Classic Crypto

Overview

- We briefly consider the following classic (pen and paper) ciphers
- Transposition ciphers
- Substitution ciphers
- One-time pad
- Codebook
- These were all chosen for a reason
- We see same principles in modern ciphers

Transposition Ciphers

- In transposition ciphers, we transpose (scramble) the plaintext letters
- The scrambled text is the ciphertext
- The transposition is the key
- Corresponds to Shannon's principle of diffusion (more about this later)
- This idea is widely used in modern ciphers

Scytale

- Spartans, circa 500 BC
\square Wind strip of leather around a rod
- Write message across the rod

T	H	E	T	I	M	E	A	
S	C	D	M	E	T	H	E	W
A	L	R	U	S	S	A	I	D
T	0	T	A	L	K	0	F	M
A	N	Y	T	H	I	N	G	S

- When unwrapped, letters are scrambled TSATAHCLONEORTYTMUATIESLHMTS...

Scytale

- Suppose Alice and Bob use Scytale to encrypt a message
- What is the key?
- How hard is it for Trudy to break without key?
- Suppose many different rod diameters are available to Alice and Bob...
- How hard is it for Trudy to break a message?
- Can Trudy attack messages automatically-without manually examining each putative decrypt?

Columnar Transposition

- Put plaintext into rows of matrix then read ciphertext out of columns
- For example, suppose matrix is 3×4
o Plaintext: SEETHELIGHT

$$
\left[\begin{array}{llll}
\mathrm{S} & \mathrm{E} & \mathrm{E} & \mathrm{~T} \\
\mathrm{H} & \mathrm{E} & \mathrm{~L} & \mathrm{I} \\
\mathrm{G} & \mathrm{H} & \mathrm{~T} & \mathrm{X}
\end{array}\right]
$$

- Ciphertext: SHGEEHELTTIX
- Same effect as Scytale
- What is the key?

Classic Crypto

Keyword Columnar Transposition

- For example
- Plaintext: CRYPTOISFUN
- Matrix 3×4 and keyword MATH

$$
\left.\begin{array}{cccc}
\mathrm{M} & \mathrm{~A} & \mathrm{~T} & \mathrm{H} \\
{[\mathrm{C}} & \mathrm{R} & \mathrm{Y} & \mathrm{P} \\
\mathrm{~T} & \mathrm{O} & \mathrm{I} & \mathrm{~S} \\
\mathrm{~F} & \mathrm{U} & \mathrm{~N} & \mathrm{X}
\end{array}\right]
$$

- Ciphertext: ROUPSXCTFYIN
- What is the key?
\square How many keys are there?

Keyword Columnar Transposition

- How can Trudy cryptanalyze this cipher?
- Consider the ciphertext

VOESA IVENE MRTNL EANGE WTNIM HTMLL ADLTR NISHO DWOEH

- Matrix is $n \times m$ for some n and m
- Since 45 letters, $n \cdot m=45$
- How many cases to try?
- How will Trudy know when she is correct?

Keyword Columnar Transposition

\square The ciphertext is
VOESA IVENE MRTNL EANGE WTNIM HTMLL ADLTR NISHO DWOEH

- If encryption matrix was 9×5, then...

0	1	2	3	4
V	E	G	M	I
O	M	E	E	S
E	R	W	E	H
S	T	T	A	O
A	N	N	D	D
I	L	I	L	W
V	E	M	T	O
E	A	H	R	E
N	N	T	N	H

	2	4	0	1	3
	G	I	V	E	M
	E	S	0	M	E
	W	H	E	R	E
\geqslant	T	0	S	T	A
	N	D	A	N	D
	I	W	I	L	L
	M	0	V	E	T
	H	E	E	A	R
	T	H	N	N	N

Classic Crypto

Cryptanalysis: Lesson I

- Exhaustive key search
- Always an option for Trudy
- If keyspace is too large, such an attack will not succeed in a reasonable time
- Or it will have a low probability of success
\square A large keyspace is necessary for security
- But, large keyspace is not sufficient...

