Stream Ciphers
Stream Ciphers

- Generalization of one-time pad
- Trade provable security for practicality
- Stream cipher is initialized with short key
- Key is “stretched” into long keystream
- Keystream is used like a one-time pad
 - XOR to encrypt or decrypt
- Stream cipher is a keystream generator
- Usually, keystream is bits, sometimes bytes
Stream Cipher

- Generic view of stream cipher
Stream Cipher

- We consider 3 real stream ciphers
 - **ORYX** — weak cipher, uses shift registers, generates 1 byte/step
 - **RC4** — strong cipher, widely used but used poorly in WEP, generates 1 byte/step
 - **PKZIP** — intermediate strength, unusual mathematical design, generates 1 byte/step

- But first, we discuss shift registers
Shift Registers

- Traditionally, stream ciphers were based on shift registers
 - Today, a wider variety of designs
- Shift register includes
 - A series of stages each holding one bit
 - A feedback function
- A linear feedback shift register (LFSR) has a linear feedback function
Shift Register

- Example (nonlinear) feedback function
 \[f(x_i, x_{i+1}, x_{i+2}) = 1 \oplus x_i \oplus x_{i+2} \oplus x_{i+1}x_{i+2} \]

- Example (nonlinear) shift register

- First 3 bits are initial fill: \((x_0, x_1, x_2)\)
LFSR

- Example of LFSR

Then \(x_{i+5} = x_i \oplus x_{i+2} \) for all \(i \)

If initial fill is \((x_0, x_1, x_2, x_3, x_4) = 01110\)
then \((x_0, x_1, \ldots, x_{15}, \ldots) = 0111010100001001\ldots\)
LFSR

- For LFSR

\[x_i \oplus x_{i+2} = x_{i+5} \]

- Linear feedback functions often written in polynomial form: \(x^5 + x^2 + 1 \)

- Connection polynomial of the LFSR
Berlekamp-Massey Algorithm

- Given (part of) a (periodic) sequence, can find shortest LFSR that could generate the sequence

- Berlekamp-Massey algorithm
 - Order N^2, where N is length of LFSR
 - Iterative algorithm
 - Only $2N$ consecutive bits required
Berlekamp–Massey Algorithm

- Binary sequence: $s = (s_0, s_1, s_2, \ldots, s_{n-1})$
- **Linear complexity** of s is the length of shortest LFSR that can generate s
- Let L be linear complexity of s
- Then connection polynomial of s is of form
 \[C(x) = c_0 + c_1 x + c_2 x^2 + \ldots + c_L x^L \]
- Berlekamp–Massey finds L and $C(x)$
 - Algorithm on next slide (where d is known as the discrepancy)
Berlekamp-Massey Algorithm

// Given binary sequence $s = (s_0, s_1, s_2, \ldots, s_{n-1})$
// Find linear complexity L and connection polynomial $C(x)$
BM(s)

$C(x) = B(x) = 1$
$L = N = 0$
$m = -1$

while $N < n$ // n is length of input sequence

 $d = s_N \oplus c_1 s_{N-1} \oplus c_2 s_{N-2} \oplus \cdots \oplus c_L s_{N-L}$
 if $d == 1$ then
 $T(x) = C(x)$
 $C(x) = C(x) + B(x)x^{N-m}$
 if $L \leq N/2$ then
 $L = N + 1 - L$
 $m = N$
 $B(x) = T(x)$
 end if
 end if
 $N = N + 1$
end while
return(L)
end BM
Berlekamp-Massey Algorithm

Example:

sequence: \(s = (s_0, s_1, \ldots, s_7) = 10011100 \)
initialize: \(C(x) = B(x) = 1, \ L = N = 0, \ m = -1 \)

\[
\begin{align*}
N &= 0 \\
d &= s_0 = 1 \\
T(x) &= 1, \ C(x) = 1 + x \\
L &= 1, \ m = 0, \ B(x) = 1
\end{align*}
\]

\[
\begin{align*}
N &= 1 \\
d &= s_1 \oplus c_1 s_0 = 1 \\
T(x) &= 1 + x, \ C(x) = 1
\end{align*}
\]

