryptanalysis of a block cipher

• The lattice reduction attack on the knapsack

• A timing attack on RSA

167

168 ADVANCED CRYPTANALYSIS

In World War II, the Nazis believed the Enigma cipher was invincible.
Polish and British cryptanalysts proved otherwise. The idea behind the at-
tack we describe was used to break Enigma messages, and yielded invaluable
intelligence during the war. The attack illustrates some of the shortcomings
of pre-modern ciphers.

Next, we consider an attack on RC4. This attack is specific to the way
that RC4 is used in WEP. In this case, a relatively straightforward attack
exists, in spite of the fact that RC4 is considered a strong cipher. While this
might seem contradictory, the problem arises from the precise details of the
way that RC4 is used in WEP. This example shows that a strong cipher can
be broken if it is used improperly.

Linear and di↵erential cryptanalysis are generally not practical means of
attacking ciphers directly. Instead, they are used to analyze block ciphers for
design weaknesses and, as a result, modern block ciphers are built with these
techniques in mind. Therefore, to understand the design principles employed
in block ciphers today, it is necessary to have some understanding of linear
and di↵erential cryptanalysis.

In Chapter 4, we mentioned the attack on the knapsack public key cryp-
tosystem. In this chapter, we’ll give more details on the attack. We do not
present all of the mathematical nuances, but we provide su�cient informa-
tion to understand the concept behind the attack and to write a program
to implement the attack. It is a relatively straightforward attack that nicely
illustrates the role that mathematics and algorithms can play in breaking
cryptosystems.

A side channel is an unintended source of information. Recently, it has
been shown that power usage or precise timings can often reveal informa-
tion about an underlying computation. Timing attacks are particularly rele-
vant for public key systems, since the computations involved are costly, and
therefore take a relatively long time. Small di↵erences in timings can reveal
information about the private key.

Side channel attacks have been used successfully against several public key
systems, and we’ll discuss a couple of timing attacks on RSA. These attacks
are representative of some of the most interesting and surprising cryptanalytic
techniques developed in the recent past.

The attacks covered in this chapter represent only a small sample of the
many interesting cryptanalytic techniques that are known. For more exam-
ples, of “applied” cryptanalysis, that is, attacks that break real ciphers and
produce plaintext, see the book by Stamp and Low [285]. In fact, this chap-
ter can be viewed as a warmup exercise for [285]. In contrast, Swenson’s
book [296] is an excellent source for details on modern block cipher crypt-
analysis, where “attacks” mostly serve the role of helping cryptographers
build better ciphers, rather than breaking ciphers in the sense of producing
plaintext.

6.2 ENIGMA 169

6.2 Enigma

I cannot forecast to you the action of Russia.

It is a riddle wrapped in a mystery inside an enigma:

but perhaps there is a key.

— Winston Churchill

The Enigma cipher was used by Nazi Germany prior to and throughout
World War II. The forerunner of the military Enigma machine was devel-
oped by Arthur Scherbius as a commercial device. The Enigma was patented
in the 1920s but it continued to evolve over time and the German military ver-
sions were significantly di↵erent than the original design. In reality, “Enigma”
represents a family of cipher machines, but “the Enigma” invariably refers to
the specific German military cipher machine that we discuss here.1

It is estimated that approximately 100,000 Enigma machines were con-
structed, about 40,000 of those during World War II. The version of Enigma
that we describe here was used by the German Army throughout World
War II [104]. The device was used to send tactical battlefield messages and
for high-level strategic communications.

The Enigma was broken by the Allies, and the intelligence it provided
was invaluable—as evidence by its cover name, Ultra. The Germans had
an unwavering belief that the Enigma was unbreakable, and they continued
to use it for vital communications long after there were clear indications that
it had been compromised. Of course, it’s impossible to precisely quantify the
e↵ect of Enigma decrypts on the outcome of the war, but it is not farfetched to
suggest that the intelligence provided by Enigma decrypts may have shortened
the war in Europe by a year, saving hundreds of thousands of lives [309].

6.2.1 Enigma Cipher Machine

A picture of an Enigma cipher machine appears in Figure 2.5 in Chapter 2.
Note the keyboard—essentially, a mechanical typewriter—and the “light-
board” of letters. Analogous to an old-fashioned telephone switchboard, the
front panel has cables that connect pairs of letters. This switchboard (or plug-
board) is known by its German name, stecker. There are also three rotors
visible near the top of the machine.

Before encrypting a message, the operator had to initialize the device. The
initial settings include various rotor settings and the stecker cable pluggings.
These initial settings constitute the key.

1In fact, several variants of “the Enigma” were used by the German military and gov-
ernment. For example, the Army version used three rotors while the Naval version had four
rotors.

170 ADVANCED CRYPTANALYSIS

Once the machine had been initialized, the message was typed on the key-
board and as each plaintext letter was typed, the corresponding ciphertext
letter was illuminated on the lightboard. The ciphertext letters were writ-
ten down as they appeared on the lightboard and subsequently transmitted,
usually by voice over radio.

To decrypt, the recipient’s Enigma had to be initialize in exactly the same
way as the sender’s. Then when the ciphertext was typed into the keyboard,
the corresponding plaintext letters would appear on the lightboard.

The cryptographically significant components of the Enigma are illus-
trated in Figure 6.1. These components and the ways that they interact are
described below.

Figure 6.1: Enigma Diagram

To encrypt, a plaintext letter is entered on the keyboard. This letter first
passes through the stecker, then, in turn, through each of the three rotors,
through the reflector, back through each of the three rotors, back through
the stecker, and finally, the resulting ciphertext letter is illuminated on the
lightboard. Each rotor—as well as the reflector—consists of a hard-wired
permutation of the 26 letters. Rotors as cryptographic elements are discussed
in detail below in Section 6.2.3.

In the example illustrated in Figure 6.1, the plaintext letter C is typed on
the keyboard, which is mapped to S due to the stecker cable connecting C to S.
The letter S then passes through the rotors, the reflector, and back through
the rotors. The net e↵ect of all the rotors and the reflector is a permutation
of the alphabet. In the example in Figure 6.1, S has been permuted to Z,

6.2 ENIGMA 171

which then becomes L due to the stecker cable between L and Z. Finally, the
letter L is illuminated on the lightboard.

We use the following notation for the various permutations in the Enigma:

Rr = rightmost rotor

Rm = middle rotor

R` = leftmost rotor

T = reflector

S = stecker

With this notation, from Figure 6.1 we see that

y = S�1R�1
r R�1

m R�1
` TR`RmRrS(x)

= (R`RmRrS)
�1T (R`RmRr)S(x), (6.1)

where x is a plaintext letter, and y is the corresponding ciphertext letter.
If that’s all there were to the Enigma, it would be nothing more than

a glorified simple substitution cipher, with the initial settings determining
the permutation. However, each time a keyboard letter is typed, the right-
most rotor steps one position, and the other rotors step in an odometer-like
fashion—almost [48, 138].2 That is, the middle rotor steps once for each 26
steps of the right rotor and the left rotor steps once for each 26 steps of the
middle rotor. The reflector can be viewed as a fixed rotor since it permutes
the letters, but it doesn’t rotate. The overall e↵ect is that the permutation
changes with each letter typed. Note that, due to the odometer e↵ect, the
permutations Rr, Rm, and R` vary, but T and S do not.

Figure 6.2 illustrates the stepping of a single Engima rotor. This example
shows the direction that the rotors step. From the operator’s perspective, the
letters appear in alphabetical order.

The Enigma is a substitution cipher where each letter is encrypted based
on a permutation of the alphabet. But the Enigma is far from simple since,
whenever a letter is encrypted (or decrypted), the odometer e↵ect causes
the permutation to change. Such a cipher is known as a poly-alphabetic
substitution cipher. For the Enigma, the number of possible “alphabets”
(i.e., permutations) is enormous.

2The “almost” is due to the mechanical system used to step the rotors, which causes the
middle rotor to occasionally step twice in succession. Whenever a rotor steps, it causes the
rotor to its right to also step. Suppose that the middle rotor just stepped to the position
that engages the ratchet mechanism that will cause the leftmost rotor to step when the next
letter is typed. Then when the next letter is typed, the left rotor will step, and this will also
cause the middle rotor to step again. The middle rotor thereby steps twice in succession,
violating the odometer e↵ect. Note that this same ratcheting mechanism causes the right
rotor to step whenever the middle rotor steps, but since the right rotor already steps for
each letter typed, there is no noticeable e↵ect on the right rotor.

172 ADVANCED CRYPTANALYSIS

Figure 6.2: Enigma Rotor

6.2.2 Enigma Keyspace

The cryptographically significant components of the Enigma cipher are the
stecker, the three rotors, and the reflector. The Enigma key consists of the
initial settings for these components when the cipher is used to encrypt or
decrypt a particular message. The variable settings that comprise the key
are:

1. The choice of rotors.

2. The position of a movable ring on each of the two rightmost rotors.
This ring allows the outer part of the rotor (labeled with the 26 letters)
to rotate with respect to the inner part of the ring (where the actual
permutation is wired).3 Rotating this ring shifts the point at which the
odometer e↵ect occurs relative to the letters on the rotors.

3. The initial position of each rotor.

4. The number and plugging of the wires in the stecker.

5. The choice of reflector.

As mentioned above, each rotor implements a permutation of the 26 letters
of the alphabet. The movable rings can be set to any of the 26 positions
corresponding to the letters.

Each rotor is initially set to one of the 26 positions on the rotor, which are
labeled with A through Z. The stecker is similar to an old-fashioned telephone
switchboard, with 26 holes, each labeled with a letter of the alphabet. The
stecker can have from 0 to 13 cables, where each cable connects a pair of
letters. The reflector implements a permutation of the 26 letters, with the
restriction that no letter can be permuted to itself, since this would cause a
short circuit. Consequently, the reflector is equivalent to a stecker with 13
cables.

3This is analogous to rotating the position of a car tire relative to the rim.

6.2 ENIGMA 173

Since there are three rotors, each containing a permutation of the 26
letters, there are

26! · 26! · 26! ⇡ 2265

ways to select and place rotors in the machine. In addition, the number of
ways to set the two movable rings—which determine when the odometer-like
e↵ects occurs—is 26 · 26 ⇡ 29.4.

The initial position of each of these rotors can be set to any one of 26
positions, so there are 26·26·26 = 214.1 ways to initialize the rotors. However,
this number should not be included in our count, since the di↵erent initial
positions are all equivalent to some other rotor in some standard position.
That is, if we assume that each rotor is initially set to, say, A, then setting a
particular rotor to, say, B, is equivalent to some other rotor initially set to A.
Consequently, the factor of 2265 obtained in the previous paragraph includes
all possible rotors in all possible initial positions.

Finally, we must consider the stecker. Let F (p) be the number of ways to
plug p cables in the stecker. From Problem 2, we have

F (p) =

✓
26

2p

◆
(2p� 1)(2p� 3) · · · · · 1.

The values of F (p) are tabulated in Table 6.1.

Table 6.1: Stecker Combinations

F (0) = 20 F (1) ⇡ 28.3

F (2) ⇡ 215.5 F (3) ⇡ 221.7

F (4) ⇡ 227.3 F (5) ⇡ 232.2

F (6) ⇡ 236.5 F (7) ⇡ 240.2

F (8) ⇡ 243.3 F (9) ⇡ 245.6

F (10) ⇡ 247.1 F (11) ⇡ 247.5

F (12) ⇡ 246.5 F (13) ⇡ 242.8

Summing the entries in Table 6.1, we find that there are more than 248.9

possible stecker configurations. Note that maximum occurs with 11 cables and
that F (10) ⇡ 247.1. As mentioned above, the Enigma reflector is equivalent
to a stecker with 13 cables. Consequently, there are F (13) ⇡ 242.8 di↵erent
reflectors.

Combining all of these results, we find that, in principle, the size of the
Enigma keyspace is about

2265 · 29.4 · 248.9 · 242.8 ⇡ 2366.

That is, the theoretical keyspace of the Enigma is equivalent to a 366 bit
key. Since modern ciphers seldom employ more than a 256 bit key, this

174 ADVANCED CRYPTANALYSIS

gives some indication as to why the Germans had such great—but ultimately
misplaced—confidence in the Enigma.

However, this astronomical number of keys is misleading. From Prob-
lem 1, we see that under the practical limitations of actual use by the German
military, only about 277 Enigma keys were available. This is still an enormous
number and an exhaustive key search would have been out of the question
using 1940s technology. Fortunately for the civilized world, shortcut attacks
exist. But before we discuss an attack, we first take a brief detour to consider
rotors as cryptographic elements.

6.2.3 Rotors

Rotors were used in many cipher machines during the first half of the 20th
century—the Enigma is the most famous, but there were many others. An-
other interesting example of a rotor cipher machine is the American World
War II-era machine Sigaba. The Sigaba cipher is a fascinating design that
proved to be much stronger than Enigma. For a detailed cryptanalysis of
Sigaba, see [281] or for a slightly abbreviated version see [285].

From a crypto-engineering standpoint, the appeal of a rotor is that it
is possible to generate a large number of distinct permutations in a robust
manner from a simple electro-mechanical device. Such considerations were
important in the pre-computer era. In fact, the Enigma was an extremely
durable piece of hardware, which was widely used in battlefield situations.

Hardware rotors are easy to understand, but it is slightly awkward to
specify the permutations that correspond to the various positions of the rotor.
A good analysis of these issues can be found in [185]. Here, we briefly discuss
some of the main issues.

For simplicity, consider a rotor with four letters, A through D. Assuming
the signal travels from left to right, the rotor illustrated in Figure 6.3 per-
mutes ABCD to CDBA, that is, A is permuted to C, B is permuted to D, C is
permuted to B, and D is permuted to A. The inverse permutation, DCAB in
our notation, can be obtained by simply passing a signal through the rotors
from right-to-left instead of left-to-right. This is a useful feature, since we can
decrypt with the same hardware used to encrypt. The Enigma takes this one
step further.4 That is, the Enigma machine is its own inverse, which implies
that the same machine with exactly the same settings can be used to encrypt
and decrypt (see Problem 5).

Suppose that the rotor in Figure 6.3 steps once. Note that only the rotor
itself—represented by the rectangle—rotates, not the electrical contacts at
the edge of the rotor. In this example, we assume that the rotor steps “up,”
that is, the contact that was at B is now at A and so on, with the contact

4No pun intended (for a change. . .).

6.2 ENIGMA 175

Figure 6.3: Rotor

that was at A wrapping around to D. The shift of the rotor in Figure 6.3 is
illustrated in Figure 6.4. The resulting shifted permutation is CADB, which is,
perhaps, not so obvious considering that the original permutation was CDBA.

