
Chapter 13

Operating Systems and
Security

UNIX is basically a simple operating system,

but you have to be a genius to understand the simplicity.

— Dennis Ritchie

And it is a mark of prudence never to trust wholly

in those things which have once deceived us.

— Rene Descartes

13.1 Introduction

In this chapter, we’ll look at some of the security issues related to operating
systems (OSs). OSs are large and complex pieces of software. Recall that in
Chapter 12 we argued that there are almost certain to be security flaws in
any large and complex computer program. But here we are concerned with
the security protection provided by the OS, not with the very real threat of
bad OS software. That is, we are concerned with the role of the OS as the
security enforcer. This is a large topic that ties into many other aspects of
security and we’ll just barely scratch the surface.

First, we’ll describe the primary security-related functions of any modern
operating system. Then we’ll discuss the notion of a trusted OS, and we’ll
conclude with a look at Microsoft’s fairly recent e↵ort to develop a trusted
operating system, which goes by the catchy name of the Next Generation
Secure Computing Base, or better yet, NGSCB.

493



494 OPERATING SYSTEMS AND SECURITY

13.2 OS Security Functions

An OS must deal with potential security issues whether they arise accidentally
or as part of a malicious attack. Modern OSs are designed for multi-user
environments and multi-tasking operations. Consequently, an OS must, at a
minimum, deal with separation, memory protection, and access control. We
briefly discuss each of these three topics below.

13.2.1 Separation

Arguably the most fundamental security issue for a modern OS is that of
separation. That is, the OS must keep users and processes separate from
each other.

There are several ways that separation can be enforced [236], including
the following:

• Physical separation — Users are restricted to separate devices. This
provides a strong form of separation, but it is often impractical.

• Temporal separation—Processes are separated in time. This eliminates
many problems that arise due to concurrency and simplifies the job of
the OS. However, there is a loss of e�ciency.

• Logical separation — For example, each process might be allocated its
own “sandbox.” A process is free to do almost anything within its
sandbox, but it can do almost nothing outside of its sandbox.

• Cryptographic separation — Crypto can be used to make information
unintelligible to an outsider.

Of course, various combinations of these methods can be used.

13.2.2 Memory Protection

Another fundamental issue an OS must deal with is memory protection. This
includes protection for the memory that the OS itself uses as well as the
memory of user processes. A fence, or fence address, is one option for memory
protection. A fence is a particular address that users and their processes
cannot cross—only the OS can operate on one side of the fence, and users are
restricted to the other side.

A fence could be static, in which case there is a fixed fence address. How-
ever, this places a strict limit on the size of the OS, which is a major drawback
(or benefit, depending on your perspective). Alternatively, a dynamic fence
can be used, which can be implemented using a fence register to specify the
current fence address.



13.2 OS SECURITY FUNCTIONS 495

In addition to a fence, base and bounds registers can be used. These
registers contain the lower and upper address limits of a particular user (or
process) space. The base and bounds register approach implicitly assumes
that the user (or process) space is contiguous in memory.

The OS must determine what protection to apply to a specific memory
location. In some cases it might be su�cient to apply the same protection
to all of a user’s (or process’s) memory. At the other extreme, tagging spec-
ifies the protection for each individual address. While this is as fine-grained
protection as possible, it introduces significant overhead. The overhead can
be reduced by tagging sections of the address space instead of each individ-
ual address. In any case, another drawback to tagging is compatibility, since
tagging schemes are not in common use.

The most common methods of memory protection are segmentation and
paging. While these are not as flexible as tagging, they’re much more e�cient.
We briefly discuss each of these next.

Segmentation, as illustrated in Figure 13.1, divides the memory into log-
ical units, such as individual procedures or the data in one array. Then
appropriate access control can be enforced on each segments. A benefit of
segmentation is that any segment can be placed in any memory location—
provided the location is large enough to hold it. Of course, the OS must
keep track of the locations of all segments, which is accomplished using
<segment,offset> pairs, where the cleverly named segment specifies the
segment, and the offset is the starting address of the specified segment.

Figure 13.1: Segmentation

Other benefits of segmentation include the fact that segments can be
moved to di↵erent locations in memory and they can also be moved in and out
of memory. With segmentation, all address references must go through the
OS, so the OS can, in this respect, achieve complete mediation. Depending



496 OPERATING SYSTEMS AND SECURITY

on the access control applied to particular segments, users can share access
to some segments or users can be restricted to specific segments.

