MD4

MD4

- Message Digest 4
- Invented by Rivest, ca 1990
- Weaknesses found by 1992
- Rivest proposed improved version (MD5), 1992
- Dobbertin found 1st MD4 collision in 1998
- Clever and efficient attack
- Nonlinear equation solving and differential

MD4 Algorithm

- Assumes 32-bit words
- Little-endian convention
- Leftmost byte is low-order (relevant when generating "meaningful" collisions)
- Let M be message to hash
\square Pad M so length is $448(\bmod 512)$
- Single "1" bit followed by "0" bits
- At least one bit of padding, at most 512
- Length before padding (64 bits) is appended

MD4 Algorithm

\square After padding message is a multiple of the 512-bit block size

- Also a multiple of 32 bit word size
- Let N be number of 32 -bit words
- Then N is a multiple of 16
\square Message $\mathrm{M}=\left(\mathrm{Y}_{0}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{N}-1}\right)$
- Each Y_{i} is a 32-bit word

MD4 Algorithm

- For 32-bit words A, B, C, define
$F(A, B, C)=(A \wedge B) \vee(\neg A \wedge C)$
$G(A, B, C)=(A \wedge B) \vee(A \wedge C) \vee(B \wedge C)$
$H(A, B, C)=A \oplus B \oplus C$
where $\wedge, ~ \vee, \neg, \oplus$ are AND, OR, NOT, XOR
- Define constants: $\mathrm{K}_{0}=0 \times 00000000$, $\mathrm{K}_{1}=0 \times 5 \mathrm{a} 827999, \mathrm{~K}_{2}=0 \times 6 \mathrm{ed} 9 \mathrm{eba} 1$
- Let $W_{i}, i=0,1, \ldots 47$ be (permuted) inputs, Y_{j}

MD4 Algorithm

```
// \(M=\left(Y_{0}, Y_{1}, \ldots, Y_{N-1}\right)\), message to hash, after padding
// Each \(Y_{i}\) is a 32 -bit word and \(N\) is a multiple of 16
MD4( \(M\) )
        // initialize \((A, B, C, D)=\mathrm{IV}\)
        \((A, B, C, D)=(0 \times 67452301,0 x e f c d a b 89,0 \times 98\) badcfe, \(0 \times 10325476)\)
        for \(i=0\) to \(N / 16-1\)
        // Copy block \(i\) into \(X\)
        \(X_{j}=Y_{16 i+j}\), for \(j=0\) to 15
        // Copy \(X\) to \(W\)
        \(W_{j}=X_{\sigma(j)}\), for \(j=0\) to 47
        // initialize \(Q\)
        \(\left(Q_{-4}, Q_{-3}, Q_{-2}, Q_{-1}\right)=(A, D, C, B)\)
        // Rounds 0,1 and 2
        Round0 \((Q, X)\)
        Round1 \((Q, X)\)
        Round2( \(Q, X)\)
        \(/ /\) Each addition is modulo \(2^{32}\)
        \((A, B, C, D)=\left(Q_{44}+Q_{-4}, Q_{47}+Q_{-1}, Q_{46}+Q_{-2}, Q_{45}+Q_{-3}\right)\)
        next \(i\)
    return \(A, B, C, D\)
end MD4
```


MD4 Algorithm

```
Round0(Q,W)
    // steps 0 through 15
    for i=0 to 15
        Q}=(\mp@subsup{Q}{i-4}{}+F(\mp@subsup{Q}{i-1}{},\mp@subsup{Q}{i-2}{},\mp@subsup{Q}{i-3}{})+\mp@subsup{W}{i}{}+\mp@subsup{K}{0}{})<<<\mp@subsup{s}{i}{
    next i
end Round0
```

\square Round 0 : Steps 0 thru 15, uses F function \square Round 1: Steps 16 thru 31, uses G function

- Round 2: Steps 32 thru 47, uses H function

MD4: One Step

\square Where $f_{i}(A, B, C)= \begin{cases}F(A, B, C)+K_{0} & \text { if } 0 \leq i \leq 15 \\ G(A, B, C)+K_{1} & \text { if } 16 \leq i \leq 31 \\ H(A, B, C)+K_{2} & \text { if } 32 \leq i \leq 47\end{cases}$