Figure 6.4: Stepped Rotor

In general, it is not di�cult to determine the rotor shift of a permutation.
The crucial point is that it’s the o↵sets, or displacements, that shift. For
example, in the permutation CDBA, the o↵sets are as follows: The letter A is
permuted to C, which is an o↵set of 2 positions, the letter B is permuted to D,
which is an o↵set of 2, the letter C is permuted to B, which is an o↵set of 3
(around the rotor), and D is permuted to A, which is an o↵set of 1. That is, the
sequence of o↵sets for the permutation CDBA is (2, 2, 3, 1). Cyclically shifting
this sequence yields (2, 3, 1, 2), which corresponds to the permutation CADB,
and this is indeed the rotor shift that appears in Figure 6.4.

Again, physical rotors are actually very simple devices, but they are some-
what awkward to deal with in the abstract. For some additional exercise
working with rotors, see Problem 12.

As mentioned above, one of the primary advantages of rotors is that they
provide a simple electro-mechanical means to generate a large number of dif-
ferent permutations. Combining multiple rotors in series increases the num-
ber of permutations exponentially. For example, in Figure 6.5, C is permuted
to A, while a shift of rotor L, denoted by �(L) and illustrated in Figure 6.6,
causes C to be permuted to B. That is, stepping any single rotor changes the
overall permutation.

With this three-rotor scheme, we can generate a cycle of 64 permutations
of the letters ABCD by simply stepping through the 64 settings for the three

176 ADVANCED CRYPTANALYSIS

Figure 6.5: Three Rotors

Figure 6.6: Rotor L Steps

rotors. Of course, not all of these permutations will be unique, since there
are only 24 distinct permutations of the four letters ABCD. Also, by selecting
di↵erent initial settings for the rotors, we can generate a di↵erent sequence of
permutations. Furthermore, by selecting a di↵erent set of rotors (or reorder-
ing the given rotors), we can generate di↵erent sequences of permutations.
As with a single rotor, it’s easy to obtain the inverse permutations from a
series of rotors by simply passing the signal through the rotors in the opposite
direction. The inverse permutations are needed for decryption.

6.2.4 Enigma Attack

Polish cryptanalysts led by Marian Rejewski, Henryk Zygalski, and Jerzy
Różycki were the first to successfully attack the Enigma [306]. Their challenge
was greatly complicated by the fact that they did not know which rotors
were in use. Through some clever mathematics, and a small but crucial
piece of espionage [4], they were able to recover the rotor permutations from
ciphertext. This certainly ranks as one of the greatest cryptanalytic successes
of the era.

When Poland fell to the Nazis in 1939, Rejewski, Zygalski, and Różycki
fled to France. After France fell under the Nazi onslaught, the Poles contin-
ued their cryptanalytic work from unoccupied Vichy France. The brilliant
cryptanalytic work of Rejewski’s team eventually made its way to Britain,

6.2 ENIGMA 177

where the British were rightly amazed. A group of British cryptanalysts that
included Gordon Welchman and computing pioneer Alan Turing took up the
Enigma challenge.

The Enigma attack that we describe here is similar to one developed by
Turing, but somewhat simplified. This attack requires known plaintext, which
in World War II terminology was known as a crib.

The essential idea is that, initially, we can ignore the stecker and make a
guess for the remainder of the key. From Problem 1, there are less than 230

such guesses. For each of these, we use information derived from a crib (known
plaintext) to eliminate incorrect guesses. This attack, which has a work factor
on the order 230, could be easily implemented on a modern computer, but it
would have been impractical using World War II technology.

Suppose that we have the plaintext and corresponding ciphertext that
appears in Table 6.2. We make use of this data in the attack described
below.

Table 6.2: Enigma Known Plaintext Example

i 0 1 2 3 4 5 6 7 8 91011121314151617181920212223
Plaintext O B E R K O M M A N D O D E R W E H R M A C H T

Ciphertext Z M G E R F E W M L K M T A W X T S W V U I N Z

Let S(x) be the result of the letter x passing through the stecker from
the keyboard. Then S�1(x) is the result of x passing through the stecker in
the other direction. For a given initial setting, let Pi be the permutation at
step i, that is, Pi is the permutation determined by the composition of the
three rotors, followed by the reflector, followed by the three rotors—in the
opposite direction—at step i. Then, using the notation in equation (6.1), the
overall permutation is given by

Pi = S�1R�1
r R�1

m R�1
` TR`RmRrS,

where, to simplify the notation, we ignore the dependence of R`, Rm, and Rr

on the step i.
Note that since Pi is a permutation, its inverse, P�1

i , exists. Also, as
noted above, due to the rotation of the rotors, the permutation varies with
each letter typed. Consequently, Pi does indeed depend on i.

The Enigma attack we present here exploits “cycles” that occur in the
known plaintext and corresponding ciphertext. Consider, for example, the
column labeled 8 in Table 6.2. The plaintext letter A passes through the
stecker, then through P8 and, finally, through S�1 to yield the ciphertext M,
that is, S�1P8S(A) = M, which we can rewrite as P8S(A) = S(M).

178 ADVANCED CRYPTANALYSIS

From the known plaintext in Table 6.2, we have

P8S(A) = S(M)

P6S(M) = S(E)

P13S(E) = S(A).

These three equations can be combined to yield the cycle

S(E) = P6P8P13S(E). (6.2)

Now suppose that we select one of the possible initial settings for the
machine, ignoring the stecker. Then all Pi and P�1

i that correspond to this
setting are known. Next, suppose that we guess, say, S(E) = G, that is, we
guess that E and G are connected by a cable in the stecker plugboard. If it’s
actually true that the stecker has a wire connecting E and G, and if our guess
for the initial settings of the machine is correct, then from equation (6.2) we
must have

G = P6P8P13(G). (6.3)

If we try all 26 choices for S(E) and equation (6.2) is never satisfied, then
we know that our guess for the rotor settings is incorrect and we can eliminate
this choice. We would like to use this observation to reduce the number of
rotor settings, ideally, to just one. However, if we find any guess for S(E) for
which equation (6.2) holds, then we cannot rule out the current rotor settings.
Unfortunately, there are 26 possible guesses for S(E) and, for each, there is
a 1/26 chance that equation (6.2) holds at random. Consequently, we obtain
no reduction in the number of possible keys when using just one cycle.

Fortunately, all is not lost. If we can find an additional cycle involv-
ing S(E), then we can use this in combination with equation (6.2) to reduce
the number of possible rotor settings. We’re in luck, since we can combine
the four equations,

S(E) = P3S(R)

S(W) = P14S(R)

S(W) = P7S(M)

S(E) = P6S(M)

to obtain
S(E) = P3P

�1
14 P7P

�1
6 S(E).

Now if we guess, say, S(E) = G, we have two equations that must hold if this
guess is correct. There are still 26 choices for S(E), but with two cycles, there
is only a (1/26)2 chance that they both hold at random. Therefore, with two
cycles in S(E), we can reduce the number of viable machine settings (that

6.3 RC4 AS USED IN WEP 179

is, keys) by a factor of 26. We can easily develop an attack based on these
observations.

To reiterate, the crucial observation here is that, once we specify the rotor
settings, all permutations P0, P1, P2, . . . and P�1

0 , P�1
1 , P�1

2 , . . . are known.
Then if we substitute a putative value for S(E), we can immediately check
the validity of all cycle equations that are available. For an incorrect guess
of S(E) (or incorrect rotor settings) there is a 1/26 chance any given cycle
will hold true. But with n cycles, there is only a (1/26)n chance that all cycle
equations will hold true. Consequently, with n cycles involving S(E), we can
reduce the number of possible initial rotor settings by a factor of 26n�1. Since
there are only about 230 rotor settings, with enough cycles, we can reduce
the number of possible rotor settings to one, which is the key.

Amazingly, by recovering the initial rotor settings in this manner, stecker
values are also recovered—essentially for free. However, any stecker values
that do not contribute to a cycle will remain unknown, but once the rotor
settings have been determined, the remaining unknown stecker settings are
easy to determine (see Problem 7). It is interesting to note that, in spite
of an enormous number of possible settings, the stecker contributes virtually
nothing to the security of the Enigma.

It is important to realize that the attack described here would have been
impractical using 1940s technology. The practical attacks of World War II
required that the cryptanalyst reduce the number of cases to be tested to a
much smaller number than 230. Many clever techniques were developed to
squeeze as much information as possible from ciphertext. In addition, much
e↵ort was expended finding suitable cribs (i.e., known plaintext) since all of
the practical attacks required known plaintext.

6.3 RC4 as Used in WEP

Suddenly she came upon a little three-legged table, all made of solid glass:

there was nothing on it but a tiny golden key. . .

— Alice in Wonderland

RC4 is described in Section 3.2.2 of Chapter 3 and WEP is described in
Section 10.6 of Chapter 10. Here, we provide a detailed description of the
cryptanalytic attack that is mentioned in Section 10.6. Note that the RC4
algorithm is considered secure when used properly. However, WEP, which is
widely viewed as the “Swiss cheese” of security protocols, somehow managed
to implement nearly all of its security functions insecurely, including RC4.
As a result, there is a feasible attack on RC4 encryption as used in WEP.
Before studying this attack, you might want to preview Section 10.6.

180 ADVANCED CRYPTANALYSIS

WEP encrypts data with the stream cipher RC4 using a long-term key
that seldom (if ever) changes. To avoid repeated keystreams, an initialization
vector, or IV, is sent in the clear with each message, where each packet is
treated as a new message. The IV is mixed with the long-term key to produce
the message key. The upshot is that the cryptanalyst, Trudy, gets to see
the IVs, and any time an IV repeats, Trudy knows that the same keystream
is being used to encrypt the data. Since the IV is only 24 bits, repeated IVs
occur relatively often. A repeated IV implies a repeated keystream, and a
repeated keystream is bad—at least as bad as reuse of a one-time pad. That
is, a repeated keystream provides statistical information to the attacker who
could then conceivably liberate the keystream from the ciphertext. Once the
keystream for a packet is known, it can be used to decrypt any packet that
uses the same IV.

However, in WEP, there are several possible shortcuts that make an at-
tacker’s life easier, as discussed in Section 10.6. Here, we discuss a cryptana-
lytic attack on the RC4 stream cipher as it is used in WEP. Again, this attack
is only possible due to the specific way that WEP uses RC4—specifically, the
way that it creates the session key from an initialization vector IV and the
long-term key.5

This cryptanalytic attack has a small work factor, and it will succeed
provided that a su�cient number of IVs are observed. This clever attack,
which can be considered a type of related key attack, is due to Fluhrer, Mantin,
and Shamir [112].

6.3.1 RC4 Algorithm

RC4 is simplicity itself. At any given time, the state of the cipher consists of
a lookup table S containing a permutation of all byte values, 0, 1, 2, . . . , 255,
along with two indices i and j. When the cipher is initialized, the permutation
is scrambled using a key, denoted key[i], for i = 0, 1, . . . , N � 1, which can be
of any length from 0 to 256 bytes. In the initialization routine, the lookup
table S is modified (based on the key) in such a way that S always contains
a permutation of the byte values. The RC4 initialization algorithm appears
in Table 6.3.

The RC4 keystream is generated one byte at a time. An index is deter-
mined based on the current contents of S, and the indexed byte is selected
as the keystream byte. Similar to the initialization routine, at each step
the permutation S is modified so that S always contains a permutation of
{0, 1, 2, . . . , 255}. The keystream generation algorithm appears in Table 6.4.
For more details on the RC4 algorithm, see Section 3.2.2.

5The attack does highlight a shortcoming in the RC4 initialization process—a shortcom-
ing that can be fixed without modifying the underlying RC4 algorithm.

6.3 RC4 AS USED IN WEP 181

Table 6.3: RC4 Initialization

for i = 0 to 255
Si = i
Ki = key[i (mod N)]

next i
j = 0
for i = 0 to 255

j = (j + Si +Ki) (mod 256)
swap(Si, Sj)

next i
i = j = 0

Table 6.4: RC4 Keystream Generator

i = (i+ 1) (mod 256)
j = (j + Si) (mod 256)
swap(Si, Sj)
t = (Si + Sj) (mod 256)
keystreamByte = St

6.3.2 RC4 Cryptanalytic Attack

In 2000, Fluhrer, Mantin, and Shamir [112] published a practical attack on
RC4 encryption as it is used in WEP. In WEP, a non-secret 24-bit initializa-
tion vector, denoted as IV, is prepended to a long-term key and the result is
used as the RC4 key. Note that the role of the IV in WEP encryption is some-
what similar to the role that an IV plays in various block cipher encryption
modes (see Section 3.3.7 of Chapter 3). The WEP IV is necessary to prevent
messages from being sent in depth. Recall that two ciphertext messages are
in depth if they were encrypted using the same key. Messages in depth are a
serious threat to a stream cipher.

We assume that Trudy, the cryptanalyst, knows many WEP ciphertext
messages (packets) and their corresponding IVs. Trudy would like to recover
the long-term key. The Fluhrer-Mantin-Shamir attack provides a clever, e�-
cient, and elegant way to do just that. This attack has been successfully used
to break real WEP tra�c [295].

Suppose that for a particular message, the three-byte initialization vector
is of the form

IV = (3, 255, V), (6.4)

where V can be any byte value. Then these three IV bytes become K0, K1,

182 ADVANCED CRYPTANALYSIS

and K2 in the RC4 initialization algorithm of Table 6.3, while K3 is the first
byte of the unknown long-term key. That is, the message key is

K = (3, 255, V,K3,K4, . . .), (6.5)

where V is known to Trudy, but K3,K4,K5, . . . are unknown. To understand
the attack, we need to carefully consider what happens to the table S during
the RC4 initialization phase when K is of the form in equation (6.5).

In the RC4 initialization algorithm, which appears in Table 6.3, we first
set S to the identity permutation, so that we have

i 0 1 2 3 4 5 . . .
Si 0 1 2 3 4 5 . . .

Suppose that K is of the form in (6.5). Then at the i = 0 initialization step,
we compute the index j = 0+S0+K0 = 3 and elements i and j are swapped,
resulting in the table

i 0 1 2 3 4 5 . . .
Si 3 1 2 0 4 5 . . .

At the next step, i = 1 and j = 3 + S1 +K1 = 3 + 1 + 255 = 3, since the
addition is modulo 256. Elements i and j are again swapped, giving

i 0 1 2 3 4 5 . . .
Si 3 0 2 1 4 5 . . .

At step i = 2 we have j = 3 + S2 +K2 = 3 + 2 + V = 5 + V and after the
swap,

i 0 1 2 3 4 5 . . . 5 + V . . .
Si 3 0 5 + V 1 4 5 . . . 2 . . .