One serious drawback to segmentation is that the segments are of variable
sizes. As a result, before the OS tries to reference any element of a given
segment it must know the size of the segment so that it can be sure that
the requested address is within the segment. But some segments—such as
those that include dynamic memory allocation—can grow during execution.
Consequently, the OS must keep track of dynamic segment sizes. And due
the variability of segment sizes, memory fragmentation is a potential problem.
Finally, when memory is compacted to make better use of the available space,
the segmentation tables change. In short, segmentation is complex and places
a significant burden on the OS.

Paging is like segmentation, except that all segments are of a fixed size,
as illustrated in Figure 13.2. With paging, access to a particular page uses a
pair of the form <page,offset>. The advantages of paging over segmentation
include no fragmentation, improved e�ciency, and the fact that there are no
variable sizes to worry about. The disadvantages are that there is, in general,
no logical unity to pages, which makes it more di�cult to determine the
proper access control to apply to a given page.

Figure 13.2: Paging

13.2.3 Access Control

OSs are the ultimate enforcers of access control. This is one reason why the
OS is such an attractive target for attack—a successful attack on the OS
can e↵ectively nullify any protection built in at a higher level. We discussed
access control in Chapter 8 and we’ll briefly return to the subject in the next
section when we discuss the concept of a trusted OS.



13.3 TRUSTED OPERATING SYSTEM 497

13.3 Trusted Operating System

There’s none deceived but he that trusts.

— Benjamin Franklin

A system is trusted if we rely on it for security. In other words, if a trusted
system fails to provide the expected security, then the security of the system
is broken.

In this context, there is a distinction between trust and security. Trust
implies reliance, that is, trust is binary choice—either we trust or we don’t.
Security, on the other hand, is a judgment of the e↵ectiveness of a particular
mechanisms. Security should be judged relative to a clearly specified policy
or statement.

Note that security depends on trust. For example, a trusted component
that fails to provide the expected level of security will break the overall se-
curity of the system. Ideally, we only trust secure systems, and all trust
relationships are explicit.

Since a trusted system is one that we rely on for security, an untrusted
system must be one that we don’t rely on for security. As a consequence, if all
untrusted systems are compromised, the security of the system is una↵ected.
A curious implication of this simple observation is that only a trusted system
can break security. Hold this thought, since we’ll have more to say about it
in the next section.

What should a trusted OS do? Since any OS must deal with separa-
tion, memory protection, and access control, at a minimum, a trusted OS
must do these things securely. Any list of generic good security principles
would likely include the following: least privilege (e.g., the low watermark
principle), simplicity, open design (e.g., Kerckho↵s’ Principle), complete me-
diation, whitelisting (as opposed to blacklisting), separation, and ease of use.
We might expect a trusted OS to securely deal with many of these issues.
However, most commercial OSs are feature-rich, which tends to lead to com-
plexity and poor security. Modern commercial OSs are not to be trusted.

13.3.1 MAC, DAC, and More

As mentioned above and illustrated in Figure 13.3, any OS must provide
some degree of separation, memory protection, and access control. On the
other hand, since we rely on a trusted OS for our security, it will almost
certainly need to go beyond the minimal security operations. Specific security
measures that we would like to see from a trusted OS likely include mandatory
access control, discretionary access control, object reuse protection, complete
mediation, trusted path, and logs. A trusted OS is illustrated in Figure 13.4.



498 OPERATING SYSTEMS AND SECURITY

Figure 13.3: Operating System Overview

Mandatory access control, or MAC, is access that is not controlled by
the owner of an object. For example, Alice does not decide who holds a
TOP SECRET clearance, so she can’t completely control the access to a
document classified at this level. In contrast, discretionary access control,
or DAC, is the type of access control that is determined by the owner of an
object. For example, in UNIX file protection, the owner of a file controls
read, write, and execute privileges.

If both DAC and MAC apply to an object, MAC is “stronger.” For
example, suppose Alice owns a document marked TOP SECRET. Then Alice
can set the DAC since she owns the document. However, regardless of the
DAC settings, if Bob only has a SECRET clearance, he can’t access the
document because he doesn’t meet the MAC requirements. On the other
hand, if the DAC is stricter than the MAC, then the DAC would determine
the access.