MD4

Notation

- Let MD4 $4_{i . . . j}(A, B, C, D, M)$ be steps i thru j
- "Initial value" (A,B,C,D) at step i, message M
\square Note that MD4 ${ }_{0 \ldots 47}(I V, M) \neq h(M)$
- Due to padding and final transformation
- Let $f(I V, M)=\left(Q_{44}, Q_{47}, Q_{46}, Q_{45}\right)+I V$
- Where " + " is addition $\bmod 2^{32}$, per 32-bit word
\square Then f is the MD4 compression function

MD4 Attack: Outline

- Dobbertin's attack strategy
- Specify a differential condition
- If condition holds, probability of collision
- Derive system of nonlinear equations: solution satisfies differential condition
- Find efficient method to solve equations
- Find enough solutions to yield a collision

MD4 Attack: Motivation

- Find one-block collision, where $\mathrm{M}=\left(\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{15}\right), \mathrm{M}^{\prime}=\left(\mathrm{X}^{\prime}{ }_{0}, \mathrm{X}^{\prime}{ }_{1}, \ldots, \mathrm{X}^{\prime}{ }_{15}\right)$
\square Difference is subtraction mod 2^{32}
- Blocks differ in only 1 word
- Difference in that word is exactly 1
- Limits avalanche effect to steps 12 thru 19
- Only 8 of the 48 steps are critical to attack!
- System of equations applies to these 8 steps

More Notation

\square Spse $\left(Q_{j}, Q_{j-1}, Q_{j-2}, Q_{j-3}\right)=M D 4_{0 \ldots j}(I V, M)$ and $\left(Q_{j}^{\prime}, Q_{j-1}^{\prime}, Q_{j-2}^{\prime}, Q_{j-3}^{\prime}\right)=M D 4_{0 \ldots j}\left(I V, M^{\prime}\right)$
\square Define
$\Delta_{j}=\left(Q_{j}-Q_{j}^{\prime}, Q_{j-1}-Q_{j-1}^{\prime}, Q_{j-2}-Q_{j-2}^{\prime}, Q_{j-3}-Q_{j-3}^{\prime}\right)$
where subtraction is modulo 2^{32}

- Let $\pm 2^{n}$ denote $\pm 2^{n} \bmod 2^{32}$, for example, $2^{25}=0 x 02000000$ and $-2^{5}=0 x f f f f f f e 0$

MD4 Attack

- All arithmetic is modulo 2^{32}
- Denote $\mathrm{M}=\left(\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{15}\right)$
- Define M^{\prime} by $X_{i}^{\prime}=X_{i}$ for $i \neq 12$ and

$$
\mathrm{X}_{12}^{\prime}=\mathrm{X}_{12}+1
$$

- Word X_{12} last appears in step 35
\square So, if $\Delta_{35}=(0,0,0,0)$ we have a collision
\square Goal is to find pair M and M^{\prime} with $\Delta_{35}=0$

MD4 Attack

- Analyze attack in three phases

1. Show: $\Delta_{19}=\left(2^{25},-2^{5}, 0,0\right)$ implies probability at least $1 / 2^{30}$ that the Δ_{35} condition holds

- Uses differential cryptanalysis

2. "Backup" to step 12: We can start at step

12 and have Δ_{19} condition hold

- By solving system of nonlinear equations

3. "Backup" to step 0: And find collision

MD4 Attack

\square In each phase of attack, some words of M are determined
\square When completed, have M and M^{\prime}

- Where $M \neq M^{\prime}$ but $h(M)=h\left(M^{\prime}\right)$
-Equation solving step is tricky part
- Nonlinear system of equations
- Must be able to solve efficiently

Steps 19 to 35

- Differential phase of the attack
\square Suppose M and M^{\prime} as given above
- Only differ in word 12
- Assume that $\Delta_{19}=\left(2^{25},-2^{5}, 0,0\right)$
- And $\mathrm{G}\left(\mathrm{Q}_{19}, \mathrm{Q}_{18}, \mathrm{Q}_{17}\right)=\mathrm{G}\left(\mathrm{Q}^{\prime}{ }_{19}, \mathrm{Q}^{\prime}{ }_{18}, \mathrm{Q}^{\prime}{ }_{17}\right)$
- Then we compute probabilities of " Δ " conditions at steps 19 thru 35

