
 PKZIP Stream Cipher 1

PKZIP

 PKZIP Stream Cipher 2

PKZIP
 Phil Katz’s ZIP program
 Katz invented zip file format

o ca 1989
 Before that, Katz created PKARC utility

o ARC compression was patented by SEA, Inc.
o SEA successfully sued Katz

 Katz then invented zip
o ZIP was much better than SEA’s ARC
o He started his own company, PKWare

 Katz died of alcohol abuse at age 37 in 2000

 PKZIP Stream Cipher 3

PKZIP
 PKZIP compresses files using zip
 Optionally, it encrypts compressed file

o Uses a homemade stream cipher
o PKZIP cipher due to Roger Schlafly
o Schlafly has PhD in math (Berkeley, 1980)

 PKZIP cipher is susceptible to attack
o Attack is nontrivial, has significant work factor,

lots of memory required, etc.

 PKZIP Stream Cipher 4

PKZIP Cipher
 Generates 1 byte of keystream per step
 96 bit internal state

o State: 32-bit words, which we label X,Y,Z
o Initial state derived from a password

 Of course, password guessing is possible
o We do not consider password guessing here

 Cipher design seems somewhat ad hoc
o No clear design principles
o Uses shifts, arithmetic operations, CRC, etc.

 PKZIP Stream Cipher 5

PKZIP Encryption
 Given

o Current state: X, Y, Z (32-bit words)
o p = byte of plaintext to encrypt
o Note: upper case for 32-bit words, lower case bytes

 Then the algorithm is…
k = getKeystreamByte(Z)
c = p ⊕ k
update(X, Y, Z, p)

 Next, we define getKeystreamByte, update

 PKZIP Stream Cipher 6

PKZIP getKeystreamByte
 Let “∨” be binary OR
 Define 〈X〉i…j as bits i thru j (inclusive) of X

o As usual, bits numbered left-to-right from 0
 Shift X by n bits to right: X >> n
 Then…

getKeystreamByte(Z)
t = 〈Z ∨ 3〉16…31

k = 〈(t ⋅ (t ⊕ 1)) >> 8〉24…31

return(k)
end getKeystreamByte

 PKZIP Stream Cipher 7

PKZIP update
 Given current state X, Y, Z and p

update(X, Y, Z, p)
X = CRC(X, p)
Y = (Y + 〈X〉24…31) ⋅ 134775813 + 1 (mod 232)
Z = CRC(Z, 〈Y〉0…7)

end update
 CRC function defined on next slide

 PKZIP Stream Cipher 8

PKZIP CRC
 Let X be 32-bit word, b a byte

CRC(X, b)
X = X ⊕ b
for i = 0 to 7

if X is odd
X = (X >> 1) ⊕ 0xedb88320

else
X = (X >> 1)

end if
next i
return(X)

end CRC

 PKZIP Stream Cipher 9

CRCTable and CRCinverse
 For efficiency, define CRCtable so that

CRC(X,b) = 〈X〉0…23⊕ CRCtable[〈X〉24…31⊕ b]

 Inverse table, CRCinverse, exists in the
following sense:

 If B = 〈A〉0…23⊕ CRCtable[〈A〉24…31⊕ b]
 Then A = (B << 8) ⊕ CRCinverse[〈B〉0…7] ⊕ b
 Inverse table is useful in attack

 PKZIP Stream Cipher 10

Lists
 Let (Xi,Yi,Zi) be internal state used to

generate ith keystream byte
 Let ki be the ith keystream byte
 Let pi be ith plaintext byte
 Define “X-list” to be X0,X1,…Xn

o Note that n+1 elements in this list

 Similar definition for k-list, p-list, etc.