A trusted OS must also prevent information from leaking from one user to
another. Any OS will use some form of memory protection and access control,
but we require strong protection from a trusted OS. For example, when the OS
allocates space for a file, that same space may have previously been used by
a di↵erent user’s process. If the OS takes no additional precautions, the bits
that remain from the previous process could be accessible and thereby leak
information. A trusted OS must take steps to prevent this from occurring.

A related problem ismagnetic remanence, where faint images of previously
stored data can sometimes be read, even after the space has been overwrit-
ten by new data. To minimize the chance of this occurring, the DoD sets
guidelines that require memory to be overwritten repeatedly with di↵erent
bit patterns before it’s considered safe to allow another process access to that
space [133].



13.3 TRUSTED OPERATING SYSTEM 499

Figure 13.4: Trusted Operating System Overview

13.3.2 Trusted Path

When you enter your password at the login prompt, what happens to that
password? We know what is supposed to happen to the password (hashed
with a salt, etc.), but what actually happens depends on the software that
is running on your system. How can you be sure that software is not doing
something evil, such as writing your password to a file that will later be
emailed to Trudy? This is the trusted path problem, and as Ross Anderson
puts it in [14]:

I don’t know how to be confident even of a digital signature I
make on my own PC, and I’ve worked in security for over fifteen
years. Checking all of the software in the critical path between
the display and the signature software is way beyond my patience.

Ideally, a trusted OS would provide strong assurance of a trusted path. If so,
one benefit is that we could have confidence in a digital signature on a PC.

The OS is also responsible for logging security-related events. This sort
of information is necessary to detect attacks and for postmortem analysis.
Logging is not as simple as it might seem. In particular, it is not always
obvious precisely what to log. If we log too much, then we might overwhelm
any human who must examine the data, and we could even overwhelm auto-
mated systems that try to find the relevant needle in this haystack of data.
For example, should we log incorrect passwords? If so, then “almost” pass-
words would appear in the log file, and log files would themselves be security
critical. If not, it may be harder to detect when a password-guessing attack
is in progress.



500 OPERATING SYSTEMS AND SECURITY

13.3.3 Trusted Computing Base

The kernel is the lowest-level part of the OS. The kernel is responsible for syn-
chronization, inter-process communication, message passing, interrupt han-
dling, and so on. A security kernel is the part of the kernel that deals with
security.

Why have a dedicated security kernel? Since all accesses must go through
the kernel, it’s the ideal place for access control. It’s also good practice to
have security-critical functions in one location. By locating all such functions
in one place, security functions are easier to test and modify.

One of the primary motivations for an attack on the OS is that the attacker
can get below higher-level security functions and thereby bypass these security
features. By putting as many security functions as possible at the OSs lowest
layer, it may be more di�cult for an attacker to get below these functions.

The reference monitor is the part of the security kernel that deals with
access control. The reference monitor mediates all access between subjects
and objects, as illustrated in Figure 13.5. Ideally, this crucial part of the
security kernel would be tamper resistant, and it should also be analyzable,
small, and simple, since an error at this level could be devastating to the
security of the entire system.

Figure 13.5: Reference Monitor

The trusted computing base, or TCB, is everything in the OS that we
rely on to enforce security. Our definition of trust implies that, if everything
outside TCB were subverted, our trusted OS would still be secure.

Security-critical operations will likely occur in many places within the
OS. Ideally, we would design the security kernel first and then build the OS
around it. Unfortunately, reality is usually just the opposite, as security tends
to be an afterthought instead of a primary design goal. However, there are
examples of OSs that have been designed from scratch, with security as a
main objective. One such OS is SCOMP, which was developed by Honey-
well. SCOMP has less than 10,000 lines of code in its security kernel, and
it strives for simplicity and analyzability [116]. Contrast this to, say, Win-
dows XP, which has some 40,000,000 lines of code and numerous dubious
(from a security point of view) features.

Ideally the TCB should gather all security functions into an identifiable
layer. For example, the TCB illustrated in Figure 13.6 is a poor design, since



13.3 TRUSTED OPERATING SYSTEM 501

security-critical features are spread throughout the OS. Here, any change in a
security feature may have unintended consequences in other OS functionality,
and the individual security operations are di�cult to analyze, particularly
with respect to their interactions.