Steps 19 to 35

	Δ_{j}							
j	ΔQ_{j}	ΔQ_{j-1}	ΔQ_{j-2}	ΔQ_{j-3}	i	s_{j}	p	Input
19	2^{25}	-2^{5}	0	0	$*$	$*$	$*$	$*$
20	0	2^{25}	-2^{5}	0	1	3	1	X_{1}
21	0	0	2^{25}	-2^{5}	1	5	$1 / 9$	X_{5}
22	-2^{14}	0	0	2^{25}	1	9	$1 / 3$	X_{9}
23	2^{6}	-2^{14}	0	0	1	13	$1 / 3$	X_{13}
24	0	2^{6}	-2^{14}	0	1	3	$1 / 9$	X_{2}
25	0	0	2^{6}	-2^{14}	1	5	$1 / 9$	X_{6}
26	-2^{23}	0	0	2^{6}	1	9	$1 / 3$	X_{10}
27	2^{19}	-2^{23}	0	0	1	13	$1 / 3$	X_{14}
28	0	2^{19}	-2^{23}	0	1	3	$1 / 9$	X_{3}
29	0	0	2^{19}	-2^{23}	1	5	$1 / 9$	X_{7}
30	-1	0	0	2^{19}	1	9	$1 / 3$	X_{11}
31	1	-1	0	0	1	13	$1 / 3$	X_{15}
32	0	1	-1	0	2	3	$1 / 3$	X_{0}
33	0	0	1	-1	2	9	$1 / 3$	X_{8}
34	0	0	0	1	2	11	$1 / 3$	X_{4}
35	0	0	0	0	2	15	1	$X_{12}, X_{12}+1$

\square Differential and probabilities

Steps 19 thru 35

\square For example, consider Δ_{35}
\square Spse j $=34$ holds: Then $\Delta_{34}=(0,0,0,1)$ and

$$
\begin{aligned}
Q_{35} & =\left(Q_{31}+H\left(Q_{34}, Q_{33}, Q_{32}\right)+X_{12}+K_{2}\right) \lll 15 \\
& =\left(\left(Q_{31}^{\prime}+1\right)+H\left(Q_{34}^{\prime}, Q_{33}^{\prime}, Q_{32}^{\prime}\right)+X_{12}+K_{2}\right) \lll 15 \\
& =\left(Q_{31}^{\prime}+H\left(Q_{34}^{\prime}, Q_{33}^{\prime}, Q_{32}^{\prime}\right)+\left(X_{12}+1\right)+K_{2}\right) \lll 15 \\
& =Q_{35}^{\prime}
\end{aligned}
$$

\square Implies $\Delta_{35}=(0,0,0,0)$ with probability 1

- As summarized in $\mathrm{j}=35$ row of table

Steps 12 to 19

- Analyze steps 12 to 19, find conditions that ensure $\Delta_{19}=\left(2^{25},-2^{5}, 0,0\right)$
- And $\mathrm{G}\left(\mathrm{Q}_{19}, \mathrm{Q}_{18}, \mathrm{Q}_{17}\right)=\mathrm{G}\left(\mathrm{Q}^{\prime}{ }_{19}, \mathrm{Q}^{\prime}{ }_{18}, \mathrm{Q}^{\prime}{ }_{17}\right)$, as required in differential phase
\square Step 12 to 19-equation solving phase
- This is most complex part of attack
- Last phase, steps 0 to 11 , is easy

Steps 12 to 19

\square Info for steps 12 to 19 given here
\square If $i=0$, function F, if $i=1$, function G

j	i	s_{j}	M Input	M^{\prime} Input
12	0	3	X_{12}	$X_{12}+1$
13	0	7	X_{13}	X_{13}
14	0	11	X_{14}	X_{14}
15	0	19	X_{15}	X_{15}
16	1	3	X_{0}	X_{0}
17	1	5	X_{4}	X_{4}
18	1	9	X_{8}	X_{8}
19	1	13	X_{12}	$X_{12}+1$

Steps 12 to 19

- To apply differential phase, must have

$$
\begin{aligned}
& \Delta_{19}=\left(2^{25},-2^{5}, 0,0\right) \text { which states that } \\
& Q_{19}=\mathrm{Q}^{\prime}{ }_{19}+2^{25} \\
& \mathrm{Q}_{18}+2^{5}=\mathrm{Q}^{\prime}{ }_{18} \\
& \mathrm{Q}_{17}=\mathrm{Q}^{\prime}{ }_{17} \\
& \mathrm{Q}_{16}=\mathrm{Q}^{\prime}{ }_{16}
\end{aligned}
$$

\square Derive equations for steps 12 to 19...

