Rush Hour® and Dijkstra’s Algorithm*

Mark Stamp Brad Engel McIntosh Ewell
MediaSnap, Inc. 2027 Jolly Road 5811 Garden Drive
2635 North 1st Street Baltimore, MD 21209 Clinton, MD 21237
San Jose, CA 95134

Victor Morrow
1334 Farragut Street, NW
Washington, DC 20011

Abstract

The game of Rush Hour® includes a 6 x 6 grid and game pieces representing cars
and trucks. The object of the puzzle is to move a special car out of a gridlocked “traffic
jam.” In this note we apply Dijkstra’s algorithm and a breadth-first search to solve
any RUSH HOUR configuration.

1 Introduction

The Binary Arts® game of Rush Hour® includes a 6 x 6 plastic grid, eleven ordinary cars,
four trucks and one special red car. A car occupies two consecutive grid spaces, and a truck
three. In addition, a car or truck must be placed horizontally or vertically, not diagonally. A
vehicle can be moved forward or backward, with the restriction that it cannot move into an
occupied space. The object is to manipulate the vehicles so that the red car can exit from
the grid, thus escaping from the “traffic jam.”

The game also includes a deck of 40 cards. Each card lists an initial placement of some
subset of the vehicles and every initial configuration must include the red car. Furthermore,
the red car must reside somewhere in the second row from the top, since the only exit out
of the grid is from the right-hand side of this row. For the benefit of the easily-frustrated, a
solution appears on the back of each card.

Three additional 40-card packs are currently available. These cards include a few minor
variations, such as a limousine (functionally equivalent to a truck) that, in a few cases,
replaces the red car. Also, some of these extra cards have two cars in the exit row, both of
which must exit in order to win the game. These modifications are easily handled by the
methods discussed in this paper.

*Much of this work was completed at the Center for Mathematics, Science and Technology (CMST), a
summer camp for High School students sponsored by the National Security Agency.

In this note we show how to apply Dijkstra’s algorithm to find a solution that is minimal
with respect to the number of moves. Attempts to speed up the algorithm lead us to the
breadth-first search algorithm. Then we solve the related problem of finding a solution with a
minimum “slide.” In this latter case, we find that the full generality of Dijkstra’s algorithm
is required. We then apply both algorithms to each of the 40 original game cards. We
conclude with some observations on the RUSH HOUR puzzle and we mention several related
problems.

2 A simplified example

First we consider a simplified version of RUSH HOUR using a 4 x 4 grid. An example
appears in Figure 1. As with the full-sized version of the game, the object is to manipulate
the vehicles so that the red car, denoted by “E#EH#” in Figure 1, can exit the grid.

Figure 1: Simplified RusH HOUR

A move consists of one car or truck sliding forward or backward any number of grid
spaces, with the restriction that it cannot move into an occupied position. For example, in
Figure 1, only two initial moves are possible—either the red car can move right one space
or the rightmost vertical car can move up one position. We define a slide to be a move of
exactly one grid position. The reader might want to verify that five moves are required to
get the red car out of the grid in Figure 1, while a total slide of five is also minimal.

For complicated initial configurations, we would like to have an algorithmic method
to find minimal-move and minimal-slide solutions. One approach is to construct a graph,
where each vertex represents a valid board configuration and the edges are the possible
moves (see [1] for graph theory background and definitions). Such a graph would allow us
to find a minimal-move solution. By weighting the edges of the graph with the length of the
corresponding slide, we can also find a minimal-slide solution.

Consider the example in Figure 1. To construct the required graph, we could try every
placement of each car or truck within its respective row or column. Then we would let

the vertices of our graph consist of all resulting configurations that contain no overlapping
vehicles. For the initial configuration in Figure 1 we would examine 54 placements of the
vehicles (three placements for each car and two for the truck, for a total of 2- 3% = 54), from
which we find the 16 non-overlapping configurations in Figure 2. Note that in Figure 2, con-
figuration zero is the initial configuration, and those configurations marked with an asterisk
are winning configurations, i.e., they are one move away from a win. Using the numbering in
Figure 2, an example of a minimal winning series of moves is given by vertices (0, 1,9, 8,13),
while the unique minimal-slide solution is (0, 1, 5,4, 3).

0 1 2" 3"

o e e et

il el

T Pt [[T
) L,

— -

4

Tomt Do o} [l

s F O s O s R e

Figure 2: Board configurations for simplified RusH HOUR example

We refer to the graph discussed in the previous paragraph as the all-moves graph. The
weighted all-moves graph for our simplified example appears in Figure 3.