Figure 13.6: Poor TCB Design

The TCB illustrated in Figure 13.7 is preferable, since all security func-
tions are collected in a well-defined security kernel [236]. In this design, the
security impact of any change in one security function can be analyzed by
studying its e↵ect on the security kernel. Also, an attacker who subverts OS
operations at a higher level will not have defeated the TCB operations.

Figure 13.7: Good TCB Design

In summary, the TCB consists of everything in the OS that we rely on for
security. If everything outside the TCB is subverted, we’re still secure, but if
anything in the TCB is subverted, then the security is likely broken.



502 OPERATING SYSTEMS AND SECURITY

In the next section we’ll examine NGSCB, which is an ambitious e↵ort
by Microsoft to develop a trusted OS for the PC platform. DRM was the
original motivation for NGSCB, but it has wide security implications [107].

13.4 Next Generation Secure Computing Base

Microsoft’s Next Generation Secure Computing Base, or NGSCB (which is,
strangely, pronounced “en scub”), was originally slated to be part of the
“Longhorn” OS (i.e., Windows Vista). But it appears that most of the fea-
tures of NGSCB won’t appear until a later release, if ever.1 Regardless, the
concept is intriguing and it might yet find widespread application.

NGSCB is designed to work with special hardware, which is to be devel-
oped by the Trusted Computing Group, or TCG, led by Intel [307]. NGSCB
is the part of Windows that will interface with the TCG hardware. TCG
was formerly known as the Trusted Computing Platform Alliance, or TCPA,
and NGSCB was formerly known as Palladium. It’s been theorized that the
name changes are due to bad publicity surrounding the initial discussion of
TCPA/Palladium [191].

The original motivation for TCPA/Palladium was digital rights manage-
ment. Due to the negative reaction this received, TCG/NGSCB now down-
plays the DRM connection, although it clearly remains a motivating factor.
Today, TCG/NGSCB is promoted as a general security-enhancing technol-
ogy, with DRM being just one of many potential applications. But, as we’ll
see below, not everyone is convinced that this is a good idea. Depending
on who you ask, TCG/NGSCB—which is often shortened to TC—stands for
“trusted computing” [220] or “treacherous computing” [13].

The underlying goal of TCG/NGSCB is to provide some of the strengths
of a closed system on the open PC platform [102, 221]. Closed systems, such as
game consoles and smartcards, are very good at protecting secrets, primarily
due to their tamper-resistant features. As a result, closed systems are good
at forcing people to pay money for the use of copyrighted information, such
as game software. The drawback to closed systems is their limited flexibility.
In contrast, open systems such as PCs o↵er incredible flexibility, but, as we
have seen, they do a poor job of protecting secrets. This is primarily because
open systems have no real means to defend their own software. Ron Rivest
has aptly described NGSCB as a “virtual set-top box inside your PC” [74].

The TCG is supposed to provide tamper-resistant hardware that might
someday be standard on PCs. Conceptually, this can be viewed as a smart-
card embedded within the PC hardware. This tamper-resistant hardware

1Only one application of this technology appears to have been implemented so far.
The “secure startup” feature in Vista and Windows 7 is said to use some features of
NGSCB [205].



13.4 NEXT GENERATION SECURE COMPUTING BASE 503

provides a secure place to store cryptographic keys or other secrets. These
secrets can be secured, even from a user with full administrator privileges.
To date, nothing comparable exists for PCs.

It is important to realize that the TCG tamper-resistant hardware is in
addition to all of the usual PC hardware, not in place of it. To take advantage
of this special hardware, the PC will have two OSs—its usual OS and a special
trusted OS to deal with the TCG hardware. NGSCB is Microsoft’s version
of this trusted OS.

According to Microsoft, the design goals of NGSCB are twofold. First, it
is to provide high assurance, that is, users can have a high degree of confidence
that NGSCB will behave correctly, even when it’s under attack. The second
goal is to provide authenticated operation. To protect the secrets stored in
the tamper-resistant hardware, it’s critical that only trusted software can
access the TCG hardware. By carefully validating (i.e., authenticating) all
software, NGSCB can provide a high degree of trust. Protection against
hardware tampering is not a design goal of NGSCB, since that is the domain
of the TCG.

Specific details concerning NGSCB are sketchy, and, based on the avail-
able information, Microsoft has not yet resolved all of the fine points. As a
result, the following information is somewhat speculative. The details might
become clearer in the future.