Step 12

- At step 12 we have
$Q_{12}=\left(Q_{8}+F\left(Q_{11}, Q_{10}, Q_{9}\right)+X_{12}\right) \lll 3$
$Q_{12}^{\prime}=\left(Q^{\prime}{ }_{8}+F\left(Q_{11}^{\prime}, Q_{10}^{\prime}, Q_{9}^{\prime}\right)+X_{12}^{\prime}\right) \lll 3$
\square Since $X_{12}^{\prime}=X_{12}+1$ and
$\left(Q_{8}, Q_{9}, Q_{10}, Q_{11}\right)=\left(Q^{\prime}{ }_{8}, Q_{9}^{\prime}, Q_{10}^{\prime}, Q_{11}^{\prime}\right)$
it follows that
$\left(\mathrm{Q}_{12}^{\prime} \lll 29\right)-\left(\mathrm{Q}_{12} \lll 29\right)=1$

Steps 12 to 19

- Similar analysis for remaining steps yields system of equations:

$$
\begin{aligned}
1= & \left(Q_{12}^{\prime} \lll 29\right)-\left(Q_{12} \lll 29\right) \\
F\left(Q_{12}^{\prime}, Q_{11}, Q_{10}\right)-F\left(Q_{12}, Q_{11}, Q_{10}\right)= & \left(Q_{13}^{\prime} \ll 25\right)-\left(Q_{13} \lll 25\right) \\
F\left(Q_{13}^{\prime}, Q_{12}^{\prime}, Q_{11}\right)-F\left(Q_{13}, Q_{12}, Q_{11}\right)= & \left(Q_{14}^{\prime} \ll 21\right)-\left(Q_{14} \ll 21\right) \\
F\left(Q_{14}^{\prime}, Q_{13}^{\prime}, Q_{12}^{\prime}\right)-F\left(Q_{14}, Q_{13}, Q_{12}\right)= & \left(Q_{15}^{\prime} \ll 13\right)-\left(Q_{15} \ll 13\right) \\
G\left(Q_{15}^{\prime}, Q_{14}^{\prime}, Q_{13}^{\prime}\right)-G\left(Q_{15}, Q_{14}, Q_{13}\right)= & Q_{12}-Q_{12}^{\prime} \\
G\left(Q_{16}, Q_{15}^{\prime}, Q_{14}^{\prime}\right)-G\left(Q_{16}, Q_{15}, Q_{14}\right)= & Q_{13}-Q_{13}^{\prime} \\
G\left(Q_{17}, Q_{16}, Q_{15}^{\prime}\right)-G\left(Q_{17}, Q_{16}, Q_{15}\right)= & Q_{14}-Q_{14}^{\prime}+\left(Q_{18}^{\prime} \lll 23\right) \\
& -\left(Q_{18} \ll 23\right) \\
G\left(Q_{18}^{\prime}, Q_{17}, Q_{16}\right)-G\left(Q_{18}, Q_{17}, Q_{16}\right)= & Q_{15}-Q_{15}^{\prime}+\left(Q_{19}^{\prime} \lll 19\right) \\
& -\left(Q_{19} \lll 19\right)-1
\end{aligned}
$$

Steps 12 to 19

- To solve this system must find
$\left(Q_{10}, Q_{11}, Q_{12}, Q_{13}, Q_{14}, Q_{15}, Q_{16}, Q_{17}, Q_{18}, Q_{19}, Q_{12}^{\prime}, Q_{13}^{\prime}, Q_{14}^{\prime}, Q_{15}^{\prime}\right)$ so that all equations hold
- Given such a solution, we determine X_{j} for $j=13,14,15,0,4,8,12$
so that we begin at step 12 and arrive at step 19 with Δ_{19} condition satisfied

Steps 12 to 19

- This phase reduces to solving (nonlinear) system of equations
- Can manipulate the equations so that
- Choose ($\mathrm{Q}_{14}, \mathrm{Q}_{15}, \mathrm{Q}_{16}, \mathrm{Q}_{17}, \mathrm{Q}_{18}, \mathrm{Q}_{19}$) arbitrary
- Which determines ($Q_{10}, Q_{13}, Q_{13}^{\prime}, Q_{14}^{\prime}, Q_{15}^{\prime}$)
- See textbook for details
\square Result is 3 equations must be satisfied (next slide)