At the next step, i = 3 and j = 5+ V +S3 +K3 = 6+ V +K3, where K3

is unknown. After swapping, the lookup table is

i 0 1 2 3 4 5 . . .
Si 3 0 5 + V 6 + V +K3 4 5 . . .

i . . . 5 + V . . . 6 + V +K3 . . .
Si . . . 2 . . . 1 . . .

assuming that, after reduction modulo 256, we have 6 + V +K3 > 5 + V . If
this is not the case, then 6 + V +K3 will appear to the left of 5 + V , which
has no e↵ect on the success of the attack.

Now suppose for a moment that the RC4 initialization algorithm were to
stop after the i = 3 step. Then, if we generate the first byte of the keystream

6.3 RC4 AS USED IN WEP 183

according to the algorithm in Table 6.4, we find i = 1 and j = Si = S1 = 0,
so that t = S1 + S0 = 0 + 3 = 3. Then the first keystream byte would be

keystreamByte = S3 = (6 + V +K3) (mod 256). (6.6)

Assuming that Trudy knows (or can guess) the first byte of the plaintext, she
can determine the first byte of the keystream. If this is the case, Trudy can
simply solve equation (6.6) to obtain the first unknown key byte, since

K3 = (keystreamByte� 6� V) (mod 256). (6.7)

Unfortunately (for Trudy), the initialization phase is 256 steps instead
of just four. But notice that as long as S0, S1 and S3 are not altered in
any subsequent initialization step, then equation (6.7) will hold. What is
the chance that these three elements remain unchanged? The only way that
an element can change is if it is swapped for another element. From i = 4
to i = 255 of the initialization, the i index will not a↵ect any of these elements
since it steps regularly from 4 to 255. If we treat the j index as random, then
at each step the probability that the three indices of concern are all una↵ected
is 253/256. The probability that this holds for all of the final 252 initialization
steps is, therefore, ✓

253

256

◆252

⇡ 0.0513.

Consequently, we expect equation (6.7) to hold slightly more than 5% of the
time. Then with a su�cient number of IVs of the form in equation (6.4)
Trudy can determine K3 from equation (6.7), assuming she knows the first
keystream byte in each case.

What is a su�cient number of IVs to recover K3? If we observe n en-
crypted packets, each with an IV of the form in equation (6.4), then we
expect to solve for the actual K3 using equation (6.7) for about 0.05n of
these. For the remaining 0.95n of the cases, we expect the result of the sub-
traction in equation (6.7) to be a random value in {0, 1, 2, . . . , 255}. Then
the expected number of times that any particular value other than K3 ap-
pears is about 0.95n/256, and the correct value will have an expected count
of 0.05n+ 0.95n/256 ⇡ 0.05n. We need to choose n large enough so that we
can, with high probability, distinguish K3 from the random “noise.” If we
choose n = 60, then we expect to see K3 three times, while it is unlikely that
we will see any random value more than twice (see also Problem 13).

This attack is easily extended to recover the remaining unknown key bytes.
We illustrate the next step—assuming that Trudy has recovered K3, we show
that she can recover the key byte K4. In this case, Trudy will look for
initialization vectors of the form

IV = (4, 255, V), (6.8)

184 ADVANCED CRYPTANALYSIS

where V can be any value. Then, at the i = 0 step of the initialization,
j = 0 + S0 +K0 = 4 and elements i and j are swapped, resulting in

i 0 1 2 3 4 5 . . .
Si 4 1 2 3 0 5 . . .

At the next step, i = 1 and j = 4 + S1 + K1 = 4 (since the addition is
mod 256) and elements S1 and S4 are swapped, giving

i 0 1 2 3 4 5 . . .
Si 4 0 2 3 1 5 . . .

At step i = 2 we have j = 4 + S2 +K2 = 6 + V , and after the swap

i 0 1 2 3 4 5 . . . 6 + V . . .
Si 4 0 6 + V 3 1 5 . . . 2 . . .

At the next step, i = 3 and j = 5 + V + S3 +K3 = 9 + V +K3, and K3 is
known. After swapping

i 0 1 2 3 4 5 . . .
Si 4 0 6 + V 9 + V +K3 1 5 . . .

i . . . 6 + V . . . 9 + V +K3 . . .
Si . . . 2 . . . 3 . . .

assuming that 9 + V +K3 > 6 + V when the sums are taken mod 256.
Carrying this one step further, we have i = 4 and

j = 9 + V +K3 + S4 +K4 = 10 + V +K3 +K4,

where only K4 is unknown. After swapping, the table S is of the form

i 0 1 2 3 4 5 . . .
Si 4 0 6 + V 9 + V +K3 10 + V +K3 +K4 5 . . .

i . . . 6 + V . . . 9 + V +K3 . . . 10 + V +K3 +K4 . . .
Si . . . 2 . . . 3 . . . 1 . . .

If the initialization were to stop at this point (after the i = 4 step) then
for first byte of the keystream we would find i = 1 and j = Si = S1 = 0, so
that t = S1 + S0 = 4 + 0 = 4. The resulting keystream byte would be

keystreamByte = S4 = (10 + V +K3 +K4) (mod 256),

where the only unknown is K4. As a result,

K4 = (keystreamByte� 10� V �K3) (mod 256). (6.9)

6.3 RC4 AS USED IN WEP 185

Of course, the initialization does not stop after the i = 4 step, but, as
in the K3 case, the chance that equation (6.9) holds is about 0.05. Conse-
quently, with a su�cient number of IVs of the form in equation (6.8), Trudy
can determine K4. Continuing, any number of key bytes can be recovered,
provided enough IVs of the correct form are available and Trudy knows the
first keystream byte of each corresponding packet.

This same technique can be extended to recover additional key bytes,
K5,K6, In fact, if a su�cient number of packets are available, a key of
any length can be recovered with a trivial amount of work. This is one reason
why WEP is said to be “unsafe at any key size” [322].

Consider once again the attack to recover the first unknown key byte K3.
It is worth noting that some IVs that are not of the form (3, 255, V) will
be useful to Trudy. For example, suppose the IV is (2, 253, 0). Then after
the i = 3 initialization step, the array S is

i 0 1 2 3 4 . . . 3 +K3 . . .
Si 0 2 1 3 +K3 4 . . . 3 . . .

If S1, S2, and S3 are not altered in the remaining initialization steps, the first
keystream byte will be 3+K3, from which Trudy can recover K3. Notice that
for a given three-byte IV, Trudy can compute the initialization up through
the i = 3 step and, by doing so, she can easily determine whether a given IV
will be useful for her attack. Similar comments hold for subsequent key bytes.
By using all of the useful IVs, Trudy can reduce the number of packets she
must observe before recovering the key.

Finally, it is worth noting that it is also possible to recover the RC4 key
if the IV is appended to the unknown key instead of being prepended (as
in WEP); see [196] for the details.

6.3.3 Preventing Attacks on RC4

There are several possible ways to prevent attacks on RC4 that target its
initialization phase. The standard suggestion is to, in e↵ect, add 256 steps
to the initialization process. That is, after the initialization in Table 6.3 has
run its course, generate 256 keystream bytes according to the RC4 keystream
generation algorithm in Table 6.4, discarding these bytes. After this pro-
cess has completed, generate the keystream in the usual way. If the sender
and receiver follow this procedure, the attack discussed in this section is not
feasible. Note that no modification to the inner workings of RC4 is required.

Also, there are many alternative ways to combine the key and IV that
would e↵ectively prevent the attack described in this section; Problem 17
asks for such methods. As with so many other aspects of WEP, its designers
managed to choose one of the most insecure possible approaches to using the
RC4 cipher.

186 ADVANCED CRYPTANALYSIS

6.4 Linear and Di↵erential Cryptanalysis

We sent the [DES] S-boxes o↵ to Washington.

They came back and were all di↵erent.

— Alan Konheim, one of the designers of DES

I would say that, contrary to what some people believe, there is no evidence

of tampering with the DES so that the basic design was weakened.

— Adi Shamir

As discussed in Section 3.3.2, the influence of the Data Encryption Stan-
dard (DES) on modern cryptography can’t be overestimated. For one thing,
both linear and di↵erential cryptanalysis were developed to attack DES. As
mentioned above, these techniques don’t generally yield practical attacks. In-
stead, linear and di↵erential “attacks” point to design weaknesses in block
ciphers. These techniques have become basic analytic tools that are used to
analyze all block ciphers today.

Di↵erential cryptanalysis is, at least in the unclassified realm, due to
Biham and Shamir (yes, that Shamir, yet again) who introduced the technique
in 1990. Subsequently, it has become clear that someone involved in the
design of DES (that is, someone at the National Security Agency) was aware
of di↵erential cryptanalysis prior to the mid 1970s. Note that di↵erential
cryptanalysis is a chosen plaintext attack, which makes it somewhat di�cult
to actually apply in the real world.

Linear cryptanalysis was apparently developed by Matsui in 1993. Since
DES was not designed to o↵er optimal resistance to a sophisticated linear
cryptanalysis attacks, either NSA did not know about the technique in the
1970s, or they were not concerned about such an attack on the DES cipher.
Linear cryptanalysis is slightly more realistic as a real-world attack than
di↵erential cryptanalysis, primarily because it is a known plaintext attack
instead of a chosen plaintext attack.

6.4.1 Quick Review of DES

We don’t require all of the details of DES here, so we’ll give a simplified
overview that only includes the essential facts that we’ll need below. DES
has eight S-boxes, each of which maps six input bits, denoted x0x1x2x3x4x5,
to four output bits, denoted y0y1y2y3. For example, DES S-box number one,
in hexadecimal notation, appears in Table 6.5.

Figure 6.7 gives a much simplified view of DES, which is su�cient for our
purposes. Below, we are mostly interested in analyzing the nonlinear parts
of DES, so the diagram highlights the fact that the S-boxes are the only

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 187

Table 6.5: DES S-box Number One

x1x2x3x4
x0x5 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
1 0 F 7 4 E 2 D 1 A 6 C B 9 5 3 4
2 4 1 E 8 D 6 2 B F C 9 7 3 A 5 0
3 F C 8 2 4 9 1 7 5 B 3 E A 0 6 D

nonlinearity in DES. Figure 6.7 also illustrates the way that the subkey Ki

enters into a DES round. This will also be important in the discussion to
follow.

Figure 6.7: Simplified View of DES

Next, we’ll present a quick overview of di↵erential cryptanalysis followed
by a similar overview of linear cryptanalysis. We’ll then present a simplified
version of DES, which we’ve called Tiny DES, or TDES. We’ll present both
linear and di↵erential attacks on TDES.

6.4.2 Overview of Di↵erential Cryptanalysis

Since di↵erential cryptanalysis was developed to analyze DES, let’s discuss
it in the context of DES. Recall that all of DES is linear except for the

188 ADVANCED CRYPTANALYSIS

S-boxes. We’ll see that the linear parts of DES play a significant role in
its security, however, from a cryptanalytic point of view, the linear parts
are easy. Mathematicians are good at solving linear equations, so it is the
nonlinear parts that represent the major cryptanalytic hurdles. As a result,
both di↵erential and linear cryptanalysis are focused on dealing with the
nonlinear parts of DES, namely, the S-boxes.

The idea behind a di↵erential attack is to compare input and output
di↵erences. For simplicity, we’ll first consider a simplified S-box. Suppose
that a DES-like cipher uses the 3-bit to 2-bit S-box

column
row 00 01 10 11
0 10 01 11 00
1 00 10 01 11

(6.10)

where, for input bits x0x1x2, the bit x0 indexes the row, while x1x2 indexes
the column. Then, for example, Sbox(010) = 11, since the bits in row 0 and
column 10 are 11.

Consider the two inputs, X1 = 110 and X2 = 010, and suppose the key
is K = 011. Then X1 �K = 101 and X2 �K = 001 and we have

Sbox(X1 �K) = 10 and Sbox(X2 �K) = 01. (6.11)

Now suppose that K in equation (6.11) is unknown, but the inputs,
namely, X1 = 110 and X2 = 010, are known as well as the corresponding
outputs Sbox(X1 �K) = 10 and Sbox(X2 �K) = 01. Then from the S-box
in (6.10) we see that X1�K 2 {000, 101} and X2�K 2 {001, 110}. Since X1

and X2 are known, we have that

K 2 {110, 011} \ {011, 100}

which implies that K = 011. This “attack” is essentially a known plaintext
attack on the single S-box in (6.10) for the key K. The same approach will
work on a single DES S-box.

However, attacking one S-box in one round of DES does not appear to
be particularly useful. In addition, the attacker will not know the input to
any round except for the first, and the attacker will not know the output of
any round but the last. The intermediate rounds appear to be beyond the
purview of the cryptanalyst.

For this approach to prove useful in analyzing DES, we must be able to
extend the attack to one complete round, that is, we must take into account
all eight S-boxes simultaneously. Once we have extended the attack to one
round, we must then extend the attack to multiple rounds. On the surface,
both of these appear to be daunting tasks.

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 189

However, we’ll see that by focusing on input and output di↵erences, it
becomes easy to make some S-boxes “active” and others “inactive.” As a
result, we can, in some cases, extend the attack to a single round. To then
extend the attack to multiple rounds, we must choose the input di↵erence
so that the output di↵erence is in a useful form for the next round. This is
challenging and depends on the specific properties of the S-boxes, as well as
the linear mixing that occurs at each round.

The crucial point here is that we’ll focus on input and output di↵erences.
Suppose we know inputs X1 and X2. Then for input X1, the actual input to
the S-box is X1 �K and for input X2 the actual input to S-box is X2 �K,
where the key K is unknown. Di↵erences are defined modulo 2, implying that
the di↵erence operation is the same as the sum operation, namely, XOR. Then
the S-box input di↵erence is

(X1 �K)� (X2 �K) = X1 �X2. (6.12)

Note that the input di↵erence is independent of the key K. This is the
fundamental observation that enables di↵erential cryptanalysis to work.

Let Y1 = Sbox(X1 � K) and let Y2 = Sbox(X2 � K). Then the output
di↵erence Y1 � Y2 is almost the input di↵erence to next round. The goal
is to carefully construct the input di↵erence, so that we can “chain” di↵er-
ences through multiple rounds. Since the input di↵erence is independent of
the key—and since di↵erential cryptanalysis is a chosen plaintext attack—we
have the freedom to choose the inputs so that the output di↵erence has any
particular form that we desire.

Another crucial element of a di↵erential attack is that an S-box input
di↵erence of zero always results in an output di↵erence of zero. Why is this
the case? An input di↵erence of zero simply means that the input values,
say, X1 and X2, are the same, in which case the output values Y1 and Y2
must be the same, that is, Y1 � Y2 = 0. The importance of this elementary
observation is that we can make S-boxes “inactive” with respect to di↵erential
cryptanalysis by choosing their input di↵erences to be zero.