The high-level architecture of NGSCB is illustrated in Figure 13.8. The
“left-hand side,” or LHS, is where the usual, untrusted, Windows OS lives,
while the “right-hand side,” or RHS, is where the trusted OS resides. The
Nexus is the trusted computing base, or TCB, of the NGSCB. So-called Nexus
Computing Agents, or NCAs, are the only software components that are al-
lowed to communicate between the (trusted) Nexus and (untrusted) LHS [27].
The NCAs are a critical component of NGSCB—as critical as the Nexus.

Figure 13.8: NGSCB Overview



504 OPERATING SYSTEMS AND SECURITY

13.4.1 NGSCB Feature Groups

NGSCB includes the following four major “feature groups.”

• Strong process isolation—Prevents processes from interfering with each
other.

• Sealed storage — The tamper-resistant hardware where secrets (that is,
keys) can be securely stored.

• Secure path — Provides a protected path to and from the mouse, key-
board, and monitor.

• Attestation — A clever feature allows for “things” to be securely au-
thenticated.

Attestation allows the TCB to be securely extended via NCAs. All four fea-
ture groups are primarily aimed at protecting against malicious code. Next,
we’ll describe each of these feature groups in a little more detail.

13.4.1.1 Process Isolation

Process isolation is enforced by “curtained memory,” which appears to be
little more than a buzzword. In any case, the trusted OS (the Nexus) must
be protected from the untrusted OS as well as from the BIOS, device drivers,
and other low-level operations that could be used to attack it. Curtained
memory is the name for the memory protection scheme that provides such
protection.

Process isolation also applies to the NCAs. The NCAs must be isolated
from any software that they don’t trust. These trust relationships are deter-
mined by users—to an extent. That is, a user can disable a trusted NCAs,
but a user cannot make an untrusted NCA trusted. If the latter were possible,
then the security of the trusted OS could be easily broken.

13.4.1.2 Sealed Storage

Sealed storage contains a secret, which is most likely a key (or keys). If
software X wants to access the secret, as an integrity check, a hash of X is
computed. The confidentiality of the secret is protected since it can only be
accessed by trusted software while the integrity of the secret is assured since
it resides in the sealed storage.

13.4.1.3 Secure Path

The details of the secure path feature are also vague. It’s claimed that for
input, the path from the keyboard to the Nexus and the path from the mouse



13.4 NEXT GENERATION SECURE COMPUTING BASE 505

to the Nexus are both “secure”—but exactly how this is implemented is not
entirely clear. Apparently, digital signatures are used so that the Nexus can
verify the integrity of the data [303]. For output, there is a similar secure
path from the Nexus to the screen, although here the signature verification
would seem to be more exposed.

13.4.1.4 Attestation

The most innovative feature of NGSCB is attestation, which provides for
the secure authentication of “things,” such as devices, services, and, most
importantly, software. This is separate from user authentication. Attestation
is accomplished using public key cryptography, and it relies on a certified key
pair, where the private key—which is not user accessible—lives in the sealed
storage.

The TCB can be extended via attestation of NCAs. A new NCA is trusted
provided that it passes the attestation check, which enables new applications
to be added to an NGSCB system. This is a major feature, and we’ll have
more to say about it below.

One issue with attestation is that, since it uses public key cryptography,
certificates must be exchanged. Since public keys reveal users’ identities,
anonymity is lost in this approach. To protect anonymity, NGSCB provides
support for a trusted third party, or TTP. The TTP verifies the signature
and vouches for it. Anonymity can be preserved in this way—although the
TTP will know the signer’s identity.

It is also claimed that NGSCB provides support for zero knowledge proofs.
As we discussed in Chapter 9, zero knowledge proofs allow us to verify
that a user knows a secret without revealing any information about the se-
cret. According to Microsoft, when using zero knowledge proofs in NGSCB,
“anonymity is preserved unconditionally” [27].

13.4.2 NGSCB Compelling Applications

What good is TCG/NGSCB? There are several compelling applications, but
here we’ll mention only two. First, suppose that Alice types a document on
her computer. She can then move the document to the RHS (the trusted
space), read the document carefully, then digitally sign the document before
moving it back to the (untrusted) LHS. In this way, Alice can be confident of
what she actually signed, which, as indicated by Ross Anderson’s quote on
page 499, is almost impossible on a non-NGSCB computer today.