Double Transposition

םPlaintext: ATTACK AT DAWN

columns	0	1	2						
row 0	A	T	T						
row 1	A	C	K						
row 2	X	A	T						
and columns				$\boldsymbol{\longrightarrow}$	columns	0	2	1	
:---:	:---:	:---:	:---:	:---:					
row 3	X	D	A						
row 4	W	X	T	A					
row 4	W	X	N						
row 0	A	T	T						
row 3	X	A	D						
row 1	A	K	C						

-Ciphertext: XTAWXNATTXADAKC
\square Key?
o 5×3 matrix, perms ($2,4,0,3,1$) and ($0,2,1$)
Classic Crypto

Double Transposition

- How can Trudy attack double transposition?
\square Spse Trudy sees 45-letter ciphertext
\square Then how many keys?
- Size of matrix: $3 \times 15,15 \times 3,5 \times 9$, or 9×5
- A lot of possible permutations!

$$
5!\cdot 9!>2^{25} \text { and } 3!\cdot 15!>2^{42}
$$

- Size of keyspace is greater than 2^{43}
- Is there a shortcut attack?

Double Transposition

- Shortcut attack on double transposition?
- Suppose ciphertext is

ILILWEAHREOMEESANNDDVEGMIERWEHVEMTOSTTAONNTNH

- Suppose Trudy guesses matrix is 9×5
- Then Trudy has:
- Now what?
- Try all perms?
$5!\cdot 9!>2^{25}$
- Is there a better way?

column	O	1	2	3	4
row 0	I	L	I	L	W
row 1	E	A	H	R	E
row 2	0	M	E	E	S
row 3	A	N	N	D	D
row 4	V	E	G	M	I
row 5	E	R	W	E	H
row 6	V	E	M	T	0
row 7	S	T	T	A	O
row 8	N	N	T	N	H

Double Transposition

- Shortcut attack on double transposition?
- Trudy tries "columns first" strategy

column	0	1	2	3	4
row 0	I	L	I	L	W
row 1	E	A	H	R	E
row 2	0	M	E	E	S
row 3	A	N	N	D	D
row 4	V	E	G	M	I
row 5	E	R	W	E	H
row 6	V	E	M	T	0
row 7	S	T	T	A	0
row 8	N	N	T	N	H

Permute columns	column	2	4	0	1	3
	row 0	I	W	I	L	L
	row 1	H	E	E	A	R
	row 2	E	S	0	M	E
	row 3	N	D	A	N	D
	row 4	G	I	V	E	M
	row 5	W	H	E	R	E
	row 6	M	0	V	E	T
	row 7	T	0	S	T	A
	row 8	T	H	N	N	N

- Now what?

Classic Crypto

Cryptanalysis: Lesson II

- Divide and conquer
- Trudy attacks part of the keyspace
- A great shortcut attack strategy
- Requires careful analysis of algorithm
- We will see this again and again in the attacks discussed later
- Of course, cryptographers try to prevent divide and conquer attacks

Substitution Ciphers

- In substitution ciphers, we replace the plaintext letters with other letters
- The resulting text is the ciphertext
- The substitution rule is the key
- Corresponds to Shannon's principle of confusion (more on this later)
- This idea is used in modern ciphers

Ceasar's Cipher

- Plaintext:

FOURSCOREANDSEVENYEARSAGO

- Key:

\square Ciphertext:
IRXUVFRUHDAGVHYHABHDUVDIR
- More succinctly, key is "shift by 3"

Ceasar's Cipher

-Trudy loves the Ceasar's cipher...
\square Suppose ciphertext is VSRQJHEREVTXDUHSDQWU

\square Then plaintext is
 SPONGEBOBSQUAREPANTS

Simple Substitution

\square Caesar's cipher is trivial if we adhere to Kerckhoffs' Principle

- We want a substitution cipher with lots of keys
\square What to do?
\square Generalization of Caesar's cipher...

Simple Substitution

\square Key is some permutation of letters

- Need not be a shift
\square For example

intext	ab	c d	e	f	h		jk	k 1		n o	p	9						\times		
	I	c A	X	S	y		DK	W		T	Z							G		

- Then 26 ! > 2^{88} possible keys
- That's lots of keys!