A final observation is that it is not necessary that things happen with
certainty. In other words, if an outcome only occurs with some nontrivial
probability, then we may be able to develop a probabilistic attack that will
still prove useful in recovering the key.

Given any S-box, we can analyze it for useful input di↵erences as follows.
For each possible input value X, find all pairs X1 and X2 such that

X = X1 �X2

and compute the corresponding output di↵erences

Y = Y1 � Y2,

190 ADVANCED CRYPTANALYSIS

where
Y1 = Sbox(X1) and Y2 = Sbox(X1).

By tabulating the resulting counts, we can find the most biased input val-
ues. For example for the S-box in (6.10), this analysis yields the results in
Table 6.6.

Table 6.6: S-box Di↵erence Analysis

Sbox(X1)� Sbox(X2)
X1 �X2 00 01 10 11

000 8 0 0 0
001 0 0 4 4
010 0 8 0 0
011 0 0 4 4
100 0 0 4 4
101 4 4 0 0
110 0 0 4 4
111 4 4 0 0

For any S-box, an input di↵erence of 000 is not interesting—the input
values are the same and the S-box is “inactive” (with respect to di↵erences),
since the output values must be the same. For the example in Table 6.6,
an input di↵erence of 010 always gives an output of 01, which is the most
biased possible result. And, as noted in equation (6.12), by selecting, say,
X1 �X2 = 010, the actual input di↵erence to the S-box would be 010 since
the key K drops out of the di↵erence.

Di↵erential cryptanalysis of DES is fairly complex. To illustrate the tech-
nique more concretely, but without all of the complexity inherent in DES,
we’ll present a scaled-down version of DES that we call Tiny DES, or TDES.
Then we’ll perform di↵erential and linear cryptanalysis on TDES. But first
we present a quick overview of linear cryptanalysis.

6.4.3 Overview of Linear Cryptanalysis

Ironically, linear cryptanalysis—like di↵erential cryptanalysis—is focused on
the nonlinear part of a block cipher. Although linear cryptanalysis was de-
veloped a few years after di↵erential cryptanalysis, it’s conceptually simpler,
it’s more e↵ective on DES, and it only requires known plaintext—as opposed
to chosen plaintext.

In di↵erential cryptanalysis, we focused on input and output di↵erences.
In linear cryptanalysis, the objective is to approximate the nonlinear part
of a cipher with linear equations. Since mathematicians are good at solving

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 191

linear equations, if we can find such approximations, it stands to reason that
we can use these to attack the cipher. Since the only nonlinear part of DES
is its S-boxes, linear cryptanalysis will be focused on the S-boxes.

Consider again the simple S-box in (6.10). We denote the three input
bits as x0x1x2 and the two output bits as y0y1. Then x0 determines the row,
and x1x2 determines the column. In Table 6.7, we’ve tabulated the number
of values for which each possible linear approximation holds. Note that any
table entry that is not 4 indicates a nonrandom output.

Table 6.7: S-box Linear Analysis

output bits
input bits y0 y1 y0 � y1

0 4 4 4
x0 4 4 4
x1 4 6 2
x2 4 4 4

x0 � x1 4 2 2
x0 � x2 0 4 4
x1 � x2 4 6 6

x0 � x1 � x2 4 6 2

The results in Table 6.7 show that, for example, y0 = x0 � x2 � 1 with
probability 1 and y0 � y1 = x1 � x2 with probability 3/4. Using information
such as this, in our analysis we can replace the S-boxes by linear functions.
The result is that, in e↵ect, we’ve traded the nonlinear S-boxes for linear
equations, where the linear equations do not hold with certainty, but instead
the equations hold with some nontrivial probability.

For these linear approximations to be useful in attacking a block cipher
such as DES, we’ll try to extend this approach so that we can solve linear
equations for the key. As with di↵erential cryptanalysis, we must somehow
“chain” these results through multiple rounds.

How well can we approximate a DES S-box with linear functions? Each
DES S-box was designed so that no linear combination of inputs is a good
approximation to a single output bit. However, there are linear combinations
of output bits that can be approximated by linear combinations of input bits.
As a result, there is potential for success in the linear cryptanalysis of DES.

As with di↵erential cryptanalysis, the linear cryptanalysis of DES is com-
plex. To illustrate a linear attack, we’ll next describe TDES, a scaled-down
DES-like cipher. Then we’ll perform di↵erential and linear cryptanalysis on
TDES.

192 ADVANCED CRYPTANALYSIS

6.4.4 Tiny DES

Tiny DES, or TDES, is a DES-like cipher that is simpler and easier to analyze
than DES. TDES was designed by your contriving author to make linear and
di↵erential attacks easy to study—it is a contrived cipher that is trivial to
break. Yet it’s similar enough to DES to illustrate the principles.

TDES is a much simplified version of DES with the following numerology.

• A 16-bit block size

• A 16-bit key size

• Four rounds

• Two S-boxes, each mapping 6 bits to 4 bits

• A 12-bit subkey in each round

TDES has no P-box, initial or final permutation. Essentially, we have elimi-
nated all features of DES that contribute nothing to its security, while at the
same time scaling down the block and key sizes.

Note that the small key and block sizes imply that TDES cannot o↵er any
real security, regardless of the underlying algorithm. Nevertheless, TDES will
be a useful design for illustrating linear and di↵erential attacks, as well as the
larger issues of block cipher design.

TDES is a Feistel cipher and we denote the plaintext as (L0, R0). Then
for i = 1, 2, 3, 4,

Li = Ri�1

Ri = Li�1 � F (Ri�1,Ki)

where the ciphertext is (L4, R4). A single round of TDES is illustrated in
Figure 6.8, where the numbers of bits are indicated on each line. Next, we’ll
completely describe all of the pieces of the TDES algorithm.

TDES has two S-boxes, denoted SboxLeft(X) and SboxRight(X). Both
S-boxes map 6 bits to 4 bits, as in standard DES. The parts of TDES that
we’ll be most interested in are the S-boxes and their input. To simplify the
notation, we’ll define the function

F (R,K) = Sboxes(expand(R)�K), (6.13)

where

Sboxes(x0x1x2 . . . x11) = (SboxLeft(x0x1 . . . x5), SboxRight(x6x7 . . . x11)).

The expansion permutation is given by

expand(R) = expand(r0r1 . . . r7) = (r4r7r2r1r5r7r0r2r6r5r0r3). (6.14)

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 193

Figure 6.8: One Round of Tiny DES

We denote the left TDES S-box by SboxLeft(X). In hexadecimal, this
S-box is

x1x2x3x4
x0x5 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 6 9 A 3 4 D 7 8 E 1 2 B 5 C F 0
1 9 E B A 4 5 0 7 8 6 3 2 C D 1 F
2 8 1 C 2 D 3 E F 0 9 5 A 4 B 6 7
3 9 0 2 5 A D 6 E 1 8 B C 3 4 7 F

(6.15)

whereas the right S-box, SboxRight(X), is

x1x2x3x4
x0x5 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 C 5 0 A E 7 2 8 D 4 3 9 6 F 1 B
1 1 C 9 6 3 E B 2 F 8 4 5 D A 0 7
2 F A E 6 D 8 2 4 1 7 9 0 3 5 B C
3 0 A 3 C 8 2 1 E 9 7 F 6 B 5 D 4

(6.16)

As with DES, each row in a TDES S-box is a permutation of the hexadecimal
digits 0, 1, 2, . . . , E, F .

The TDES key schedule is very simple. The 16-bit key is denoted

K = k0k1k2k3k4k5k6k7k8k9k10k11k12k13k14k15

194 ADVANCED CRYPTANALYSIS

and the subkey is generated as follows. Let

LK = k0k1 . . . k7

RK = k8k9 . . . k15

and for each round i = 1, 2, 3, 4,

LK = rotate LK left by 2

RK = rotate RK left by 1.

Then Ki is obtained by selecting bits 0, 2, 3, 4, 5, 7, 9, 10, 11, 13, 14, and 15 of
the current (LK,RK). The subkeys Ki can be given explicitly as follows:

K1 = k2k4k5k6k7k1k10k11k12k14k15k8

K2 = k4k6k7k0k1k3k11k12k13k15k8k9

K3 = k6k0k1k2k3k5k12k13k14k8k9k10

K4 = k0k2k3k4k5k7k13k14k15k9k10k11.

In the next section, we’ll describe a di↵erential attack on TDES. After
that, we’ll describe a linear attack on TDES. These attacks illustrate the
crucial principles that apply to di↵erential and linear cryptanalysis of DES
and other block ciphers.

6.4.5 Di↵erential Cryptanalysis of TDES

Our di↵erential attack on TDES will focus on the right S-box, which appears
above in (6.16). Suppose that we tabulate SboxRight(X1)� SboxRight(X2)
for all pairs X1 and X2, where X1 �X2 = 001000. Then we find that

X1 �X2 = 001000 =) SboxRight(X1)� SboxRight(X2) = 0010 (6.17)

with probability 3/4. Recall that for any S-box,

X1 �X2 = 000000 =) SboxRight(X1)� SboxRight(X2) = 0000. (6.18)

Our goal is to make use of these observations to develop a viable di↵erential
attack on TDES.

Di↵erential cryptanalysis is a chosen plaintext attack. Suppose we encrypt
two chosen plaintext blocks, P = (L,R) and P̃ = (L̃, R̃) that satisfy

P � P̃ = (L,R)� (L̃, R̃) = 0000 0000 0000 0010 = 0x0002. (6.19)

Then P and P̃ di↵er in the one specified bit and agree in all other bit posi-
tions. Let’s carefully analyze what happens to this di↵erence as P and P̃ are
encrypted with TDES.

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 195

First, consider

F (R,K)� F (R̃,K) = Sboxes(expand(R)�K)� Sboxes(expand(R̃)�K).

From the definition of expand in (6.14) we see that

expand(0000 0010) = 000000 001000.

Since expand is linear, if X1 �X2 = 0000 0010 then

expand(X1)� expand(X2) = expand(X1 �X2)

= expand(0000 0010)

= 000000 001000. (6.20)

For the chosen plaintext in equation (6.19) we have R�R̃ = 0000 0010. Then
from the observation in equation (6.20) it follows that

F (R,K)� F (R̃,K) = Sboxes(expand(R)�K)� Sboxes(expand(R̃)�K)

= (SboxLeft(A�K), SboxRight(B �K))

� (SboxLeft(Ã�K), SboxRight(B̃ �K))

= (SboxLeft(A�K)� SboxLeft(Ã�K)),

(SboxRight(B �K)� SboxRight(B̃ �K)),

where A � Ã = 000000 and B � B̃ = 001000. This result, together with
equations (6.17) and (6.18), imply

F (R,K)� F (R̃,K) = 0000 0010

with probability 3/4.
In summary, if R � R̃ = 0000 0010, then for any (unknown) subkey K,

we have
F (R,K)� F (R̃,K) = 0000 0010 (6.21)

with probability 3/4. In other words, for certain input values, the output
di↵erence of the round function is the same as the input di↵erence, with a
high probability. Next, we’ll show that we can chain this results through
multiple rounds of TDES.

Since di↵erential cryptanalysis is a chosen plaintext attack, we’ll choose P
and P̃ to satisfy equation (6.19). In Table 6.8, we carefully analyze the TDES
encryption of such plaintext values. By the choice of P and P̃ , we have

R0 � R̃0 = 0000 0010 and L0 � L̃0 = 0000 0000.

Then from equation (6.21),

R1 � R̃1 = 0000 0010

196 ADVANCED CRYPTANALYSIS

with probability 3/4. From this result it follows that

R2 � R̃2 = (L1 � F (R1,K2))� (L̃1 � F (R̃1,K2))

= (L1 � L̃1)� (F (R1,K2)� F (R̃1,K2))

= (R0 � R̃0)� (F (R1,K2)� F (R̃1,K2))

= 0000 0010� 0000 0010

= 0000 0000

with probability (3/4)2 = 9/16 = 0.5625. The results given in Table 6.8 for
R3 � R̃3 and R4 � R̃4 are obtained in a similar manner.

Table 6.8: Di↵erential Cryptanalysis of TDES

(L0, R0) = P (L̃0, R̃0) = P̃ P � P̃ = 0x0002 Prob.

L1 = R0 L̃1 = R̃0

R1 = L0 � F (R0,K1) R̃1 = L̃0 � F (R̃0,K1) (L1, R1)� (L̃1, R̃1) = 0x0202 3/4

L2 = R1 L̃2 = R̃1

R2 = L1 � F (R1,K2) R̃2 = L̃1 � F (R̃1,K2) (L2, R2)� (L̃2, R̃2) = 0x0200 (3/4)2

L3 = R2 L̃3 = R̃2

R3 = L2 � F (R2,K3) R̃3 = L̃2 � F (R̃2,K3) (L3, R3)� (L̃3, R̃3) = 0x0002 (3/4)2

L4 = R3 L̃4 = R̃3

R4 = L3 � F (R3,K4) R̃4 = L̃3 � F (R̃3,K4) (L4, R4)� (L̃4, R̃4) = 0x0202 (3/4)3

C = (L4, R4) C = (L̃4, R̃4) C � C̃ = 0x0202

We can derive an algorithm from Table 6.8 to recover some of the un-
known key bits. We’ll choose P and P̃ as in equation (6.19) and obtain the
corresponding ciphertext C and C̃. Since TDES is a Feistel cipher,

R4 = L3 � F (R3,K4) and R̃4 = L̃3 � F (R̃3,K4).

In addition, L4 = R3 and L̃4 = R̃3. Consequently,

R4 = L3 � F (L4,K4) and R̃4 = L̃3 � F (L̃4,K4),

which can be rewritten as

L3 = R4 � F (L4,K4) and L̃3 = R̃4 � F (L̃4,K4).

Now if
C � C̃ = 0x0202, (6.22)

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 197

then from Table 6.8 we almost certainly have L3 � L̃3 = 0000 0000, that is,
L3 = L̃3. It follows that

R4 � F (L4,K4) = R̃4 � F (L̃4,K4)

which we rewrite as

R4 � R̃4 = F (L4,K4)� F (L̃4,K4). (6.23)

Note that, in equation (6.23), the only unknown is the subkey K4. Next, we
show how to use this result to recover some of the bits of K4.