A second application where NGSCB is useful is DRM. One fundamental
problem that is solved by NGSCB is that of protecting a secret or key. In
Chapter 12 we saw that it’s impossible to securely protect a key in software.



506 OPERATING SYSTEMS AND SECURITY

By using tamper-resistant hardware (sealed storage) and other NGSCB fea-
tures, protecting a key is much more plausible.

The NGSCB secure path also prevents certain DRM attacks. For exam-
ple, with DRM-protected digital documents, an attacker could use a screen
capture to scrape protected data from the screen. This would be much more
di�cult with the NGSCB secure path in place.

NBSCB also allows for the positive identification of users. Although this
can be done without a trusted OS, there is a much higher degree of assurance
with NGSCB, since the user’s ID (in the form of a private key) is embedded
in the secure storage.

13.4.3 Criticisms of NGSCB

Microsoft isn’t evil, they just make really crappy operating systems.

— Linus Torvalds

According to Microsoft, everything you know and love about Windows will
still work in the LHS of an NGSCB system. Microsoft also insists that the
user is in charge, since the user determines all of the following:

• Which Nexus (if any) will run on the system

• Which NCAs are allowed to run on the system

• Which NCAs are allowed to identify the system

In addition, there is no way for an external process to enable a Nexus or
NCA. This is to allay the fear that Microsoft would be in charge of an NGSCB
computer. In addition, the Nexus code is open source. Finally, the Nexus
does not block, delete, or censor any data—although NCAs do. For example,
if a particular NCA is part of a DRM system, then it must “censor” any data
for which user Alice has not paid. But each NCA on Alice’s system must be
authorized by Alice, so she could choose not to authorize the particular NCA
that deals with DRM. Of course, she won’t have access to DRM-protected
content if she does not authorize the required NCA.

Microsoft goes to great lengths to argue that NGSCB is harmless. The
most likely reason for this is that many people seem to be convinced that
NGSCB is anything but harmless.

There are many NGSCB critics, but here we’ll only consider two. The
first is Ross Anderson, whose criticisms can be found at [13]. Anderson is
one of the harshest TCG/NGSCB critics and perhaps the most influential.
We’ll then discuss the criticisms of Clark Thomborson, whose criticisms are
less well known but raise some interesting fundamental issues [303].



13.4 NEXT GENERATION SECURE COMPUTING BASE 507

Anderson’s primary beef seems to be that when NGSCB is used, a dig-
ital object can be controlled by its creator, not by the user of the machine
where it currently resides. For example, suppose Alice writes a book, Bob in
Wonderland. With NGSCB, she can specify the NCA that must be used to
access the digital form of this book. Of course, Bob can refuse to accept the
NCA, but in that case his access is denied. And if Bob allows the NCA on
his system, he may have restrictions placed on his actions (such as, he cannot
use a screen capture, he cannot email the book, etc.).

It’s worth noting that such restrictions are exactly what is needed in cer-
tain applications such as multilevel security (MLS). But Anderson’s argument
is that such restrictions are inappropriate as part of a general-purpose tool,
such as a PC. Anderson gives the following simple example: suppose Mi-
crosoft Word encrypts all documents with a key that is only made available
to Microsoft products. Then it would be even more di�cult to stop using
Microsoft products than it is today.

Anderson also claims that files from a compromised machine could be
blacklisted (for example, to prevent music piracy). To illustrate this point, he
gives an example similar to the following. Suppose that every student at San
Jose State University (SJSU) uses a single pirated copy of Microsoft Word.
If Microsoft blacklists this copy and thereby prevents it from working on all
NGSCB machines, then SJSU students will simply avoid using NGSCB. But
if Microsoft instead makes all NGSCB machines refuse to open documents
created with this copy of Word, then SJSU users can’t share documents with
any NGSCB user. This could be a way to coerce SJSU students into using
legitimate copies of Word.

Anderson makes some rather strange statements in [13], including the
following:

The Soviet Union tried to register and control all typewriters.
NGSCB attempts to register and control all computers.

And there is an even more “interesting” statement:

In 2010 President Clinton may have two red buttons on her desk—
one that sends missiles to China and another that turns o↵ all of
the PCs in China. . .