3 Dijkstra’s algorithm

Dijkstra’s algorithm [2] finds the lowest-cost path between two specified vertices of an edge-
weighted graph, provided the edge weights are all non-negative. The algorithm finds ap-
plication in a surprising number of situations. For example, computer networks using so-
called link state routing—such as the well-known Open Shortest Path First (OSPF) routing

3

protocol—implement Dijkstra’s algorithm. For networks, there is an interesting twist since
the graph itself is distributed amongst the nodes (i.e., routers). Several subtle problems arise
from the distributed nature of this problem; see Chapter 12 of [3] for an excellent discussion.

Figure 3: All-moves graph for simplified Rusu HOUR

For a given edge-weighted graph G, suppose we want to find a minimal path (with respect
to the edge weights) from an initial vertex v; to a final vertex vy;. To begin, we color all
vertices of G white. Then the initial vertex v; is colored black and all of its neighboring
vertices are colored gray. Define the distance to a vertex v to be the minimum weight of a
path from v; to v. The algorithm then proceeds as follows.

1. If there are no gray vertices, a solution does not exist. otherwise, select a gray vertex v,
of minimum distance from v;.

2. If vy = vy, then we have found a solution. If not, color v, black and record its distance
from the starting vertex. Color all of v,’s white neighboring vertices gray; goto 1.

As stated, the algorithm does not record the path from v; to vy. In order to find such
a path, some additional bookkeeping is all that is required. Also, note that the initial (or
final) vertex could easily be replaced by a set of vertices.

Suppose we apply Dijkstra’s algorithm to the graph in Figure 3, where our goal is to find
a minimal-move solution. Then, in terms of the graph, we want to find a shortest path from
vertex zero to any of the winning vertices, namely, vertices two, three, twelve and thirteen.
Since we are looking for a minimal-move solution, not a minimal-slide solution, we set all
edge weights equal to one. To start the algorithm, we color vertex zero black and its adjacent
vertices, one and ten, are colored gray. Then we pick a gray vertex of minimum distance from
vertex zero. Both gray vertices are the same distance so the choice is arbitrary. Suppose we
select vertex one. We then color vertex one black and its white neighbors (vertices five, nine
and fourteen) are colored gray.

At this point in the algorithm, the gray vertices are 5, 9, 10 and 14 which—since we are
using edge weights of one—are distance 2, 2, 1 and 2, respectively, from vertex zero. Hence,
the gray vertex of minimum distance from vertex zero is vertex ten. We color vertex ten
black and, since it has no white neighbors, we proceed to once again find the gray vertex
of minimum distance. Continuing, we could, depending on several arbitrary choices, arrive
at the graph in Figure 4, where we have stopped as soon as the first winning vertex was
reached. Note that the directed edges in Figure 4 allow us to reconstruct the winning series
of moves which, for this example is (0,1, 9,8, 13).

A

Figure 4: Dijkstra’s algorithm applied to simplified example

To find the minimal-slide solution we simply run Dijkstra’s algorithm on the graph in
Figure 3 with the edge-weights as shown. This case is similar to the previous example and
we omit the details.

In the next section we take a closer look at the minimal-move problem. For this problem,
we are able to find several ways to speed up Dijkstra’s algorithm. This analysis leads us to
the breadth-first search algorithm.

4 A real example

The RusH HOUR initial configuration from card number 40 appears in Figure 5. For this
particular configuration, there are six rows or columns with a single car, three with a single
truck and and two each with two cars. To find the vertices of the all-moves graph, we consider
all possible placements of the vehicles, keeping those that result in valid non-overlapping
configurations. In this case we would need to examine

5%. 43 . 6% = 36,000, 000

placements. However, we find that the all-moves graph has only 4805 vertices (and 18729
edges) and only 4780 of the vertices are reachable from the given initial configuration. In

5

graph theory terms, the component of the all-moves graph containing the initial vertex
consists of 4780 vertices. If a solution exists, it must occur at one of these 4780 vertices.

Figure 5: RusH HOUR—the real thing

To find a minimal-move solution for the initial configuration in Figure 5, we could first
try all 3.6 x 107 possible placements of the vehicles to find the all-moves graph. Then we
would need to examine each vertex of the all-moves graph to determine which correspond to
winning configurations. Finally, we could apply Dijkstra’s algorithm to find a shortest path—
if such a path exists—from the initial configuration to one of the winning configurations.
This approach has been programmed and it does succeed, but it requires far more work than
is necessary to solve the problem.

Evidently, the overwhelming majority of the work—at least for RusH HOUR card 40—is
in simply finding the all-moves graph. For the toy problem of the previous section we found
that not all of the graph is required by Dijkstra’s algorithm; see Figures 3 and 4. We make
use of this simple observation, and some obvious computational tricks to greatly reduce the
work and computer memory required to find a minimal-move solution to any Rusa HOURr
puzzle. In the process, we convert Dijkstra’s algorithm to the breadth-first search algorithm.