For a chosen plaintext pair that satisfies equation (6.19), if the resulting
ciphertext pairs satisfy equation (6.22), then we know that equation (6.23)
holds. Then since

C � C̃ = (L4, R4)� (L̃4, R̃4) = 0x0202,

we have

R4 � R̃4 = 0000 0010 (6.24)

and we also have

L4 � L̃4 = 0000 0010. (6.25)

Let

L4 = `0`1`2`3`4`5`6`7 and L̃4 = ˜̀
0
˜̀
1
˜̀
2
˜̀
3
˜̀
4
˜̀
5
˜̀
6
˜̀
7.

Then equation (6.25) implies that `i = ˜̀
i for i = 0, 1, 2, 3, 4, 5, 7 and `6 6= ˜̀

6.
Now substituting equation (6.24) into equation (6.23) and expanding the
definition of F , we find

0000 0010 =
⇣
SboxLeft(`4`7`2`1`5`7 � k0k2k3k4k5k7),

SboxRight(`0`2`6`5`0`3 � k13k14k15k9k10k11)
⌘

�
⇣
SboxLeft(˜̀4 ˜̀7 ˜̀2 ˜̀1 ˜̀5 ˜̀7 � k0k2k3k4k5k7),

SboxRight(˜̀0 ˜̀2 ˜̀6 ˜̀5 ˜̀0 ˜̀3 � k13k14k15k9k10k11)
⌘
. (6.26)

The left four bits of equation (6.26) give us

0000 = SboxLeft(`4`7`2`1`5`7 � k0k2k3k4k5k7)

� SboxLeft(˜̀4 ˜̀7 ˜̀2 ˜̀1 ˜̀5 ˜̀7 � k0k2k3k4k5k7),

which holds for any choice of the bits k0k2k3k4k5k7, since `i = ˜̀
i for all i 6= 6.

Therefore, we gain no information about the subkey K4 from the left S-box.

198 ADVANCED CRYPTANALYSIS

On the other hand, the right four bits of equation (6.26) give us

0010 = SboxRight(`0`2`6`5`0`3 � k13k14k15k9k10k11)

� SboxRight(˜̀0 ˜̀2 ˜̀6 ˜̀5 ˜̀0 ˜̀3 � k13k14k15k9k10k11), (6.27)

which must hold for the correct choice of subkey bits k13k14k15k9k10k11 and
will only hold with some probability for an incorrect choice of these subkey
bits. Since the right S-box and the bits of L4 and L̃4 are known, we can
determine the unknown subkey bits that appear in equation (6.27). The
algorithm for recovering these key bits is given in Table 6.9.

Table 6.9: Algorithm to Recover Subkey Bits

count[i] = 0, for i = 0, 1, . . . , 63
for i = 1 to iterations

Choose P and P̃ with P � P̃ = 0x0002

Obtain corresponding C = c0c1 . . . c15 and C̃ = c̃0c̃1 . . . c̃15
if C � C̃ = 0x0202 then

`i = ci and ˜̀
i = c̃i for i = 0, 1, . . . , 7

for K = 0 to 63
if 0010 == (SboxRight(`0`2`6`5`0`3 �K)

� SboxRight(˜̀0 ˜̀2 ˜̀6 ˜̀5 ˜̀0 ˜̀3 �K)) then
increment count[K]

end if

next K
end if

next i

Each time the for loop in Table 6.9 is executed, count[K] will be incre-
mented for the correct subkey bits, that is, for K = k13k14k15k9k10k11, while
for other indices K the count will be incremented with some probability.
Consequently, the maximum counts indicate possible subkey values. There
may be more than one such maximum count, but with a su�cient number of
iterations, the number of such counts should be small.

In one particular test case of the algorithm in Table 6.9, we generated 100
pairs P and P̃ that satisfy P � P̃ = 0x0002. We found that 47 of the
resulting ciphertext pairs satisfied C � C̃ = 0x0202, and for each of these we
tried all 64 possible 6-bit subkeys as required by the algorithm in Table 6.9.
In this experiment, we found that each of the four putative subkeys 000001,
001001, 110000, and 000111 had the maximum count of 47, while no other
had a count greater than 39. We conclude that subkey K4 must be one of

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 199

these four values. Then from the definition of K4 we have

k13k14k15k9k10k11 2 {000001, 001001, 110000, 111000},

which is equivalent to

k13k14k9k10k11 2 {00001, 11000}. (6.28)

In this case, the key is

K = 1010 1001 1000 0111,

so that k13k14k9k10k11 = 11000, which appears in equation (6.28), as ex-
pected.

Of course, if we’re the attacker, we don’t know the key, so, to complete the
recovery of K, we could exhaustively search over the remaining 211 unknown
key bits, and for each of these try both of the possibilities in equation (6.28).
For each of these 212 putative keys K, we would try to decrypt the ciphertext,
and for the correct key, we will recover the plaintext. We expect to try about
half of the possibilities—about 211 keys—before finding the correct key K.

The total expected work to recover the entire key K by this method is
about 211 encryptions, plus the work required for the di↵erential attack, which
is insignificant in comparison. As a result, we can recover the entire 16-bit
key with a work factor of about 211 encryptions, which is much better than
an exhaustive key search, since an exhaustive search has an expected work
of 215 encryptions. This shows that a shortcut attack exists, and as a result
TDES is insecure.

6.4.6 Linear Cryptanalysis of TDES

The linear cryptanalysis of TDES is simpler than the di↵erential cryptanal-
ysis. Whereas the di↵erential cryptanalysis of TDES focused on the right
S-box, our linear cryptanalysis attack will focus on the left S-box, which
appears above in (6.15).

With the notation

y0y1y2y3 = SboxLeft(x0x1x2x3x4x5),

it’s easy to verify that for the left S-box of TDES, the linear approximations

y1 = x2 and y2 = x3 (6.29)

each hold with probability 3/4. To develop a linear attack based on these
equations, we must be able to chain these results through multiple rounds.

200 ADVANCED CRYPTANALYSIS

Denote the plaintext by P = (L0, R0) and let R0 = r0r1r2r3r4r5r6r7.
Then the expansion permutation is given by

expand(R0) = expand(r0r1r2r3r4r5r6r7) = r4r7r2r1r5r7r0r2r6r5r0r3. (6.30)

From the definition of F in equation (6.13), we see that the input to the S-
boxes in round one is given by expand(R0)�K1. Then, from equation (6.30)
and the definition of subkey K1, we see that the input to the left S-box in
round one is

r4r7r2r1r5r7 � k2k4k5k6k7k1.

Let y0y1y2y3 be the round-one output of the left S-box. Then equa-
tion (6.29) implies that

y1 = r2 � k5 and y2 = r1 � k6, (6.31)

where each equality holds with probability 3/4. In other words, for the left
S-box, output bit number 1 is input bit number 2, XORed with a bit of key,
and output bit number 2 is input bit number 1, XORed with a key bit, where
each of these hold with probability 3/4.

In TDES (as in DES) the output of the S-boxes is XORed with the bits
of the old left half. Let L0 = `0`1`2`3`4`5`6`7 and let R1 = r̃0r̃1r̃2r̃3r̃4r̃5r̃6r̃7.
Then the output of the left S-box from round one is XORed with `0`1`2`3 to
yield r̃0r̃1r̃2r̃3. Combining this notation with equation (6.31), we have

r̃1 = r2 � k5 � `1 and r̃2 = r1 � k6 � `2, (6.32)

where each of these equations holds with probability 3/4. An analogous
result holds for subsequent rounds, where the specific key bits depend on the
subkey Ki.

As a result of equation (6.32), we can chain the linear approximation in
equation (6.29) through multiple rounds. This is illustrated in Table 6.10.
Since linear cryptanalysis is a known plaintext attack, the attacker knows the
plaintext P = p0p1p2 . . . p15 and corresponding ciphertext C = c0c1c2 . . . c15.

The final row in Table 6.10 follows from the fact L4 = c0c1c2c3c4c5c6c7.
We can rewrite these equations as

k0 � k1 = c1 � p10 (6.33)

and
k7 � k2 = c2 � p9 (6.34)

where both hold with probability (3/4)3. Since c1, c2, p9, and p10 are all
known, we have obtained some information about the key bits k0, k1, k2,
and k7.

6.4 LINEAR AND DIFFERENTIAL CRYPTANALYSIS 201

Table 6.10: Linear Cryptanalysis of TDES

(L0, R0) = (p0 . . . p7, p8 . . . p15) Bits 1 and 2 (numbered from 0) Probability
L1 = R0 p9, p10 1
R1 = L0 � F (R0,K1) p1 � p10 � k5, p2 � p9 � k6 3/4

L2 = R1 p1 � p10 � k5, p2 � p9 � k6 3/4
R2 = L1 � F (R1,K2) p2 � k6 � k7, p1 � k5 � k0 (3/4)2

L3 = R2 p2 � k6 � k7, p1 � k5 � k0 (3/4)2

R3 = L2 � F (R2,K3) p10 � k0 � k1, p9 � k7 � k2 (3/4)3

L4 = R3 p10 � k0 � k1, p9 � k7 � k2 (3/4)3

R4 = L3 � F (R3,K4)

C = (L4, R4) c1 = p10 � k0 � k1, c2 = p9 � k7 � k2 (3/4)3

It’s easy to implement a linear attack based on the results in Table 6.10.
We are given the known plaintexts P = p0p1p2 . . . p15 along with the corre-
sponding ciphertext C = c0c1c2 . . . c15. For each such pair, we increment a
counter depending on whether

c1 � p10 = 0 or c1 � p10 = 1

and another counter depending on whether

c2 � p9 = 0 or c2 � p9 = 1.

Using 100 known plaintexts the following results were obtained:

c1 � p10 = 0 occurred 38 times

c1 � p10 = 1 occurred 62 times

c2 � p9 = 0 occurred 62 times

c2 � p9 = 1 occurred 38 times.

In this case, we conclude from equation (6.33) that

k0 � k1 = 1

and from equation (6.34) that

k7 � k2 = 0.

In this example, the actual key is

K = 1010 0011 0101 0110,

202 ADVANCED CRYPTANALYSIS

and it’s easily verified that k0 � k1 = 1 and k7 � k2 = 0 as we determined via
the linear attack.

In this linear attack, we have only recovered the equivalent of two bits
of information. To recover the entire key K, we could do an exhaustive key
search for the remaining unknown bits. This would require an expected work
of about 213 encryptions and the work for the linear attack, which is negligible
in comparison. While this may not seem too significant, it is a shortcut attack,
and so it shows that TDES is insecure according to our definition.

6.4.7 Implications Block Cipher Design

Since there is no way to prove that a practical cipher is secure and since it’s
di�cult to protect against unknown attacks, cryptographers focus on prevent-
ing known attacks. For block ciphers, the known attacks are, primarily, linear
and di↵erential cryptanalysis—and variations on these approaches. Thus the
primary goal in block cipher design is to make linear and di↵erential attacks
infeasible.

How can cryptographers make linear and di↵erential attacks more di�-
cult? For an iterated block cipher, there is a fundamental trade-o↵ between
the number of rounds and the complexity of each round. That is, a simple
round function will generally require a larger number of rounds to achieve
the same degree of confusion and di↵usion as a more complex function could
achieve in fewer iterations.

In both linear and di↵erential attacks, any one-round success probability
that is less than 1 will almost certainly diminish with each subsequent round.
Consequently, all else being equal, a block cipher with more rounds will be
more secure from linear and di↵erential attacks.

Another way to make linear and di↵erential attacks more di�cult is to
have a high degree of confusion. That is, we can strive to reduce the success
probability per round. For a DES-like cipher, this is equivalent to building
better S-boxes. All else being equal—which it never is—more confusion means
more security.

On the other hand, better di↵usion will also tend to make linear and
di↵erential attacks harder to mount. In both types of attacks, it is necessary
to chain results through multiple rounds, and better di↵usion will make it
harder to connect one-round successes into usable chains.

In TDES, the number of rounds is small, and, as a result, the one-round
success probabilities are not su�ciently diminished during encryption. Also,
the TDES S-boxes are poorly designed, resulting in limited confusion. Finally,
the TDES expand permutation—the only source of di↵usion in the cipher—
does a poor job of mixing the bits of one round into the next round. All of
these combine to yield a cipher that is highly susceptible to both linear and
di↵erential attacks.

6.5 LATTICE REDUCTION AND THE KNAPSACK 203

To complicate the lives of block cipher designers, they must construct
ciphers that are secure and e�cient. One of the fundamental issues that
block cipher designers must contend with is the inherent trade-o↵ between the
number of rounds and the complexity of each round. That is, a block cipher
with a simple round structure will tend to provide limited mixing (di↵usion)
and limited nonlinearity (confusion), and consequently more rounds will be
required.

The Tiny Encryption Algorithm (TEA) is a good example of a block
cipher with a simple round structure. Since each round of TEA is extremely
simple, the resulting confusion and di↵usion properties are fairly weak, which
necessitates a large number of rounds. At the other extreme, each round
of the Advanced Encryption Standard (AES) has strong linear mixing and
excellent nonlinear properties. So a relatively small number of AES rounds
are needed, but each AES round is more complex than a round of TEA.
Finally, DES could be viewed as residing in between these two extremes.

6.5 Lattice Reduction and the Knapsack

Every private in the French army carries a Field Marshal wand in his knapsack.

— Napoleon Bonaparte

In this section we present the details of the attack on the original Merkle-
Hellman knapsack cryptosystem. This knapsack cryptosystem is discussed in
Section 4.2 of Chapter 4. For a more rigorous (but still readable) presentation
of the attack discussed here, see [176]. Note that some elementary linear
algebra is required in this section. The Appendix contains a review of the
necessary material.

Let b1,b2,. . .,bn be vectors in Rm, that is, each bi is a (column) vector
consisting of exactly m real numbers. A lattice is the set of all multiples of
the vector bi of the form

↵1b1 + ↵2b2 + · · ·+ ↵nbn,

where each ↵i in an integer.
For example, consider the vectors

b1 =


�1
1

�
and b2 =


1
2

�
. (6.35)

Since b1 and b2 are linearly independent, any point in the plane can be written
as ↵1b1 + ↵2b2 for some real numbers ↵1 and ↵2. We say that the plane R2

is spanned by the pair (b1, b2). If we restrict ↵1 and ↵2 to integers, then the
resulting span, that is, all points of the form ↵1b1+↵2b2, is a lattice. A lattice

204 ADVANCED CRYPTANALYSIS

consists of a discrete set of points. For example, the lattice spanned by the
vectors in equation (6.35) is illustrated in Figure 6.9.