Fortunately, this Orwellian prediction was way o↵ the mark (in every respect).
In any case, it’s not clear to your usually paranoid author exactly how NGSCB
would enable either scenario. Nevertheless, these are the kinds of concerns
that an influential critic has raised.

Clark Thomborson has raised some issues that strike at the heart of the
NGSCB concept [303]. In his view, NGSCB should be seen as a security
guard. By passive observation, a real-world security guard can learn a great



508 OPERATING SYSTEMS AND SECURITY

deal about the workings of the facility he or she is guarding.2 The NGSCB
security guard is similar to a human security guard, in the sense that it can
learn something about a user’s sensitive information by passive observation.

So, how can Alice be sure that NGSCB is not spying on her? Microsoft
would probably argue that this can’t happen since the Nexus software is
public, the NCAs can be debugged (as required for application development),
and, besides, NGSCB is strictly an “opt in” technology. But there may be a
loophole here. The release versions of NCAs can’t be debugged and the debug
and release versions will necessarily have di↵erent hash values. Consequently,
the release version of an NCA could conceivably do something that the debug
version does not do—such as spy on Alice.

The bottom line with regard to TCG/NGCSB is that it’s an attempt
to embed a trusted OS within an open platform. Without something sim-
ilar, there is a legitimate concern that the PC may lose out, particularly
in entertainment-related areas, where copyright holders might insist on the
security of closed-system solutions.

NGSCB critics worry that users will lose control over their PCs—or be
spied on by their PC. But it could reasonably be argued that users must
choose to opt in, and, if a user does not opt in, nothing has been lost. So,
what’s the big deal?

However, NGSCB is a trusted system, and as we noted above, only a
trusted system can break your security. When put in this light, NGSCB
deserves careful scrutiny.

13.5 Summary

In this chapter, we considered operating system security and, more specifi-
cally, the role of a trusted OS. We then discussed Microsoft’s NGSCB, which
is an attempt to build a trusted OS for the PC platform. NGSCB has impli-
cations for many security-related fields, including digital rights management,
a topic we covered in some detail in Chapter 12. NGSCB has its critics and
we discussed some of their criticisms. We also considered possible counterar-
guments to the criticisms.

13.6 Problems

1. Expand and define each of the following acronyms: TCG, TCB, PITA,
MAC, DAC, NGSCB.

2Recently, a former security guard at a major apartment complex took your author’s
class. This student confirmed that as a security guard, he learned a lot about the residents
of the apartment complex, simply by passive observation. Your puritanical author would
like to share some of these observations, but he cannot since this book is rated “G.”



13.6 PROBLEMS 509

2. This problem deals with the definition of a trusted system.

a. What does it mean to say that a system is “trusted”?

b. Do you agree with the statement, “Only a trusted system can
break your security”? Why or why not?

3. In this chapter we discussed segmentation and paging.

a. What are the significant di↵erences between segmentation and
paging?

b. Give one significant security advantage of segmentation over pag-
ing.

c. What is the primary advantage of paging over segmentation?

4. Explain how paging and segmentation could be combined in one system.

5. This problem deals with mandatory access control (MAC) and discre-
tionary access control (DAC).

a. Define the terms mandatory access control and discretionary access
control.

b. What are the significant di↵erences between MAC and DAC?

c. Give two specific examples where mandatory access control is used
and give two examples where discretionary access control is used.

6. Why would Trudy almost certainly prefer to subvert the OS rather than
successfully attack one particular application?

7. In this chapter we briefly compared blacklisting and whitelisting.

a. What is blacklisting?

b. What is whitelisting?

c. As a general security principle, which is preferable, whitelisting or
blacklisting? Why?

d. Which is likely to be more convenient for users, blacklisting or
whitelisting? Why?

8. Recall that a trusted computing base (TCB) consists of everything in
the OS that we rely on to enforce security. Which parts of NBSCB
comprise its TCB?

9. In this chapter, a few compelling applications of NGSCB are mentioned,
including “what you see is what you sign,” digital rights management
(DRM), and multilevel security (MLS). Discuss one additional com-
pelling application of a trusted OS such as NGSCB.