 PKZIP Stream Cipher 11

Outline of PKZIP Attack
 Assume k-list and p-list are known

o This is a known plaintext attack
 Want to find state (Xi,Yi,Zi) for some i

o Then all keystream bytes are known
 Executive summary of the attack

1. Use k-list to find a set of Z-lists
2. For each Z-list, find multiple Y-lists
3. For each Y-list, use p-list to obtain one X-list
4. True X-list is among X-lists in 3. Find X-list using

p-list. From X-list, obtain state and keystream
 Details of steps 1 thru 4 on following slides

 PKZIP Stream Cipher 12

Step 1: Z-lists
 Assume keystream bytes k0,k1,…,kn known
 Keystream byte ki computed as

ki = 〈(t ⋅ (t ⊕ 1)) >> 8〉24…31

Where t = 〈Zi ∨ 3〉16…31

 Given kn, there are 64 possible t
o Due to the “∨ 3”

 This gives 64 putative 〈Zn〉16…29

 Similarly, we find 64 putative 〈Zn−1〉16…29

 PKZIP Stream Cipher 13

Step 1: Z-lists
 Have 64 putative 〈Zn〉16…29 and 〈Zn−1〉16…29

 Implies there are 222 putative 〈Zn〉0…29

 By update we have Zn = CRC(Zn−1, 〈Y〉0…7)
 By CRC inversion formula

Zn−1 = (Zn << 8) ⊕ CRCinverse[〈Zn〉0…7] ⊕ 〈Yn〉0…7

 For each of 222 putative 〈Zn〉0…29
o Know bits 0 thru 21 on RHS, bits 16 to 29 on LHS
o For correct Zn and Zn−1, bits 16 thru 21 must agree
o Since 6 bits, 1/64 chance of a random match
o Since 64 Zn−1, for each Zn expect 1 matching Zn−1
o Since there are 222 Zn−1 we obtain 222 Zn−1

 PKZIP Stream Cipher 14

Step 1: Z-lists
 Repeat for 〈Zn−2 〉0…29 then 〈Zn−3 〉0…29 etc.
 Bottom Line

o We obtain about 222 Z-lists
o Each of the form 〈Zi〉0…29, for i = 1,2,…,n

 Possible to extend each of these to “full” Zi
o That is, Zi bits 0 thru 31, not just bits 0 thru 29
o We omit details here (see text)

 We have 222 Z-lists, 〈Zi〉0…29, for i = 1,2,…,n

 PKZIP Stream Cipher 15

Step 1 Refinement
 Possible to reduce number of Z-lists
 Requires additional known plaintext
 Reduces overall work factor
 For example

o 28 more bytes, we can reduce number of
Z-lists (and overall work) by a factor of 24

o 1000 additional bytes can reduce number
of lists to a range by 211 to 214

 We ignore refinement, so 222 Z-lists

 PKZIP Stream Cipher 16

Step 2: Y-lists
 We have about 222 putative Z-lists

o Each consisting of putative Z1,Z2,…,Zn

 We use these to find consistent Y-lists
 From update, we can write CRC inverse as

〈Yi〉0…7 = Zi−1 ⊕ (Zi << 8) ⊕ CRCinverse[〈Zi〉0…7]