- x

6
y

�
��

�
��

�
��

�
��

@I
@I
@I

@I

�
��
�
��
�
��
�
��
�
��

�
��

�
��

�
��

�
��

�
��

�
��

@I
@I

@I
@I

@I
@I

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

@I
@I
@I

@I
@I
@I

@I
@I

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

@I
@I
@I

@I
@I
@I

@I
@I

@I
@I

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

@I
@I

@I
@I
@I

@I
@I
@I

@I
@I
@I

@I

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

@I
@I

@I
@I
@I
@I

@I
@I
@I

@I
@I

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

@I
@I
@I

@I
@I
@I

@I
@I
@I
@I

@I
@I
@I
@I

@I
@I
@I

@I
@I

@I

Figure 6.9: A Lattice in the Plane

Many combinatorial problems can be reduced to the problem of finding a
“short” vector in a lattice. The knapsack is one such problem. Short vectors
in a lattice can be found using a technique known as lattice reduction.

Before discussing the lattice reduction attack on the knapsack, let’s first
consider another combinatorial problem that can be solved using this tech-
nique. The problem that we’ll consider is the exact cover, which can be stated
as follows. Given a set S and a collection of subsets of S, find a collection
of these subsets where each element of S is in exactly one subset. It’s not
always possible to find such a collection of subsets, but if it is, we’ll see that
the solution is a short vector in a particular lattice.

Consider the following example of the exact cover problem. Let

S = {0, 1, 2, 3, 4, 5, 6}

and suppose we are given 13 subsets of S, which we label s0 through s12 as
follows:

s0 = {0, 1, 3}, s1 = {0, 1, 5}, s2 = {0, 2, 4}, s3 = {0, 2, 5},
s4 = {0, 3, 6}, s5 = {1, 2, 4}, s6 = {1, 2, 6}, s7 = {1, 3, 5},
s8 = {1, 4, 6}, s9 = {1}, s10 = {2, 5, 6}, s11 = {3, 4, 5}, s12 = {3, 4, 6}.

Denote the number of elements of S by m and the number of subsets by n.
In this example, we have m = 7 and n = 13. Can we find a collection of
these 13 subsets where each element of S is in exactly one subset?

There are 213 di↵erent collections of the 13 subsets, so we could exhaus-
tively search through all possible collections until we find such a collection—or

6.5 LATTICE REDUCTION AND THE KNAPSACK 205

until we’ve tried them all, in which case we would conclude that no such col-
lection exists. But if there are too many subsets, then we need an alternative
approach.

One alternative is to try a heuristic search technique. There are many
di↵erent types of heuristic search strategies, but what they all have in common
is that they search through the set of possible solutions in a nonrandom
manner. The goal of such a search strategy is to search in a “smart” way to
improve the odds of finding a solution sooner than an exhaustive search.

Lattice reduction can be viewed as a form of heuristic search. As a result,
we are not assured of finding a solution using lattice reduction, but for many
problems this techniques yields a solution with a high probability, yet the
work required is small in comparison to an exhaustive search.

Before we can apply the lattice reduction method, we first need to rewrite
the exact cover problem in matrix form. We define an m ⇥ n matrix A,
where aij = 1 if element i of S is in subset sj and otherwise aij = 0. Also, we
define B to be a vector of length m consisting of all 1s. Then, if we can solve
the matrix equation AU = B for a vector U of 0s and 1s, we have solved the
exact cover problem.

For the exact cover example above, the matrix equation AU = B has the
form

2

666666664

1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 1 1 0 0 0
0 0 1 1 0 1 1 0 0 0 1 0 0
1 0 0 0 1 0 0 1 0 0 0 1 1
0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 0 0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 0 1 0 1 0 1

3

777777775

2

666666666666666664

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

3

777777777777777775

=

2

666666664

1
1
1
1
1
1
1

3

777777775

and we seek a solution U where each ui 2 {0, 1}, that is, ui = 1 if the
subset si is in the exact cover and ui = 0 if subset si is not in the exact
cover. In this particular case, it’s easy to verify that a solution is given
by U = [0001000001001], that is, s3, s9, and s12 form an exact cover of the
set S.

We have shown that the exact cover problem can be restated as finding
a solution U to a matrix equation AU = B, where U consists entirely of 0s
and 1s. This is not a standard linear algebra problem, since solutions to linear
equations are not restricted to contain only 0s and 1s. This turns out to be
a problem that can be solved using lattice reduction techniques. But first we
need an elementary fact from linear algebra.

206 ADVANCED CRYPTANALYSIS

Suppose AU = B, where A is a matrix and U and B are column vectors.
Let a1, a2, . . . , an denote the columns of A and u1, u2, . . . , un the elements
of U . Then

B = u1a1 + u2a2 + · · ·+ unan. (6.36)

For example,


3 4
1 5

� 
2
6

�
= 2


3
1

�
+ 6


4
5

�
=


30
32

�
.

Now given AU = B, consider the matrix equation


In⇥n 0n⇥1

Am⇥n �Bm⇥1

� 
Un⇥1

11⇥1

�
=


Un⇥1

0m⇥1

�
,

which we denote as MV = W . Multiplying, we find that U = U (which is
not very informative) and the nontrivial equation AU � B = 0. Therefore,
finding a solution V to MV = W is equivalent to finding a solution U to the
original equation AU = B.

The benefit of rewriting the problem asMV = W is that the columns ofM
are linearly independent. This is easily seen to be the case, since the n ⇥ n
identity matrix appears in the upper left, and the final column begins with n
zeros.

Let c0, c1, c2, . . . , cn be the n + 1 columns of M and let v0, v1, v2, . . . , vn
be the elements of V . Then, by the observation in equation (6.36),

W = v0c0 + v1c1 + · · ·+ vncn. (6.37)

Let L be the lattice spanned by c0, c1, c2, . . . , cn, the columns of M . Then L

consists of all integer multiples of the columns of M . Recall that MV = W ,
where

W =

2

66666666664

u0
u1
...

un�1

0
...
0

3

77777777775

.

Our goal is to find U . However, instead of solving linear equations for V , we
can solve for U by finding W . By equation (6.37), this desired solution W is
in the lattice L.

The Euclidean length of a vector Y = (y0, y1, . . . , yn�1) 2 Rn is given by
the formula

||Y || =
q
y20 + y21 + · · ·+ y2n�1

6.5 LATTICE REDUCTION AND THE KNAPSACK 207

Then the length of W is

||W || =
q
u20 + u21 + · · ·+ u2n�1 

p
n.

Since most vectors in L will have a length far greater than
p
n, we see that W

is a short vector in the lattice L. Furthermore, W has a very special form,
with its first n entries all equal to 0 or 1 and its last m entries all equal
to 0. These facts distinguish W from typical vectors in L. Can we use this
information to find W , which would give us a solution to the exact cover
problem?

In fact, there is an algorithm known as the LLL algorithm [170, 190] (be-
cause it was invented by three guys whose names start with “L”) to e�ciently
find short vectors in a lattice. Our strategy will be to use LLL to find short
vectors in L, the lattice spanned by the columns of M . Then we’ll examine
these short vectors to see whether any have the special form of W . If we find
such a vector, then it is highly probably that we have found a solution U to
the original problem.

Pseudo-code for the LLL algorithm appears in Table 6.11, where the
(n + m) ⇥ (n + 1) matrix M has columns b0, b1, b2, . . . , bn and the columns
of matrix X are denoted x0, x1, x2 . . . , xn and the elements of Y are denoted
as yij . Note that the yij can be negative, so care must be taken when imple-
menting the floor function in byij + 1/2c.

For completeness, we’ve given the Gram-Schmidt orthogonalization algo-
rithm in Table 6.12. Combined, these two algorithms only require about 30
lines of pseudo-code.

It’s important to realize there is no guarantee that the LLL algorithm will
find the desired vector W . But for certain types of problems, the probability
of success is high.

By now, you may be wondering what any of this has to do with the
knapsack cryptosystem. Next, we’ll show that we can attack the knapsack
via lattice reduction.

Let’s consider the superincreasing knapsack

S = [s0, s1, . . . , s7] = [2, 3, 7, 14, 30, 57, 120, 251]

and choose the multiplier m = 41 and modulus n = 491 (note that this is
the same knapsack example that appears in Section 4.2 of Chapter 4). Next,
we observe that m�1 = 12 mod 491. Now to find the corresponding public
knapsack, we compute ti = 41si mod 491 for i = 0, 1, . . . , 7, and the result is

T = [t0, t1, . . . , t7] = [82, 123, 287, 83, 248, 373, 10, 471].

This yields the knapsack cryptosystem defined by

Public key: T

208 ADVANCED CRYPTANALYSIS

Table 6.11: LLL Algorithm

// find short vectors in the lattice spanned
// by columns of M = (b0, b1, . . . , bn)
loop forever

(X,Y) = GS(M)
for j = 1 to n

for i = j � 1 to 0
if |yij | > 1/2 then

bj = bj � byij + 1/2cbi
end if

next i
next j
(X,Y) = GS(M)
for j = 0 to n� 1

if ||xj+1 + yj,j+1xj ||2 < 3
4 ||xj ||

2

swap(bj , bj+1)
goto abc

end if
next j
return(M)

abc: continue
end loop

and
Private key: S and m�1 mod n.

For example, 10010110 is encrypted as

1 · t0 + 0 · t1 + 0 · t2 + 1 · t3 + 0 · t4 + 1 · t5 + 1 · t6 + 0 · t7
= 82 + 83 + 373 + 10

= 548.

To decrypt the ciphertext 548, the holder of the private key computes

548 · 12 = 193 mod 491

and then uses the superincreasing knapsack S to easily solve for the plain-
text 10010110.

In this particular example, the attacker Trudy knows the public key T and
the ciphertext 548. Trudy can break the system if she can find ui 2 {0, 1} so
that

82u0 + 123u1 + 287u2 + 83u3 + 248u4 + 373u5 + 10u6 + 471u7 = 548. (6.38)

6.5 LATTICE REDUCTION AND THE KNAPSACK 209

Table 6.12: Gram-Schmidt Algorithm

// Gram-Schmidt M = (b0, b1, . . . , bn)
GS(M)

x0 = b0
for j = 1 to n

xj = bj
for i = 0 to j � 1

yij = (xi · bj)/||xi||2
xj = xj � yijxi

next i
next j
return(X,Y)

end GS

To put this problem into the correct framework for lattice reduction, we
rewrite the problem in matrix form as

T · U = 548,

where T is the public knapsack and U = [u0, u1, . . . , u7] appears in equa-
tion (6.38). This has the same form as AU = B discussed above, so we
rewrite this to put it into the form MV = W , which is then suitable for the
LLL algorithm. In this case, we have

M =


I8⇥8 08⇥1

T1⇥8 �C1⇥1

�
=

2

6666666666664

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
82 123 287 83 248 373 10 471 �548

3

7777777777775

.

We can now apply LLL to the matrix M to find short vectors in the lattice
spanned by the columns of M . The output of LLL, which we denote by M 0

is a matrix of short vectors in the lattice spanned by the columns of M . In

210 ADVANCED CRYPTANALYSIS

this example, LLL yields

M 0 =

2

6666666666664

�1 �1 0 1 0 1 0 0 1
0 �1 1 0 1 �1 0 0 0
0 1 �1 0 0 0 �1 1 2
1 �1 �1 1 0 �1 0 �1 0
0 0 1 0 �2 �1 0 1 0
0 0 0 1 1 1 1 �1 1
0 0 0 1 0 0 �1 0 �1
0 0 0 0 0 0 1 1 �1
1 �1 1 0 0 1 �1 2 0

3

7777777777775

.

The 4th column of M 0 has the correct form to be a solution to the knapsack
problem. For this column, Trudy obtains the putative solution

U = [1, 0, 0, 1, 0, 1, 1, 0]

and using the public key and the ciphertext, she can then easily verify that the
putative solution 10010110 is, in fact, the correct solution. One interesting
aspect of this particular attack is that Trudy can find the plaintext from the
ciphertext without recovering the private key.

The lattice reduction attack on the knapsack is fast and e�cient—it was
originally demonstrated using an Apple II computer in 1983 [266]. Although
the attack is not always successful, the probability of success against the
original Merkle-Hellman knapsack is high.

Lattice reduction was a surprising method of attack on the knapsack cryp-
tosystem. The lesson here is that clever mathematics (and algorithms) can
sometimes break cryptosystems.

6.6 RSA Timing Attacks

All things entail rising and falling timing.

You must be able to discern this.

— Miyamoto Musashi

Often it’s possible to attack a cipher without directly attacking the algo-
rithm [89]. Many processes produce unintended “side channels” that leak
information. This incidental information can arise due to the way that a
computation is performed, the media used, the power consumed, electromag-
netic emanations, and so on. In some cases, this information can be used to
recover a cryptographic key.

Paul Kocher, the father of side channel attacks [167], originally developed
the technique as a way to demonstrate the vulnerablity of smartcards. Kocher

6.6 RSA TIMING ATTACKS 211

singlehandedly delayed the widespread acceptance of smartcards by several
years.

A large potential source of side channel information arises from so-called
unintended emanations. There is an entire branch of security devoted to emis-
sions security, or EMSEC, which also goes by the name of TEMPEST [200].
For example, Anderson [14] describes how electromagnetic fields, or EMF,
from a computer screen can allow the screen image to be reconstructed at a
distance.

Smartcards have been attacked via their EMF emanations as well as by
di↵erential power analysis, or DPA, which exploits the fact that some com-
putations require more energy consumption than others [168]. Attacks on
EMF emissions and DPA attacks are passive. More active attacks often go
by the name of di↵erential fault analysis, or DFA, where faults are induced
with the goal of recovering information [11]. For example, excessive power
may be put into a device to induce a fault. Such attacks may or may not be
destructive. A smartcard used in some GSM cell phones could be attacked
using DFA techniques [229].

In this section, we’ll examine two timing attack on RSA. The first ap-
proach is impractical, but provides a relatively simple illustration of the con-
cept, while the second attack has been used in the real world to break real
systems.

Timing attacks exploit the fact that some computations in RSA take
longer than others. By carefully measuring the time that an operation takes,
we can determine the RSA private key, or at least some bits of the key [330].
More advanced versions of timing attacks have been used to successfully at-
tack the RSA implementation in OpenSSL over a network connection [41].
For a discussion of timing attacks that apply to more general RSA implemen-
tations, see [285].

6.6.1 A Simple Timing Attack

Let M be a message that Alice is to sign using her private key d. Suppose
that Alice signs M itself,6 that is, Alice computes Md mod N . As usual,
Trudy’s goal is to recover d. We’ll assume that d is n + 1 bits in length,
with n unknown bits, and we’ll denote the bits of d as

d = d0d1 . . . dn where d0 = 1.

Recall that the method of repeated squaring provides an e�cient means
of computing modular exponentiation. Suppose repeated squaring is used

6The astute reader will recall that in Chapter 5 we said that Alice signs h(M), not M .
However, in security protocols, it’s common to sign a random challenge without any hash
being used—see Chapters 9 and 10. Many timing attacks arise in the context of security
protocols, so here we’ll consider the case where the message M is signed, without any hash.