510 OPERATING SYSTEMS AND SECURITY

10. Explain how NGSCB helps to solve some of the fundamental problems
in digital rights management (DRM).

11. Explain how NGSCB helps to solve some of the fundamental problems
in multilevel security (MLS).

12. A trusted OS, such as NGSCB, would make multilevel security (MLS)
much more feasible. Given that this is the case, the military and gov-
ernment are likely to be interested in NGSCB. Why might businesses
also be interested in NGSCB?

13. Some people believe that businesses will find NGSCB useful and that
NGSCB will become commonplace in PCs as a result. If this is the
case, then most PCs will eventually have a trusted operating system,
but not because consumers find it particularly useful. Do you think this
is likely to occur? Why or why not?

14. It is sometimes argued that digital rights management (DRM) is, in
some sense, the modern incarnation of multilevel security (MLS).

a. List some significant similarities between DRM and MLS.

b. List some significant di↵erences between DRM and MLS.

15. Suppose that you happen to have a secure multilevel security (MLS)
system. Could this system be used to enforce digital rights management
(DRM)?

16. Suppose that you have a secure digital rights management (DRM) sys-
tem. Could this system be used to enforce multilevel security (MLS)?

17. This problem deals with NGSCB.

a. What is attestation and what is its purpose?

b. What are NCAs and what two purposes do they serve?

18. In the text, we mentioned two critics of NGSCB, namely, Ross Anderson
and Clark Thomborson.

a. Summarize Ross Anderson’s criticisms of NGSCB.

b. Summarize Clark Thomborson’s criticisms of NGSCB.

c. Which of these two critics do you find more compelling and why?

19. In Chapter 12, we discussed software reverse engineer. It’s also possible
to reverse engineer most hardware. Since this is the case, would DRM be
any more secure on an NGSCB system than on a non-NGSCB system?



13.6 PROBLEMS 511

20. Give two real-world examples of closed systems. How well does each
protect its software?

21. Give two real-world examples of open systems. How well does each
protect its software?

22. Is each of the following an open system or a closed system? For each
system, give an example of a real-world attack that has occurred.

a. PC

b. Cell phone

c. iPod

d. Xbox

e. Kindle (an e-book reader)

23. Find an influential critic of NGSCB (other than the critics mentioned
in the text) and summarize his or her arguments against NGSCB.

24. Find a supporter of NGSCB and summarize his or her arguments in
favor of NGSCB.

25. Read the discussion of “treacherous computing” at [13] and summarize
the author’s main points.

26. Public key crypto is used in NGSCB for attestation. One concern with
this approach is that anonymity might be lost. Recall that in Kerberos,
Alice’s anonymity is protected (e.g., when Alice sends her TGT to the
KDC, she doesn’t need to identify herself). Since anonymity is a con-
cern, would it make sense for NGSCB to use an approach similar to
Kerberos?

27. Why is the NGSCB sealed storage integrity check implemented using
hashing instead of public key signing?

28. Why is NGSCB attestation implemented using digital signatures in-
stead of hashing?

29. In NGSCB, how do each of the following help to protect against mali-
cious software?

a. Process isolation

b. Sealed storage

c. Secure path

d. Attestation



512 OPERATING SYSTEMS AND SECURITY

30. Give two reasons why NGSCB attestation is necessary.

31. In NGSCB, each of the four “feature groups” is, apparently, necessary
but not su�cient to ensure security. Discuss a specific attack that
is di�cult or impossible on an NGSCB system, but is easy when the
specified feature group is missing.

a. Process isolation

b. Sealed storage

c. Secure path

d. Attestation

32. Explain Rivest’s comment that TCG/NGSCB is like “a virtual set-top
box inside your PC.”

33. Suppose that students take in-class tests on their own laptop computers.
When they finish answering the questions, they email their results to
the instructor using a wireless Internet connection. Assume that the
wireless access point is accessible during the test.

a. Discuss ways that students might attempt to cheat.

b. How could NGSCB be used to make cheating more di�cult?

c. How might students attempt to cheat on an NGSCB system?

34. Google’s Native Client (NaCl) is a technology designed to allow un-
trusted code to run securely in a Web browser [333]. The primary
advantage is speed, but there are many security issues, some of which
are reminiscent of issues faced by NGSCB.

a. Outline the NaCl security architecture.

b. NaCl uses a “trampoline” to transfer control from untrusted code
to trusted code. Explain how this works.

c. Compare and contrast the security approach used in NaCl with
each of the following: Xax, CFI, Active X.