Cryptanalysis of Simple Substitution

- Trudy know a simple substitution is used
\square Can she find the key given ciphertext:
PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVW LXTOXBTFXQWAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQ WAKVWLXQWAEBIPBFXFQVXGTVJVWLBTPQWAEBFPBFH CVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFHXZHVFAGF OTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFQP BQWAQJJTODXQHFOQPWTBDHHIXQVAPBFZQHCFWPFFHP BFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHFQAPBFEQ JHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWFL QHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAI TIXPFHXAFQHEFZQWGFLVWPTOFFA

Cryptanalysis of Simple Substitution

- Trudy cannot try all 2^{88} possible keys
- Can she be more clever?
- Statistics!
- English letter frequency counts:

Cryptanalysis of Simple Substitution

- Ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWI PBVWLXTOXBTF XQWAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBI PBF XFQVXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGDPEQVPQGVP PBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFT DPTOGHFQPBQWAQJ JTODXQHFOQPWTBDHHIXQVAPBFZQHCFWPFH PBFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHFQAPBFEQJHDXXQV AVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWFLQHGFXVAFXQHFUFH ILTTAVWAFFAWTEVOITDHFHFQAITIXPFHXAFQHEFZQWGFLVWPT OFFA

- Ciphertext frequency counts:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
21	26	6	10	12	51	10	25	10	9	3	10	0	1	15	28	42	0	0	27	4	24	22	28	6	8

Classic Crypto

Cryptanalysis: Lesson III

\square Statistical analysis

- Statistics might reveal info about key
\square Ciphertext should appear random
- But randomness is not easy
- Difficult to define random (entropy)
\square Cryptographers work hard to prevent statistical attacks

Poly-Alphabetic Substitution

- Like a simple substitution, but permutation ("alphabet") changes
- Often, a new alphabet for each letter
\square Very common in classic ciphers
- Vigenere cipher is an example
- Discuss Vigenere later in this section
- Used in WWII-era cipher machines

Affine Cipher

\square Number the letters 0 thru 25
$o A$ is $0, B$ is $1, C$ is 2 , etc.
\square Then affine cipher encryption is defined by $c_{i}=a p_{i}+b(\bmod 26)$

- Where p_{i} is the $i^{\text {th }}$ plaintext letter
- And a and b are constants
- Require that $\operatorname{gcd}(a, 26)=1$ (why?)

Affine Cipher

- Encryption: $c_{i}=a p_{i}+b(\bmod 26)$
\square Decryption: $p_{i}=a^{-1}\left(c_{i}-b\right)(\bmod 26)$
- Keyspace size?
- Keyspace size is $26 \cdot \varphi(26)=312$
- Too small to be practical

Vigenere Cipher

\square Key is of the form $K=\left(k_{0}, k_{1}, \ldots, k_{n-1}\right)$

- Where each $k_{i} \in\{0,1,2, \ldots, 25\}$
- Encryption

$$
c_{i}=p_{i}+k_{i(\bmod n)}(\bmod 26)
$$

- Decryption

$$
\mathrm{p}_{\mathrm{i}}=\mathrm{c}_{\mathrm{i}}-\mathrm{k}_{\mathrm{i}(\bmod \mathrm{n})}(\bmod 26)
$$

- Nothing tricky here!
\square Just a repeating sequence of (shift by n) simple substitutions

Vigenere Cipher

\square For example, suppose key is MATH

- That is, $K=(12,0,19,7)$, since M is letter 12 , and so on
- Plaintext: SECRETMESSAGE
- Ciphertext: EEVYQTFLESTNQ
- Encrypt:

S	E	C	R	E	T	M	E	S	S	A	G	E
18	4	2	17	4	19	12	4	18	18	0	6	4
+12	0	19	7	12	0	19	7	12	0	19	7	12
4	4	21	24	16	19	5	11	4	18	19	13	16
E	E	V	Y	Q	T	F	L	E	S $)$	T	N	Q

Classic Crypto

Vigenere Cipher

\square Vigenere is just a series of k simple substitution ciphers
\square Should be able to do k simple substitution attacks

- Provided enough ciphertext
- But how to determine k (key length)?
- Index of coincidence...