212 ADVANCED CRYPTANALYSIS

to compute Md mod N . Pseudo-code for the repeated squaring algorithm
appears in Table 6.13.

Table 6.13: Repeated Squaring

x = M
for j = 1 to n

x = mod(x2, N)
if dj == 1 then

x = mod(xM,N)
end if

next j
return x

Suppose that the mod(x,N) function in Table 6.13 is implemented as
shown in Table 6.14. For e�ciency, the expensive mod operation, denoted by
“%,” is only executed if a modular reduction is actually required.

Table 6.14: E�cient Mod Function

function mod(x,N)
if x >= N

x = x % N
end if

return x

Now consider the repeated squaring algorithm in Table 6.13. If dj = 0,
then x = mod(x2, N), but if dj = 1 then two operations occur, namely,
x = mod(x2, N) and x = mod(xM,N). As a result, the computation times
might di↵er when dj = 0 compared with when dj = 1. Can Trudy take
advantage of this to recover Alice’s private key?

We’ll assume that Trudy can conduct a “chosen plaintext” attack, that is,
Alice will sign messages of Trudy’s choosing. Suppose clever Trudy chooses
two values, Y and Z, with Y 3 < N and Z2 < N < Z3 and Alice signs both.

Let x = Y and consider the j = 1 step in the repeated squaring algorithm
of Table 6.13. We have

x = mod(x2, N)

and since x2 = Y 2 < Y 3 < N , the “%” operation does not occur. Then,
if d1 = 1, we have

x = mod(xY,N),

6.6 RSA TIMING ATTACKS 213

and since xY = Y 3 < N , again the “%” operation does not occur. Of course,
if d1 = 0, this “%” operation does not occur either.

Now let x = Z and consider the j = 1 step in the algorithm of Table 6.13.
In this case, we have

x = mod(x2, N)

and, since x2 = Z2 < N , the “%” operation does not occur. But if d1 = 1,
we have

x = mod(xZ,N)

and the “%” operation occurs, since xZ = Z3 > N . However, if d1 = 0, then
this “%” operation does not occur. That is, an additional “%” operation
occurs only if d1 = 1. As a result, if d1 = 1 then the j = 1 step requires
more computation and will take longer to complete for Z than for Y . If, on
the other hand, d1 = 0, the j = 1 computation step will take about the same
amount of time for both Z and Y . Using this fact, can Trudy recover the
bit d1 of the private key d?

The problem for Trudy is that the repeated squaring algorithm does not
stop after the j = 1 step. So, any timing di↵erence in the j = 1 step might be
swamped by timing di↵erences that occur at later steps. But suppose Trudy
can repeat this experiment many times with distinct Y and Z values, all of
which satisfy the conditions given above, namely, Y 3 < N and Z2 < N < Z3.
Then if d1 = 0, on average, Trudy would expect the Y and Z signatures to
take about the same time. On the other hand, if d1 = 1, then Trudy would
expect the Z signatures to take longer than the Y signatures, on average.
That is, timing di↵erences for later steps in the algorithm would tend to
cancel out, allowing the timing di↵erence (or not) for the j = 1 step show
through the noise. The point is that Trudy will need to rely on statistics
gathered over many test cases to make this attack reliable.

Trudy can use the following algorithm to determine the unknown private
key bit d1. For i = 0, 1, . . . ,m � 1, Trudy chooses Yi with Y 3

i < N . Let yi
be the time required for Alice to sign Yi, that is, the time required to com-
pute Y d

i mod N , for i = 0, 1, . . . ,m � 1. Then Trudy computes the average
timing

y = (y0 + y1 + · · ·+ ym�1)/m.

Next, for i = 0, 1, . . . ,m � 1, Trudy chooses Zi with Z2
i < N < Z3

i . Let zi
be the time required to compute Zd

i mod N , for i = 0, 1, . . . ,m � 1. Again,
Trudy computes the average timing

z = (z0 + z1 + · · ·+ zm�1)/m.

Now if z > y + " then Trudy would assume that d1 = 1, and otherwise she
would assume d1 = 0, where an appropriate value for " could be determined
by experimentation.

214 ADVANCED CRYPTANALYSIS

Once d1 has been recovered, Trudy can use an analogous process to find d2,
although for this next step the Y and Z values will need to be chosen to
satisfy di↵erent criteria. And once d2 is known, Trudy can proceed to d3 and
so on—see Problem 31.

The attack discussed in this section is only practical for recovering the
first few bits of the private key. Next, we discuss a more realistic timing
attack that has been used to recover RSA private keys from smartcards and
other resource-constrained devices.

6.6.2 Kocher’s Timing Attack

The basic idea behind Kocher’s timing attack [167] is elegant, yet reasonably
straightforward. Suppose that the repeated squaring algorithm in Table 6.15
is used for modular exponentiation in RSA. Also, suppose that the time
taken by the multiplication operation, s = s ·x (mod N) in Table 6.15, varies
depending on the values of s and x. Furthermore, we assume the attacker
is able to determine the timings that will occur, given particular values of s
and x.

Table 6.15: Repeated Squaring

// Compute y = xd (mod N),
// where d = d0d1d2 . . . dn in binary, with d0 = 1
s = x
for i = 1 to n

s = s2 (mod N)
if di == 1 then

s = s · x (mod N)
end if

next i
return(s)

Kocher views this as a signal detection problem, where the “signal” con-
sists of the timing variations, which are dependent on the unknown private
key bits di, for i = 1, 2, . . . , n. The signal is corrupted by “noise,” which is
the result of the unknown private key bits, di. The objective is to recover the
bits di one (or a few) at a time, beginning with the first unknown bit d1. In
practice, it is not necessary to recover all of the bits, since an algorithm due
to Coppersmith [68] is feasible once a su�cient number of the high-order bits
of d are known.

Suppose we have successfully determined bits d0, d1, . . . , dk�1 and we want
to determine bit dk. Then we randomly select several ciphertexts, say, Cj ,

6.6 RSA TIMING ATTACKS 215

for j = 0, 1, 2, . . . ,m � 1, and for each we obtain the timing T (Cj) for the
decryption (or signature) Cd

j (mod N). For each of these ciphertext val-
ues, we can precisely emulate the repeated squaring algorithm in Table 6.15
for i = 1, 2, . . . , k � 1, and at the i = k step we can emulate both of the
possible bit values, dk = 0 and dk = 1. Then we tabulate the di↵erences
between the measured timing and both of the emulated results. Kocher’s
crucial observation is that the statistical variance of the di↵erences will be
smaller for the correct choice of dk than for the incorrect choice.

For example, suppose we are trying to obtain a private key that is only
eight bits in length. Then

d = (d0, d1, d2, d3, d4, d5, d6, d7) with d0 = 1.

Furthermore, suppose that we are certain that

d0d1d2d3 2 {1010, 1001}.

Then we generate some number of random ciphertexts Cj , and for each we
obtain the corresponding timing T (Cj). We can emulate the first four steps
of the repeated squaring algorithm for both

d0d1d2d3 = 1010 and d0d1d2d3 = 1001

for each of these ciphertexts. For a given timing T (Cj), let t` be the actual
time taken in step ` for the squaring and multiplying steps of the repeated
squaring algorithm. That is, t` includes the timing of s = s2 (mod N) and,
if d` = 1, it also includes s = s ·Cj (mod N) (see the algorithm in Table 6.15).
Also, let t̃` be the time obtained when emulating the square and multiply
steps for an assumed private exponent bit `. For m > `, define the shorthand
notation

t̃`...m = t̃` + t̃`+1 + · · ·+ t̃m.

Of course, t̃` depends on the precise bits emulated, but to simplify the no-
tation we do not explicitly state this dependence (it should be clear from
context).

Now suppose we select four ciphertexts, C0, C1, C2, C3, and we obtain the
timing results in Table 6.16. In this example we see that for d0d1d2d3 = 1010
we have a mean timing of

E(T (Cj)� t̃0...3) = (7 + 6 + 6 + 5)/4 = 6,

while the corresponding variance is

var(T (Cj)� t̃0...3) = (12 + 02 + 02 + (�1)2)/4 = 1/2.

On the other hand, for d0d1d2d3 = 1001, we have

E(T (Cj)� t̃0...3) = 6,

216 ADVANCED CRYPTANALYSIS

but the variance is

var(T (Cj)� t̃0...3) = ((�1)2 + 12 + (�1)2 + 12)/4 = 1.

Although the mean is the same in both cases, Kocher’s attack tells us that
the smaller variance indicates that d0d1d2d3 = 1010 is the correct answer.
But this begs the question of why we should observe a smaller variance in
case of a correct guess for d0d1d2d3.

Table 6.16: Timings

Emulate 1010 Emulate 1001

j T (Cj) t̃0...3 T (Cj)� t̃0...3 t̃0...3 T (Cj)� t̃0...3
0 12 5 7 7 5
1 11 5 6 4 7
2 12 6 6 7 5
3 13 8 5 6 7

Consider T (Cj), the timing of a particular computation Cd
j (mod N) in

Table 6.16. As above, for this T (Cj), let t̃` be the emulated timing for the
square and multiply steps corresponding to the `th bit of the private ex-
ponent. Also, let t` be the actual timing of the square and multiply steps
corresponding to the `th bit of the private exponent. Let u include all tim-
ing not accounted for in the t`. The value u can be viewed as representing
the measurement “error.” In the example above, we assumed the private
exponent d is eight bits, so for this case

T (Cj) = t0 + t1 + t2 + · · ·+ t7 + u.

Now suppose that the high-order bits of d are d0d1d2d3 = 1010. Then for
the timing T (Cj) we have

var(T (Cj)� t̃0...3) = var(t4) + var(t5) + var(t6) + var(t7) + var(u),

since t̃` = t`, for ` = 0, 1, 2, 3 and, consequently, there is no variance due
to these emulated timings t̃`. Note that here we are assuming the t` are
independent and that the measurement error u is independent of the t`, which
appear to be valid assumptions. If we denote the common variance of each t`
by var(t), we have

var(T (Cj)� t̃0...3) = 4 var(t) + var(u).

However, if d0d1d2d3 = 1010, but we emulate d0d1d2d3 = 1001, then
from the point of the first dj that is in error, our emulation will fail, giving

6.6 RSA TIMING ATTACKS 217

us essentially random timing results. In this case, the first emulation error
occurs at d2 so that we find

var(T � t̃0...3) = var(t2 � t̃2) + var(t3 � t̃3) + var(t4) + var(t5)

+ var(t6) + var(t7) + var(u)

⇡ 6 var(t) + var(u)

since the emulated timings t̃2 and t̃3 can vary from the actual timings t2
and t3, respectively. That is, we see a larger variance when our guess for the
private key bits is incorrect.

Although conceptually simple, Kocher’s technique gives a powerful and
practical approach to conducting a timing attack on an RSA implementa-
tion that uses repeated squaring (but not more advanced techniques). For
the attack to succeed, the variance of the error term u must not vary too
greatly between the di↵erent cases that are tested. Assuming that a simple
repeated squaring algorithm is employed, this would almost certainly be the
case since u only includes loop overhead and timing error. For more advanced
modular exponentiation techniques, var(u) could di↵er greatly for di↵erent
emulated bits, e↵ectively masking the timing information needed to recover
the bits of d.

The amount of data required for Kocher’s attack (that is, the number
of chosen decryptions that must be timed) depends on the error term u.
However, the timings can be reused as bits of d are determined, since, given
additional bits of d, only the emulation steps need to change. Therefore, the
required number of timings is not nearly as daunting as it might appear at
first blush. Again, this attack has been used to break real systems.

The major limitation to Kocher’s attack is that it has only been success-
fully applied to RSA implementations that only use repeated squaring. Most
RSA implementations also use various other techniques (Chinese Remainder
Theorem, Montgomery multiplication, Karatsuba multiplication) to speed up
the modular exponentiations. Only in highly resource-constrained environ-
ments (such as smartcards) is repeated squaring used without any of these
other techniques.

In [167], Kocher argues that his timing attack should work for RSA imple-
mentations that employ techniques other than repeated squaring. However,
Schindler [258] (among others) disputes this assertion. In any case, di↵er-
ent timing techniques have been developed that succeed against more highly
optimized RSA implementations. As previously noted, the RSA implemen-
tation in a recent version of OpenSSL was broken using a timing attack due
to Brumley and Boneh [41].

The lesson of side channel attacks is an important one that extends far
beyond the details of any particular attack. Side channels demonstrate that
even if crypto is secure in theory, it may not be so in practice. That is, it’s not

218 ADVANCED CRYPTANALYSIS

su�cient to analyze a cipher in isolation—for a cipher to be considered secure
in practice, it must be analyzed in the context of a specific implementation
and the larger system in which it resides. Many of these factors don’t directly
relate to the mathematical properties of the cipher itself. Schneier has a good
article that addresses some of these issues [262].

Side channel attacks nicely illustrate that attackers don’t always play by
the (presumed) rules. Attackers will try to exploit the weakest link in any
security system. The best way to protect against such attacks is to think like
an attacker and find these weak links before Trudy does.

6.7 Summary

In this chapter, we presented several advanced cryptanalytic attacks and tech-
niques. We started with a classic World War II cipher, the Enigma, where the
attack illustrated a “divide and conquer” approach. That is, an important
component of the device (the stecker) could be split o↵ from the rest of the
cipher with devastating consequences. Then we considered a stream cipher
attack, specifically, RC4 as used in WEP. This attack showed that even a
strong cipher can be broken if used incorrectly.

In the block cipher realm, we discussed di↵erential and linear cryptanal-
ysis and these attacks were applied to TDES, a simplified version of DES.
Some knowledge of these topics is necessary to understand the fundamental
trade-o↵s in block cipher design.

Next, we presented a classic attack on the Merkle-Hellman knapsack pub-
lic key cryptosystem. This attack nicely illustrates the impact that mathe-
matical advances and clever algorithms can have on cryptography.

Side channel attacks have become important in recent years. It’s crucial
to be aware of such attacks, which go beyond the traditional concept of crypt-
analysis, since they represent a real threat to otherwise secure ciphers. We
discussed specific side channel attacks on RSA.

As usual, we’ve only scratched the surface in this chapter. Many other
cryptanalytic attacks and techniques have been developed, and cryptanalysis
remains an active area of research. The cryptanalytic attacks discussed here
provide a reasonably representative sample of the methods that are used to
attack and analyze ciphers.