\[
\begin{align*}
N &= 2 \\
d &= s_2 \oplus c_1 s_1 \oplus c_2 s_0 = 0
\end{align*}
\]

\[
\begin{align*}
N &= 3 \\
d &= s_3 \oplus c_1 s_2 \oplus c_2 s_1 \oplus c_3 s_0 = 1 \\
T(x) &= 1, \ C(x) = 1 + x^3 \\
L &= 3, \ m = 3, \ B(x) = 1
\end{align*}
\]

\[
\begin{align*}
N &= 4 \\
& \vdots
\end{align*}
\]
Berlekamp-Massey Algorithm

- Berlekamp-Massey is an efficient way to determine minimal LFSR for a sequence.
- With known plaintext, keystream bits of the stream cipher are exposed.
- With enough keystream bits, can use Berlekamp-Massey to find the entire keystream.
 - $2L$ bits is enough, where L is the linear complexity of the keystream.
- Keystream must have large linear complexity.
Cryptographically Strong Sequences

- A sequence is **cryptographically strong** if it is a “good” keystream
 - “Good” relative to some specified criteria
- Crypto strong sequence must be **unpredictable**
 - Known plaintext exposes part of keystream
 - Trudy must not be able to determine more of the keystream from a short segment
- Small linear complexity implies predictable
 - Due to Berlekamp-Massey algorithm
Crypto Strong Sequences

- Necessary for a cryptographically strong keystream to have a high linear complexity
- But not sufficient!
- Why? Consider $s = (s_0, s_1, \ldots, s_{n-1}) = 00\ldots01$
- Then s has linear complexity n
 - Smallest shift register for s requires n stages
 - Largest possible for sequence of period n
 - But s is not cryptographically strong
- Linear complexity “concentrated” in last bit
Linear Complexity Profile

- **Linear complexity profile** is a better measure of cryptographic strength.
- Plot linear complexity as function of bits processed in Berlekamp-Massey algorithm.
 - Should follow $n/2$ line “closely but irregularly”.
- Plot of sequence $s = (s_0, s_1, \ldots, s_{n-1}) = 00 \ldots 01$ would be 0 until last bit, then jumps to n
 - Does **not** follow $n/2$ line “closely but irregularly”.
 - Not a strong sequence (by this definition).
Linear Complexity Profile

- A “good” linear complexity profile
k-error Linear Complexity Profile

- Alternative way to measure cryptographically strong sequences
- Consider again $s = (s_0, s_1, \ldots, s_{n-1}) = 00\ldots01$
- This s has max linear complexity, but it is only 1 bit away from having min linear complexity
- k-error linear complexity is min complexity of any sequence that is “distance” k from s
- 1-error linear complexity of $s = 00\ldots01$ is 0
 - Linear complexity of this sequence is “unstable”
k-error Linear Complexity Profile

- k-error linear complexity profile
 - k-error linear complexity as function of \(k \)
- Example:
 - Not a strong s
 - Good profile should follow diagonal “closely”
Crypto Strong Sequences

- Linear complexity must be “large”
- Linear complexity profile must $n/2$ line “closely but irregularly”
- k-error linear complexity profile must follow diagonal line “closely”
- All of this is necessary but not sufficient for crypto strength!
Shift Register-Based Stream Ciphers

- Two approaches to LFSR-based stream ciphers
 - One LFSR with nonlinear combining function
 - Multiple LFSRs combined via nonlinear function

- In either case
 - Key is initial fill of LFSRs
 - Keystream is output of nonlinear combining function
Shift Register-Based Stream Ciphers

- LFSR-based stream cipher
 - 1 LFSR with nonlinear function $f(x_0, x_1, \ldots, x_{n-1})$

- Keystream: k_0, k_1, k_2, \ldots
Shift Register-Based Stream Ciphers

- **LFSR-based stream cipher**
 - Multiple LFSRs with nonlinear function

![Diagram]

- **Keystream**: $k_0, k_1, k_2, ...$
Shift Register-Based Stream Ciphers

- Single LFSR example is special case of multiple LFSR example
- To convert single LFSR case to multiple
 - Let LFSR_0, \ldots, LFSR_{n-1} be same as LFSR
 - Initial fill of LFSR_0 is initial fill of LFSR
 - Initial fill of LFSR_1 is initial fill of LFSR stepped once
 - And so on...
Correlation Attack