Index of Coincidence

- Assume ciphertext is English letters
- Let n_{0} be number of As, n_{1} number of Bs, ..., n_{25} number of Zs in ciphertext
Let $\mathrm{n}=\mathrm{n}_{0}+\mathrm{n}_{1}+\ldots+\mathrm{n}_{25}$
\square Define index of coincidence

$$
I=\frac{\binom{n_{0}}{2}+\binom{n_{1}}{2}+\cdots+\binom{n_{25} 5}{2}}{\binom{n}{2}}=\frac{1}{n(n-1)} \sum_{i=0}^{25} n_{i}\left(n_{i}-1\right)
$$

\square What does this measure?

Index of Coincidence

- Gives the probability that 2 randomly selected letters are the same
\square For plain English, prob. 2 letter are same:
- $\mathrm{p}_{0}{ }^{2}+\mathrm{p}_{1}^{2}+\ldots+\mathrm{p}_{25}^{2} \approx 0.065$, where p_{i} is probability of $i^{\text {th }}$ letter
- Then for simple substitution, $I \approx 0.065$
\square For random letters, each $p_{i}=1 / 26$
- Then $p_{0}{ }^{2}+p_{1}{ }^{2}+\ldots+p_{25}^{2} \approx 0.03846$
- Then $I \approx 0.03846$ for poly-alphabetic substitution with a very long keyword

Index of Coincidence

- How to use this to estimate length of keyword in Vigenere cipher?
- Suppose keyword is length k, message is length n
- Ciphertext in matrix with k columns, n / k rows
- Select 2 letters from same columns
- Like selecting from simple substitution
- Select 2 letters from different columns
- Like selecting random letters

Index of Coincidence

- Suppose k columns and n / k rows
- Approximate number of matching pairs from same column, but 2 different rows:

$$
0.065\binom{\frac{n}{k}}{2} k=0.065 \frac{1}{2}\left(\frac{n}{k}\right)\left(\frac{n}{k}-1\right) k=0.065\left(\frac{n(n-k)}{2 k}\right)
$$

- Approximate number of matching pairs from 2 different columns, and any two rows:

$$
0.03846\binom{k}{2}\left(\frac{n}{k}\right)^{2}=0.03846 \frac{n^{2}(k-1)}{2 k}
$$

Index of Coincidence

- Approximate index of coincidence by:

$$
\begin{aligned}
I & \approx \frac{0.03846 \frac{n^{2}(k-1)}{2 k}+0.065\left(\frac{n(n-k)}{2 k}\right)}{\binom{n}{2}} \\
& =\frac{0.03846 n(k-1)+(0.065)(n-k)}{k(n-1)}
\end{aligned}
$$

- Solve for k to find:

$$
k \approx \frac{0.02654 n}{(0.065-I)+n(I-0.03846)}
$$

\square Use n and I (known from ciphertext) to approximate length of Vigenere keyword

Index of Coincidence: Bottom Line

\square A crypto breakthrough when invented - By William F. Friedman in 1920s
\square Useful against classical and WWIIera ciphers
\square Incidence of coincidence is a wellknown statistical test

- Many other statistical tests exists

Hill Cipher

- Hill cipher is not related to small mountains
- Invented by Lester Hill in 1929
- A pre-modern block cipher
- Idea is to create a substitution cipher with a large "alphabet"
- All else being equal (which it never is) cipher should be stronger than simple substitution

Hill Cipher

\square Plaintext, $p_{0}, p_{1}, p_{2}, \ldots$

- Each p_{i} is block of n consecutive letters
- As a column vector
- Let A be nx n invertible matrix, mod 26
- Then ciphertext block c_{i} is given by
o $c_{i}=A p_{i}(\bmod 26)$
- Decryption: $p_{i}=A^{-1} c_{i}(\bmod 26)$
- The matrix A is the key