 For each Z-list, have 〈Y2〉0…7,〈Y3〉0…7, …,〈Yn〉0…7

 How to find remaining 24 bits of each Yi ?
o This is a bit tricky…

 PKZIP Stream Cipher 17

Step 2: Y-lists
 From update we have

Yi = (Yi−1 + 〈Xi〉24…31) ⋅ 134775813 + 1 (mod 232)
 Rewrite this as

(Yi − 1) ⋅ C = Yi−1 + 〈Xi〉24…31

 Where C = 134775813−1 (mod 232)
 Then with very high probability

〈(Yi − 1) ⋅ C〉0…7 = 〈Yi−1〉0…7

 Letting i = n, we have
〈(Yn − 1) ⋅ C〉0…7 = 〈Yn−1〉0…7

 PKZIP Stream Cipher 18

Step 2: Y-lists
 We have 〈(Yn − 1) ⋅ C〉0…7 = 〈Yn−1〉0…7

o Where both 〈Yn〉0…7 and 〈Yn−1〉0…7 known
 Test all 224 choices for 〈Yn〉8…31

o For each, compute 〈(Yn − 1) ⋅ C〉0…7

o And compare to known 〈Yn−1〉0…7

o Probability of a match is 1/28

 Bottom line: Obtain 216 Yn per Z-list
 Since 222 Z-lists, we have 238 Yn

 PKZIP Stream Cipher 19

Step 2: Y-lists
 We have

(Yn − 1) ⋅ C = Yn−1 + 〈Xn〉24…31

 Rewrite as
 Yn−1 = (Yn − 1) ⋅ C − 〈Xn〉24…31

 Let a = 〈Xn〉24…31

 Then
Yn−1 = (Yn − 1) ⋅ C − a

 For some unknown byte a

 PKZIP Stream Cipher 20

Step 2: Y-lists
 We have Yn−1 = (Yn − 1) ⋅ C − a

o For some unknown byte a
 For each Yn, compute Yn−1 for all possible a

o Test whether 〈(Yn−1 − 1) ⋅ C〉0…7 = 〈Yn−2〉0…7

o Recall that 〈Yn−2〉0…7 is known
o Try all 256 a, each has 1/28 probability of match
o Expect one Yn−1 for each Yn

 Can be made efficient using lookup tables
o Given 〈Yn−2〉0…7 lookup consistent 〈Yn−1〉0…7

 PKZIP Stream Cipher 21

Step 2: Y-lists
 Repeat for Yn−2,Yn−3,…,Y3

 Bottom line
o Expect to obtain 238 Y-lists
o Each of the form Y3,Y4,…,Yn

 Remaining steps in the attack
o Find X-lists (step 3)
o Find correct X-list from set of X-lists (step 4)
o Then some (Xi,Yi,Zi) known and msg is broken!

 PKZIP Stream Cipher 22

Step 3: X-lists
 We have about 238 putative Y-lists

o Each is of the form Y3,Y4,…,Yn

 How to find corresponding X-lists?
 Consider the formula

〈Xi〉24…31 = (Yi − 1) ⋅ C − Yi−1

 Use this to obtain 〈Xi〉24…31 for i = 4,5,…,n
 How to find remaining bits of each Xi ?

 PKZIP Stream Cipher 23

Step 3: X-lists
 From update function

Xi = CRC(Xi−1, pi)
 Using CRC table,

Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31 ⊕ pi]
 Implications?
 If we know one complete Xi and all pj then

we can compute all (complete) Xj
o CRC inverse allows us to find Xi-1 from Xi

 So how to find one complete Xi ?

 PKZIP Stream Cipher 24

Step 3: X-lists
 We know 〈Xi〉24…31 and pi for each i
 From update: Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31⊕ pi]
 This implies

1. 〈Xi〉0…23 = Xi+1 ⊕ CRCtable[〈Xi〉24…31 ⊕ pi+1]
2. 〈Xi+1〉0…23 = Xi+2 ⊕ CRCtable[〈Xi+1〉24…31 ⊕ pi+2]
3. 〈Xi+2〉0…23 = Xi+3 ⊕ CRCtable[〈Xi+2〉24…31 ⊕ pi+3]

 From 〈Xi+3〉24…31, 〈Xi+2〉24…31 and 3, get 〈Xi+2〉16…31

 From 〈Xi+2〉16…31, 〈Xi+1〉24…31 and 2, get 〈Xi+1〉8…31

 From 〈Xi+1〉8…31, 〈Xi〉24…31 and 1, get Xi = 〈Xi〉0…31

 PKZIP Stream Cipher 25

Step 3: X-lists
 Using Xi found on previous slide and

Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31 ⊕ pi]
 We can find the complete X-list
 Repeat this for each putative Y-list

o Gives us about 238 putative X-lists
 Correct X-list will (almost certainly) be

among these 238 X-lists
 How to select the “winning” X-list?