Suppose we have successively identified all vertices that are distance one, distance two,
through distance n from the initial vertex, and we have not yet arrived at a winning con-
figuration. Suppose vertex v is distance n from the initial vertex. Then we find all vertices
adjacent to v, which is easily accomplished by simply moving the game pieces on the config-
uration corresponding to v. For any vertex w adjacent to v, one of the following four cases
must hold true.

1. The vertex w appears in the list of vertices at distance n — 1 from the initial vertex.

2. The vertex w appears in the list of vertices at distance n from the initial vertex.

3. The vertex w appears in the (partial) list of distance n 4 1 vertices.

4. Vertex w does not appear in the list of distance n — 1, distance n or distance n + 1
vertices.

If 1., 2. or 3. hold, then vertex w is already known and hence we proceed to the next vertex
adjacent to v. However, if 4. occurs, then w is a new vertex at distance n+ 1 from the initial
vertex. In this case we first check whether w corresponds to a winning configuration. If so,
we are finished. If not, we append w to the distance n 4+ 1 list, then proceed to consider the
next vertex adjacent to v. Of course, we repeat the process for each distance n vertex.

Using the approach in the previous paragraph, we find the vertices at each successive
distance from the initial vertex, until the first winning configuration is found. As a result,
we are able to construct a graph with its vertices ordered by distance from the initial vertex.
We can implement such a list using a queue as illustrated below

Vertices: vg , V1,02, ..., Unys Ung+1s Ung4+2y - - s Ungtngs - - -

Distance: 1 2

The algorithm described above is known as a breadth-first search [4]. Our implementation
uses a queue to store the vertices while the asymptotically optimal implementation employs
a Fibonacci heap [5].

The breadth-first search is more efficient than Dijkstra’s algorithm, but an even bigger
savings comes from the fact that we find a minimal-move solution while avoiding the expense
required to construct the entire all-moves graph. When finding the minimal-slide solution we
must use Dijkstra’s algorithm, but we can still construct the graph as needed, again avoiding
the cost of precomputing the all-moves graph.

For both the breadth-first search and Dijkstra’s algorithm, finding the sequence of moves
that yields a recovered solution only requires one link from each vertex. More precisely,
suppose vertex w at distance n + 1 is found when considering those vertices adjacent to v.
Then by keeping a directed edge from w to v, we will be able to reconstruct the move from w
back to v. When the first winning vertex is found, we will be able to recover a minimal series
of moves back to the initial vertex. Simply reversing this list will give us the desired solution.

The graph we construct will generally have fewer vertices than found in the all-moves
graph and, more significantly, it will have far fewer edges. Consequently, the memory re-
quired to store the graph will be much less than would be required to store the all-moves
graph. Also, we do not need to precompute the all-moves graph, which, as we have seen,
can require far more work than finding the minimal-move or minimal-slide solution.

However, our approach does have one drawback. When finding adjacent vertices, we
will often need to construct a particular vertex many times. In fact, the number of times
that we find a vertex will approximately equal the number of incident edges (that is, the
degree of the vertex) in the corresponding all-moves graph. There is certainly more work
involved in repeatedly reconstructing adjacent vertices by moving pieces on the board than
simply following known edges. But this extra work will be more than offset by the substantial
savings obtained by not precomputing the all-moves graph. And, as discussed in the previous
paragraph, the memory savings are substantial.

In the next section we discuss some results obtained when computing the minimal-move
and minimal-slide solutions to the RUSH HOUR cards. These results clearly illustrate the
computational advantages of our approach.

5 Results

The 40 standard RusH HOUR cards are rated “beginner” (cards 1 through 10), “inter-
mediate” (numbers 11 through 20), “advanced” (21 through 30) and “expert” (cards 31
through 40). The beginner cards are trivial, intermediate are somewhat challenging, ad-
vanced are more so and expert cards are difficult. Subjectively, the ratings seem about
right.