Hill Cipher Example

- Let $\mathrm{n}=2$ and $A=\left[\begin{array}{cc}22 & 13 \\ 11 & 5\end{array}\right]$
- Plaintex \dagger

MEETMEHERE $=(12,4,4,19,12,4,7,4,17,4)$

- Then

$$
p_{0}=\left[\begin{array}{c}
12 \\
4
\end{array}\right], p_{1}=\left[\begin{array}{c}
4 \\
19
\end{array}\right], p_{2}=\left[\begin{array}{c}
12 \\
4
\end{array}\right], p_{3}=\left[\begin{array}{l}
7 \\
4
\end{array}\right], p_{4}=\left[\begin{array}{c}
17 \\
4
\end{array}\right]
$$

\square And

$$
c_{0}=\left[\begin{array}{c}
4 \\
22
\end{array}\right], c_{1}=\left[\begin{array}{c}
23 \\
9
\end{array}\right], c_{2}=\left[\begin{array}{c}
4 \\
22
\end{array}\right], c_{3}=\left[\begin{array}{c}
24 \\
19
\end{array}\right], c_{4}=\left[\begin{array}{c}
10 \\
25
\end{array}\right]
$$

- Ciphertext:
$(4,22,23,9,4,22,24,19,10,25)=$ EWXJEWYTKZ
Classic Crypto

Hill Cipher Cryptanalysis

- Trudy suspects Alice and Bob are using Hill cipher, with $n \times n$ matrix A
- SupposeTrudy knows n plaintext blocks
- Plaintext blocks $\mathrm{p}_{0}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}-1}$
- Ciphertext blocks $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}-1}$
- Let P be matrix with columns $p_{0}, p_{1}, \ldots, p_{n-1}$
\square Let C be matrix with columns $\mathrm{c}_{0}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}-1}$
- Then $A P=C$ and $A=C P^{-1}$ if P^{-1} exists

Cryptanalysis: Lesson IV

- Linear ciphers are weak
- Since linear equations are easy to solve
\square Strong cipher must have nonlinearity
- Linear components are useful
- But cipher cannot be entirely linear
- Cryptanalyst try to approximate nonlinear parts with linear equations

One-time Pad

- A provably secure cipher
\square No other cipher we discuss is provably secure
\square Why not use one-time pad for everything?
- Impractical for most applications
- But it does have its uses

One-time Pad Encryption

$$
\mathrm{e}=000 \quad \mathrm{~h}=001 \quad \mathrm{i}=010 \quad \mathrm{k}=011 \quad \mathrm{l}=100 \quad \mathrm{r}=101 \quad \mathrm{~s}=110 \quad \mathrm{t}=111
$$

Encryption: Plaintext \oplus Key = Ciphertext
h e j l h i t l e r

Plaintext: 001000010100001010111100000101 Key: 11111011101011111001000101110000
Ciphertext: $110101100 \begin{array}{llllllll}1001 & 110 & 110 & 111 & 001 & 110 & 101\end{array}$
s r l h s s t h s r

One-time Pad Decryption

$$
\mathrm{e}=000 \quad \mathrm{~h}=001 \quad \mathrm{i}=010 \quad \mathrm{k}=011 \quad \mathrm{l}=100 \quad \mathrm{r}=101 \quad \mathrm{~s}=110 \quad \mathrm{t}=111
$$

Decryption: Ciphertext \oplus Key = Plaintex \dagger
$s \quad r \quad l \quad h \quad s \quad s \quad t \quad h \quad s \quad r$
Ciphertext: 11010110010011101101011001110101 Key: $1111 \begin{array}{llllllllllll}101 & 110 & 101 & 111 & 100 & 000 & 101 & 110 & 000\end{array}$
Plaintext: 001000010100001010111100000101 h e i l h i t l e r

One-time Pad

Double agent claims sender used "key":

$s \quad r \quad l \quad h \quad s \quad s \quad h \quad s \quad r$
Ciphertext: $110101100 \quad 001110110111001110101$ "key": 101111000101111100000101110000
"Plaintext": 011010100100001010111100000101
k i l l h i t l e r
$e=000 \quad h=001 \quad i=010 \quad k=011 \quad l=100 \quad r=101 \quad s=110 \quad t=111$