Steps 12 to 19

- Three conditions must be satisfied:
$G\left(Q_{15}, Q_{14}, Q_{13}\right)-G\left(Q_{15}^{\prime}, Q_{14}^{\prime}, Q_{13}^{\prime}\right)=1$
$F\left(Q_{14}^{\prime}, Q_{13}^{\prime}, 0\right)-F\left(Q_{14}, Q_{13},-1\right)-\left(Q_{15}^{\prime} \lll 13\right)+\left(Q_{15} \lll 13\right)=0$.
$G\left(Q_{19}, Q_{18}, Q_{17}\right)=G\left(Q_{19}^{\prime}, Q_{18}^{\prime}, Q_{17}\right)$
\square First 2 are "check" equations
- Third is "admissible" condition
\square Naïve algorithm: choose six Q_{j}, yields five Q_{j}, Q_{j}^{\prime} until 3 equations satisfied
-How much work is this?

Continuous Approximation

-Each equation holds with prob $1 / 2^{32}$

- Appears that 2^{96} iterations required
- Since three 32-bit check equations
- Birthday attack on MD4 is only 2^{64} work!
\square Dobbertin has a clever solution
- A "continuous approximation"
- Small changes, converge to a solution

Continuous Approximation

\square Generate random Q_{i} values until first check equation is satisfied

- Random one-bit modifications to Q_{i}
- Save if 1st check equation still holds and 2nd check equation is "closer" to holding
- Else try different random modifications
\square Modifications converge to solution
- Then 2 check equations satisfied
- Repeat until admissible condition holds

Continuous Approximation

-For complete details, see textbook
\square Why does continuous approx work?

- Small change to arguments of F (or G) yield small change in function value
\square What is the work factor?
- Not easy to determine analytically
- Easy to determine empirically (homework)
- Efficient, and only once per collision

Steps 0 to 11

- At this point, we have $\left(Q_{8}, Q_{9}, Q_{10}, Q_{11}\right)$ and $\mathrm{MD4}_{12 \ldots 47}\left(\mathrm{Q}_{8}, \mathrm{Q}_{9}, \mathrm{Q}_{10}, \mathrm{Q}_{11}, \mathrm{X}\right)=\mathrm{MD4}_{12 \ldots 47}\left(\mathrm{Q}_{8}, \mathrm{Q}_{9}, \mathrm{Q}_{10}, \mathrm{Q}_{11}, \mathrm{X}^{\prime}\right)$
\square To finish, we must have $M D 4_{0 \ldots 11}(\mathrm{IV}, \mathrm{X})=\mathrm{MD}_{0 . \ldots 11}\left(\mathrm{IV}, \mathrm{X}^{\prime}\right)=\left(\mathrm{Q}_{8}, \mathrm{Q}_{9}, \mathrm{Q}_{10}, \mathrm{Q}_{11}\right)$
\square Recall, X_{12} is only difference between M, M^{\prime}
- Also, X_{12} first appears in step 12
- Have already found X_{j} for $j=0,4,8,12,13,14,15$
- Free to choose X_{j} for $j=1,2,3,5,6,7,9,10,11$ so that $M D 4_{0 \ldots .11}$ equation holds - very easy!

All Together Now

- Attack proceeds as follows...

1. Steps 12 to 19: Find $\left(Q_{8}, Q_{9}, Q_{10}, Q_{11}\right)$ and X_{j} for $j=0,4,8,12,13,14,15$
2. Steps 0 to 11: Find X_{j} for remaining j
3. Steps 19 to 35: Check $\Delta_{35}=(0,0,0,0)$

- If so, have found a collision!
- If not, goto 2 .

Meaningful Collision

\square MD4 collisions exist where M and M^{\prime} have meaning

- Attack is so efficient, possible to find meaningful collisions
-Let "*" represent a "random" byte
- Inserted for "security" purposes
-Can find collisions on next slide...

Meaningful Collision

-Different contracts, same hash value

CONTRACT

At the price of $\$ 276,495$ Alf Blowfish sells his house to Ann Bonidea ...

MD4 Conclusions

- MD4 weaknesses exposed early
- Never widely used
- But took long time to find a collision
- Dobbertin's attack
- Clever equation solving phase
- Also includes differential phase
- Next, MD5...