For each of the 40 cards we input the initial configuration and ran our breadth-first
search implementation to find a minimal-move solution. We also ran Dijkstra’s algorithm
to find a minimal-slide solution. In each case, we found that the solution on the back of
the card is, in fact, a minimal-move solution, though not always a minimal-slide solution.
In Table 1 we list minimal-move results for twelve representative cards—three each from
beginner, intermediate, advanced and expert. Table 2 contains minimal-slide results for the
same twelve cards.

card | minimum graph graph dead winning

number | moves diameter vertices ends edges

2 8 26 20691 9293 1304

6 9 20 2912 1884 194

8 12 13 949 412 3

14 17 33 45591 18720 29838
17 24 31 2191 1243 127
19 22 22 474 218 16
21 21 22 254 126 5
25 27 35 9010 3459 277
29 31 32 4323 1968 30
32 37 47 651 249 84
36 44 55 3489 1214 236
40 51 60 3432 1381 203

Table 1: Minimal-move results

On a 600 MHz computer, solving all 40 minimal-moves problems (breadth-first search)
required a total time of about 30 seconds while the 40 minimal-slide problems (Dijkstra’s
algorithm) were solved in about 5 minutes. To find all 40 all-moves graphs took more than 90
minutes.

In Table 1, the graphs consist of all vertices that can be reached from the initial vertex,
excluding winning vertices and vertices that can only be reached by passing through a
winning vertex. In other words, we assume that a player would stop when a winning vertex

8

card minimum
number slide moves vertices

2 14 8 3913

6 18 9 2363

8 22 15 951
14 34 18 17203
17 47 28 2205
19 44 22 527
21 49 23 267
25 52 32 8937
29 54 36 4342
32 62 41 625
36 63 46 2983
40 81 57 3163

Table 2: Minimal-slide results

has been reached. The “dead ends” are those vertices that have no continuing path forward
and have not reached a winning vertex. The “winning edges” column lists the number of
ways that winning vertices can be reached from one of the “graph vertices.” Note that this
is not the number of winning vertices, but instead the number of edges from non-winning
vertices to winning vertices. In terms of the game, the winning edges column gives the
number of moves that put the red car into a winning position.

Table 3 contains results for the all-moves graphs. We list the number of placements
that must be tried in order to exhaustively construct the all-moves graph (“all-moves place-
ments”) and the number of vertices (“all-moves vertices”) and edges (“all-moves edges”) in
the resulting graph. For the 40 cards examined, the number of vertices in the all-moves
graph varies between 2.87 and 5.96 times the number of edges. These results clearly show
the benefit of not precomputing the entire all-moves graph.

Why are some RUSH HOUR configurations easy to solve while others are much more
difficult? From Table 1, for example, it is not apparent that knowledge of the graphs gives
us much insight into the answer to this question. It would seem that a larger diameter, more
vertices and more dead ends would make the problem harder, while more winning edges
might tend to make the puzzle easier. However, the minimum number of moves appears to
be the only reliable indicator of difficulty. Some clever combination of the graph parameters
might yield a good measure of difficulty, but we have not found such a combination.

6 Conclusion

BINARY ARTS also produces a game called Railroad Rush Hour®, which is played on a 7x 7
grid and includes several 2-long and 3-long railroad pieces and a pair of 2 x 2 “luggage racks.”
This variant of the game is significantly more difficult than Rusa HOUR and the number of

card all-moves all-moves all-moves
number | placements vertices edges
2 6.00 x 10° 22139 125902
6 3.00 x 108 4500 19308
8 4.05 x 10° 952 3234
14 5.86 x 107 82169 506070
17 2.40 x 107 4092 17659
19 7.50 x 104 842 3247
21 3.20 x 10% 656 2542
25 1.50 x 108 20748 95222
29 7.20 x 108 4524 19763
32 4.32 x 10° 805 2308
36 1.50 x 107 7135 29698
40 3.60 x 107 4805 18729

Table 3: All-moves graphs

board configurations can also be far greater. However, the computational methods discussed
in this paper should suffice to find a minimal-move solution of any RAILROAD RusH HOUR
configuration. The minimal-slide problem is more difficult but should also be manageable.

Another challenging problem is to find the most difficult possible RusH HOUR initial
configuration, as measured by the minimum number of moves—or slide—required to win.
Computational methods that do not assure a minimal solution, but require less work, would
also be worth pursuing. Other possible problems include different board shapes, unusual
vehicles or allowing diagonal placement of vehicles. Finally, playing the game on a torus or
Klein bottle would add an interesting twist.

References

[1] R. J. Wilson, Introduction to Graph Theory, Third Edition, Longman Scientific & Tech-
nical, 1985.

[2] E. W. Dijkstra and W. H. J. Feijen, A Method of Programming, Addison—Wesley, 1988.

[3] R. Perlman, Interconnections: Bridges, Routers, Switches and Internetworking Proto-
cols, Second Edition, Addison—Wesley, 2000.

[4] T. Corman, C. Leiserson and R. Rivest, Introduction to Algorithms, MIT Press, 1990.

[5] M. Fredman and R. Tarjan, Fibonacci heaps and their uses in improved network opti-
mization algorithms, Journal of the ACM, 34:596-615, 1987.

10