One-time Pad

Sender is captured and claims the key is:

Ciphertext: 110101100001110110111001110101 "Key": 111101000011101110001011101101
"Plaintext": 001000100010011000110010011000
h e l i k e s i k e
$e=000 \quad h=001 \quad i=010 \quad k=011 \quad l=100 \quad r=101 \quad s=110 \quad t=111$

One-time Pad Summary

\square Provably secure, when used correctly

- Ciphertext provides no info about plaintext
- All plaintexts are equally likely
- Pad must be random, used only once
- Pad is known only by sender and receiver
- Pad is same size as message
- No assurance of message integrity
- Why not distribute message the same way as the pad?

Real-world One-time Pad

\square Project VENONA

- Soviet spy messages from U.S. in 1940's
- Nuclear espionage, etc.
- Thousands of messaged
\square Spy carried one-time pad into U.S.
\square Spy used pad to encrypt secret messages
- Repeats within the "one-time" pads made cryptanalysis possible

VENONA Decrypt (1944)

[C\% Ruth] learned that her husband [v] was called up by the army but he was not sent to the front. He is a mechanical engineer and is now working at the ENORMOUS [ENORMOZ] [vi] plant in SANTA FE, New Mexico. [45 groups unrecoverable]
detain VOLOK [vii] who is working in a plant on ENORMOUS. He is a FELLOWCOUNTRYMAN [ZEMLYaK] [viii]. Yesterday he learned that they had dismissed him from his work. His active work in progressive organizations in the past was cause of his dismissal. In the FELLOWCOUNTRYMAN line LIBERAL is in touch with CHESTER [ix]. They meet once a month for the payment of dues. CHESTER is interested in whether we are satisfied with the collaboration and whether there are not any misunderstandings. He does not inquire about specific items of work [KONKRETNAYa RABOTA]. In as much as CHESTER knows about the role of LIBERAL's group we beg consent to ask C. through LIBERAL about leads from among people who are working on ENOURMOUS and in other technical fields.

- "Ruth" == Ruth Greenglass - "Liberal" == Julius Rosenberg "Enormous" == the atomic bomb

Codebook Cipher

-Literally, a book filled with "codes"

- More precisely, 2 codebooks, 1 for encryption and 1 for decryption
\square Key is the codebook itself
\square Security of cipher requires physical security for codebook
- Codebooks widely used thru WWII

Codebook Cipher

- Literally, a book filled with "codewords"
- Zimmerman Telegram encrypted via codebook Februar 13605
fest 13732
finanzielle 13850
folgender 13918
Frieden 17142
Friedenschluss 17149
- Modern block ciphers are codebooks!
- More on this later...

Zimmerman Telegram
 - One of most famous codebook ciphers ever
 - Led to US entry in WWI
 - Ciphertext shown here...

Zimmerman

Telegram

 Decrypted- British had recovered partial codebook
- Able to fill in missing parts

Codebook Cipher

- Codebooks are susceptible to statistical analysis
- Like simple substitution cipher, but lots of data required to attack a codebook
- Historically, codebooks very popular
\square To extend useful life of a codebook, an additive was usually used

Codebook Additive

- Codebook additive is another book filled with "random" number
\square Sequence of additive numbers added to codeword to yield ciphertext
plaintext $\xrightarrow{\begin{array}{c}\text { lookup in } \\ \text { codebook }\end{array}}$ codeword $\xrightarrow{\begin{array}{l}\text { add the } \\ \text { additive }\end{array}}$ ciphertext

Codebook Additive

\square Usually, starting position in additive book selected at random by sender

- Starting additive position usually sent "in the clear" with the ciphertext
- Part of the message indicator (MI)
- Modern term: initialization vector (IV)
\square Why does this extend the useful life of a codebook?

Cryptanalysis: Summary

\square Exhaustive key search
\square Divide and conquer

- Statistical analysis
\square Exploit linearity
\square Or any combination thereof (or anything else you can think of)
- All's fair in love and war... o ...and cryptanalysis!