6.8 Problems

1. In World War II, the German’s usually used 10 cables on the stecker,
only five di↵erent rotors were in general use, one reflector was in com-
mon use, and the reflector and five rotors were known to the Allies.

6.8 PROBLEMS 219

a. Under these restrictions, show that there are only about 277 pos-
sible Enigma keys.

b. Show that if we ignore the stecker, under these restrictions there
are fewer than 230 settings.

2. Let F (p), for p = 0, 1, 2, . . . , 13, be the number of ways to plug p cables
into the Enigma stecker. Show that

F (p) =

✓
26

2p

◆
· (2p� 1) · (2p� 3) · · · · · 1.

3. Recall that for the Enigma attack described in Section 6.2.4, we found
the cycles

S(E) = P6P8P13S(E)

and

S(E) = P6P
�1
14 P7P

�1
6 S(E).

Find two more independent cycles involving S(E) that can be obtained
from the matched plaintext and ciphertext in Table 6.2.

4. How many pairs of cycles are required to uniquely determine the Enigma
rotor settings?

5. In the text, we mentioned that the Enigma cipher is its own inverse.

a. Prove that the Enigma is its own inverse. Hint: Suppose that
the ith plaintext letter is x, and that the corresponding ith ci-
phertext letter is y. This implies that when the ith letter typed
into the keyboard is x, the letter y is illuminated on the lightboard.
Show that for the same key settings, if the ith letter typed into the
keyboard is y, then the letter x is illuminated on the lightboard.

b. What is the advantage of a cipher machine that is its own inverse
(such as the Enigma), as compared to a cipher that is not (such
as Purple and Sigaba)?

6. This problem deals with the Enigma cipher.

a. Show that a ciphertext letter cannot be the same as the corre-
sponding plaintext letter.

b. Explain how the restriction in part a gives the cryptanalyst an
advantage when searching for a crib.7

7In modern parlance, a crib is known as known plaintext.

220 ADVANCED CRYPTANALYSIS

7. Consider the Enigma attack discussed in the text and suppose that
only cycles of S(E) are used to recover the correct rotor settings. Then,
after the attack is completed, only the stecker value of S(E) is known.
Using only the matched plaintext and ciphertext in Table 6.2, how many
additional stecker values can be recovered?

8. Write a program to simulate the Enigma cipher. Use your program to
answer the following questions, where the rotor and reflector permuta-
tions are known to be

R` = EKMFLGDQVZNTOWYHXUSPAIBRCJ

Rm = BDFHJLCPRTXVZNYEIWGAKMUSQO

Rr = ESOVPZJAYQUIRHXLNFTGKDCMWB

T = YRUHQSLDPXNGOKMIEBFZCWVJAT

where R` is the left rotor, Rm is the middle rotor, Rr is the right rotor,
and T is the reflector. The “notch” that causes the odometer e↵ect is
at position Q for R`, V for Rm, and J for Rr. For example, the middle
rotor steps when the right rotor steps from V to W.

a. Recover the initial rotor settings given the following matched plain-
text and ciphertext.

i 0 1 2 3 4 5 6 7 8 9 101112131415161718192021
Plaintext A D H O C A D L O C Q U I D P R O Q U O S O
Ciphertext S W Z S O F C J M D C V U G E L H S M B G G

i 22232425262728293031323334353637383940414243
Plaintext L I T T L E T I M E S O M U C H T O K N O W
Ciphertext N B S M Q T Q Z I Y D D X K Y N E W J K Z R

b. Recover as many of the stecker settings as is possible from the
known plaintext.

9. Suppose that the same Enigma rotors (in the same order) and reflector
are used as in Problem 8, and the stecker has no cables connected.
Solve for the initial rotor settings and recover the plaintext given the
following ciphertext.

ERLORYROGGPBIMYNPRMHOUQYQETRQXTYUGGEZVBFPRIJGXRSSCJTXJBMW
JRRPKRHXYMVVYGNGYMHZURYEYYXTTHCNIRYTPVHABJLBLNUZATWXEMKRI
WWEZIZNBEOQDDDCJRZZTLRLGPIFYPHUSMBCAMNODVYSJWKTZEJCKPQYYN
ZQKKJRQQHXLFCHHFRKDHHRTYILGGXXVBLTMPGCTUWPAIXOZOPKMNRXPMO
AMSUTIFOWDFBNDNLWWLNRWMPWWGEZKJNH

Hint: The plaintext is English.

6.8 PROBLEMS 221

10. Develop a ciphertext-only attack on the Enigma, assuming that all you
know about the plaintext is that it is English. Analyze the work factor
of your proposed attack and also estimate the minimum amount of
ciphertext necessary for your attack to succeed. Assume that Enigma
rotors, the rotor order, the movable ring positions, and the reflector
are all known. Then you need to solve for the initial settings of the
three rotors and the stecker. Hint: Since E is the most common letter
in English, guess that the plaintext is EEEEEE . . . and use this “noisy”
plaintext to solve for the rotor and stecker settings.

11. Suggest modifications to the Enigma design that would make the attack
discussed in Section 6.2 infeasible. Your objective is to make minor
modifications to the design.

12. Consider a rotor with a hardwired permutation of {0, 1, 2, . . . , n � 1}.
Denote this permutation as P = (p0, p1, . . . , pn�1), where P permutes i
to pi. Let di be the displacement of pi, that is, di = pi � i (mod n).
Find a formula for the elements of the kth rotor shift of P , which we
denote Pk, where the shift is in the same direction as the rotors described
in Section 6.2.3. Your formula must be in terms of pi and di.

13. In the RC4 attack, suppose that 60 IVs of the form (3, 255, V) are
available. Empirically determine the probability that the key byte K3

can be distinguished. What is the smallest number of IVs for which
this probability is greater than 1/2?

14. In equations (6.7) and (6.9) we showed how to recover RC4 key bytesK3

and K4, respectively.

a. Assuming that key bytes K3 through Kn�1 have been recovered,
what is the desired form of the IVs that will be used to recover Kn?

b. For Kn, what is the formula corresponding to (6.7) and (6.9)?

15. For the attack on RC4 discussed in Section 6.3, we showed that the prob-
ability that (6.7) holds is (253/256)252. What is the probability that
equation (6.9) holds? What is the probability that the corresponding
equation holds for Kn?

16. In the discussion of the attack on RC4 keystream byte K3 we showed
that IVs of the form (3, 255, V) are useful to the attacker. We also
showed that IVs that are not of this form are sometimes useful to the
attacker, and we gave the specific example of the (2, 253, 0). Find an IV
of yet another form that is useful in the attack on K3.

17. The attack on RC4 discussed in this chapter illustrates that prepending
an IV to a long-term key is insecure. In [112] it is shown that appending

222 ADVANCED CRYPTANALYSIS

the IV to the long-term key is also insecure. Suggest more secure ways
to combine a long-term key with an IV for use as an RC4 key.

18. Suppose that Trudy has a ciphertext message that was encrypted with
the RC4 cipher. Since RC4 is a stream cipher, the actual encryption for-
mula is given by ci = pi�ki, where ki is the ith byte of the keystream, pi
is the ith byte of the plaintext, ci is the ith byte of the ciphertext. Sup-
pose that Trudy knows the first ciphertext byte, and the first plaintext
byte, that is, Trudy knows c0 and p0.

a. Show that Trudy also knows the first byte of the keystream used
to encrypt the message, that is, she knows k0.

b. Suppose that Trudy also happens to know that the first three bytes
of the key are (K0,K1,K2) = (2, 253, 0). Show that Trudy can de-
termine the next byte of the key, K3, with a probability of success
of about 0.05. Note that from part a, Trudy knows the first byte
of the keystream. Hint: Suppose that the RC4 initialization algo-
rithm were to stop after the i = 3 step. Write an equation that
you could solve to determine the first byte of the key. Then show
that this equation holds with a probability of about 0.05 when the
entire 256-step initialization algorithm is used.

c. If Trudy sees several messages encrypted with the same key that
was used in part b, how can Trudy improve on the attack to re-
cover K3? That is, how can Trudy recover the key byte K3 with
a much higher probability of success (ideally, with certainty)?

d. Assuming that the attack in part b (or part c) succeeds, and Trudy
recovers K3, extend the attack so that Trudy can recover K4, with
some reasonable probability of success. What is the probability
that this step of the attack succeeds?

e. Extend the attack in part d to recover the remaining key bytes,
that is, K5,K6, Show that this attack has essentially the same
work factor regardless of the length of the key.

f. Show that the attack in part a (and hence, the attack in parts
a through e) also works if the first three key bytes are of the
form (K0,K1,K2) = (3, 255, V) for any byte V .

g. Why is this attack relevant to the (in)security of WEP?

19. The file outDiff (available at the textbook website) contains 100 cho-
sen plaintext pairs P and P̃ that satisfy P � P̃ = 0x0002, along with
the corresponding TDES-encrypted ciphertext pairs C and C̃. Use this
information to determine the key bits k13, k14, k15, k9, k10, k11 using the
di↵erential cryptanalysis attack on TDES that is described in this chap-
ter. Then use your knowledge of these key bits to exhaustively search

6.8 PROBLEMS 223

for the remaining key bits. Give the key as K = k0k1k2 · · · k15 in hex-
adecimal.

20. The file outLin, which is available at the textbook website, contains 100
known plaintext P along with the corresponding TDES-encrypted ci-
phertext C. Use this information to determine the value of k0 � k1
and k2 � k7 using the linear cryptanalysis attack on TDES that is de-
scribed in this chapter. Then use your knowledge of these key bits to
exhaustively search for the remaining key bits. Give the key in hex-
adecimal as K = k0k1k2 · · · k15.

21. Find a 16-bit key that encrypts

plaintext = 0x1223 = 0001001000100011

to
ciphertext = 0x5B0C = 0101101100001100

using the cipher TDES.

22. Suppose that a DES-like cipher uses the S-box below.

0 1 2 3 4 5 6 7 8 9 A B C D E F
00 4 6 8 9 E 5 A C 0 2 F B 1 7 D 3
01 6 4 A B 3 0 7 E 2 C 8 9 D 5 F 1
10 8 5 0 B D 6 E C F 7 4 9 A 2 1 3
11 A 2 6 9 F 4 0 E D 5 7 C 8 B 3 1

If the input to this S-box is 011101, what is the output? If inputs X0

and X1 yield outputs Y0 and Y1, respectively, and X0 �X1 = 000001,
what is the most likely value for Y0 � Y1 and what is its probability?

23. Consider the S-box below. For the input x0x1x2, the bit x0 indexes the
row, while x1x2 is the column index. We denote the output by y0y1.

00 01 10 11
0 10 01 00 11
1 11 00 01 10

Find the best linear approximation to y1 in terms of x0, x1, and x2.
With what probability does this approximation hold?

24. Construct a di↵erence table analogous to that in Table 6.6 for S-box 1
of DES. The DES S-box 1 appears in Table 3.3 of Chapter 3. What is
the most biased di↵erence and what is the bias?

224 ADVANCED CRYPTANALYSIS

25. Construct a di↵erence table analogous to that in Table 6.6 for the right
S-box of TDES. Verify the results in equation (6.17). What is the second
most biased di↵erence, and what is the bias?

26. Construct a linear approximation table analogous to that in Table 6.7
for S-box 1 of DES. The DES S-box 1 appears in Table 3.3 of Chapter 3.
Note that your table will have 64 rows and 15 columns. What is the
best linear approximation, and how well does it approximate?

27. Construct a linear approximation table analogous to that in Table 6.7
for the left S-box of TDES. Verify the results in equation (6.29). What
is the next best linear approximation and how well does it approximate?

28. Recall the linear cryptanalysis of TDES discussed in Section 6.4.6. As-
sume that equation (6.33) holds with probability (3/4)3 ⇡ 0.42. Also as-
sume that the key satisfies k0�k1 = 0. Then if we conduct the attack us-
ing 100 known plaintexts, what are the expected counts for c1�p10 = 0
and c1 � p10 = 1? Compare your answer with the empirical results
presented in the text. Why do you think the theoretical and empirical
results di↵er?

29. Suppose that Bob’s knapsack public key is

T = [168, 280, 560, 393, 171, 230, 684, 418].

Suppose that Alice encrypts a message with Bob’s public key and the
resulting ciphertext is C1 = 1135. Implement the LLL attack and use
your program to solve for the plaintext P1. For the same public key,
find the plaintext P2 for the ciphertext C2 = 2055. Can you determine
the private key?

30. Suppose that Bob’s knapsack public key is

T = [2195, 4390, 1318, 2197, 7467, 5716, 3974, 3996, 7551, 668].

Suppose that Alice encrypts a message with Bob’s public key and the
resulting ciphertext is C1 = 8155. Implement the LLL attack and use
your program to solve for the plaintext P1. For the same public key,
find the plaintext P2 for the ciphertext C2 = 14748. Can you determine
the private key?

31. Consider the “simple” timing attack on RSA discussed in Section 6.6.1.

a. Extend the timing attack to recover the bit d2. That is, assuming
that bit d1 has been recovered, what conditions must Y and Z
satisfy so that the attack presented in the text can be used to
determine d2?

6.8 PROBLEMS 225

b. Extend the attack to recover d3, assuming that d1 and d2 have
been recovered.

c. In practice, we need to recover about half of the private key bits.
Why is this attack not a practical means for recovering such a large
number of private key bits?

32. Suppose that in Kocher’s timing attack, we obtain the timings T (Cj)
and the emulated timings t̃0...2 for d0d1d2 2 {100, 101, 110, 111}, as given
in the table below.

t̃0...2
j T (Cj) 100 101 110 111
0 20 5 7 5 8
1 21 4 7 4 1
2 19 1 6 4 7
3 22 2 8 5 2
4 24 10 6 8 8
5 23 11 5 7 7
6 21 1 1 6 5
7 19 7 1 2 3

a. What is the most likely value of d0d1d2 and why?

b. Why does this attack not succeed if CRT or Montgomery multi-
plication is used?

33. Write a program to recover the 64-bit key for STEA (Simplified TEA)
given one known plaintext block and the corresponding ciphertext block.
The STEA algorithm and a description of the attack on STEA can be
found at [209].

34. If DES were a group [117], then given keys K1 and K2, there would
exist a key K3 such that

E(P,K3) = E(E(P,K1),K2) for all plaintext P , (6.39)

and we could also find such a key K3 if any of the encryptions were
replaced by decryptions. If equation (6.39) holds, then triple DES is no
more secure than single DES. It was established in [45] that DES is not
a group and, consequently, triple DES is more secure than single DES.
Show that TDES is not a group. Hint: Select TDES keys K1 and K2.
You will be finished if you can verify that there does not exist any
key K3 for which E(P,K3) = E(E(P,K1),K2) for all possible choices
of P .