 PKZIP Stream Cipher 26

Step 4: Correct X-lists
 How to select correct X-list?
 We can compute 〈Xi〉24…31 in two ways:

Xi = 〈Xi−1〉0…23 ⊕ CRCtable[〈Xi−1〉24…31 ⊕ pi]
〈Xi〉24…31 = (Yi − 1) ⋅ C − Yi−1

 These two results must agree!
 Since testing 1 byte

o Probability of random match about 1/28

 We have about 238 putative X-lists, so…
 About 5 such comparisons and we’re done!

 PKZIP Stream Cipher 27

Step 4: Recover Keystream
 Once we have found correct X-list

o We know corresponding Y-list, Z-list

 For some i < n, we know state (Xi,Yi,Zi)
 From (Xi,Yi,Zi) we generate kj for j ≥ i
 We have the keystream and msg is broken
 Trudy wins again!

 PKZIP Stream Cipher 28

How Much Plaintext?
 Trudy wants to minimize known plaintext
 Require plaintext bytes p0,p1,…,pn

o So, how small can n be?
 Need 〈Xi〉24…31, 〈Xi+1〉24…31, 〈Xi+2〉24…31, 〈Xi+3〉24…31

to determine Xi
o We can assume i+3 = n, so n,n−1,n−2,n−3 needed

 And we need five more Xi to find true X-list
o Can assume we use i = n−4,n−5,n−6,n−7,n−8

 Cannot use Xi, i=0,1,2,3, for any of the above
o Since these are not found by the attack

 PKZIP Stream Cipher 29

How Much Plaintext?
 Bottom line

o Need 13 consecutive known plaintext bytes
o Since 4 + 5 + 4 = 13 (from previous slide)

 Can reduce the work (step 1 refinement)
o Requires more known plaintext
o “Work” determined by number of lists
o 28 additional known plaintext bytes reduces

number of lists from 238 to 234

o About 1000 additional plaintext bytes reduces
number of lists to a range of 227 to 224

 PKZIP Stream Cipher 30

Slightly Simplified Attack
 If we do not reduce number of lists (i.e.,

we do not implement step 1 refinement)
o Then work is on order of 238

 In this case, a simpler attack is possible
 “Simpler” means easier to program

o We do not have to save large number of lists
o Instead, we process each lists as generated

 PKZIP Stream Cipher 31

Simplified Attack
 Suppose we have 13 known plaintexts

o That is, p0,p1,…,p12

o Then we know keystream bytes k0,k1,…,k12

 From step 1, we first do the following:
for i = 0 to 12

Find all 〈Zi〉16…29 consistent with ki

next i
 Expect 64 〈Zi〉16…29 for each i
 Remainder of attack is on the next slide

 PKZIP Stream Cipher 32

for each 〈Z12〉16…29 // expect 64
for each 〈Z12〉0…15 // 216 choices

for i = 11,10,…,0
Find 〈Zi〉16…29 consistent with 〈Zi+1〉0…29

Extend 〈Zi〉16…29 to 〈Zi〉0…29

next i
Complete to Z-list (solve for bits 30 and 31)
Solve for 〈Yi〉0…7
Solve for all bits of Y-lists // expect 216 lists
for each Y-list

Solve for 〈Xi〉24…31
Solve for X9 using 〈X9〉24…31,〈X10〉24…31,〈X11〉24…31,〈X12〉24…31
Solve for X-list
if 〈Xi〉24…31 verified for i=8,7,6,5,4, return (X,Y,Z)-list

next Y-list
next 〈Z12〉0…15

next 〈Z12〉16…29

Simplified
Attack

 PKZIP Stream Cipher 33

PKZIP Conclusions
 PKZIP cipher is somewhat complex

and difficult to analyze
 PKZIP cipher design

o Appears to be ad hoc
o Violated Kerckhoffs Principle
o Mixed-mode arithmetic is interesting

 The bottom line…
o PKZIP cipher is insecure
o But not trivial to attack
o An interesting and unusual cipher!