- Trudy obtains some segment of keystream from LFSR stream cipher
 - Of the type considered on previous slides
- Can assume stream cipher is the multiple shift register case
 - If not, convert it to this case
- By Kerckhoffs Principle, we assume shift registers and combining function known
- Only unknown is the key
 - The key consists of LFSR initial fills
Correlation Attack

- Trudy wants to recover LFSR initial fills
 - She knows all connection polynomials and nonlinear combining function
 - She also knows N keystream bits, $k_0, k_1, \ldots, k_{N-1}$

- Sometimes possible to determine initial fills of the LFSRs independently
 - By correlating each LFSR output to keystream
 - A classic divide and conquer attack
Correlation Attack

- For example, suppose keystream generator is of the form:

\[f(x, y, z) = xy \oplus yz \oplus z \]

- And note that key is 12 bits, initial fills
Correlation Attack

- For stream cipher on previous slide
- Suppose initial fills are
 - $X = 011$, $Y = 0101$, $Z = 11100$

<table>
<thead>
<tr>
<th>x_i</th>
<th>01110010111001011110010111</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_i</td>
<td>0101100100011110101110010</td>
</tr>
<tr>
<td>z_i</td>
<td>11100011110101000001001</td>
</tr>
<tr>
<td>k_i</td>
<td>111100100110010110001011</td>
</tr>
</tbody>
</table>
Correlation Attack

- Consider truth table for combining function: \(f(x,y,z) = xy \oplus yz \oplus z \)

- Easy to show that

 \[f(x,y,z) = x \text{ with probability } \frac{3}{4} \]

 \[f(x,y,z) = z \text{ with probability } \frac{3}{4} \]

- Trudy can use this to recover initial fills from known keystream
Correlation Attack

- Trudy sees keystream in table
- Trudy wants to find initial fills
- She guesses $X = 111$, generates first 24 bits of putative X, compares to k_i

<table>
<thead>
<tr>
<th>x_i</th>
<th>11100101111001011110010111</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i</td>
<td>11110010011100101100010111</td>
</tr>
</tbody>
</table>

- Trudy finds 12 out of 24 matches
- As expected in random case
Correlation Attack

- Now suppose Trudy guesses correct fill, $X = 011$

- First 24 bits of X (and keystream)

<table>
<thead>
<tr>
<th>x_i</th>
<th>011100101111001011110010111</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i</td>
<td>1111001001110010110001011</td>
</tr>
</tbody>
</table>

- Trudy finds 21 out of 24 matches

- Expect 3/4 matches in causal case

- Trudy has found initial fill of X
Correlation Attack

- How much work is this attack?
 - The X,Y,Z fills are 3,4,5 bits, respectively
- We need to try about half of the initial fills before we find X
- Then we try about half of the fills for Y
- Then about half of Z fills
- Work is $2^2 + 2^3 + 2^4 < 2^5$
- Exhaustive key search work is 2^{11}
Correlation Attack

- Work factor in general...
- Suppose n LFSRs
 - Of lengths $N_0, N_1, \ldots, N_{n-1}$
- Correlation attack work is
 $$2^{N_0-1} + 2^{N_1-1} + \cdots + 2^{N_{n-1}-1}$$
- Work for exhaustive key search is
 $$2^{N_0+N_1+\cdots+N_{n-1}-1}$$
Conclusions

- Keystreams must be cryptographically strong
 - Crucial property: unpredictable
- Lots of theory available for LFSRs
 - Berlekamp-Massey algorithm
 - Nice mathematical theory exists
- LFSRs can be used to make stream ciphers
 - LFSR-based stream ciphers must be correlation immune
 - Depends on properties of function f
Coming Attractions

- Consider attacks on 3 stream ciphers
 - **ORYX** — weak cipher, uses shift registers, generates 1 byte/step
 - **RC4** — strong, widely used but used poorly in WEP, generates 1 byte/step
 - **PKZIP** — medium strength, unusual design, generates 1 byte/step