

MD4

Message Digest 4

- Invented by Rivest, ca 1990
- Weaknesses found by 1992
 - Rivest proposed improved version (MD5), 1992
- Dobbertin found 1st MD4 collision in 1998
 - Clever and efficient attack
 - Nonlinear equation solving and differential

- Assumes 32-bit words
- Little-endian convention
 - Leftmost byte is low-order (relevant when generating "meaningful" collisions)
- Let M be message to hash
- Pad M so length is 448 (mod 512)
 - Single "1" bit followed by "0" bits
 - At least one bit of padding, at most 512
 - Length before padding (64 bits) is appended

After padding message is a multiple of the 512-bit block size

 Also a multiple of 32 bit word size

 Let N be number of 32-bit words

 Then N is a multiple of 16

 Message M = (Y₀, Y₁,...,Y_{N-1})

 Each Y_i is a 32-bit word

■ For 32-bit words A,B,C, define $F(A,B,C) = (A \land B) \lor (\neg A \land C)$ $G(A,B,C) = (A \land B) \lor (A \land C) \lor (B \land C)$ $H(A,B,C) = A \oplus B \oplus C$

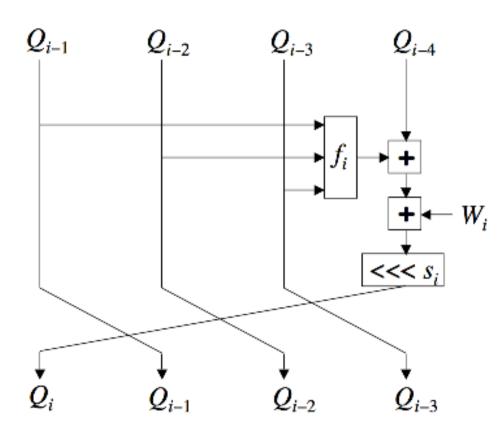
where \land , \lor , \neg , \oplus are AND, OR, NOT, XOR

 Define constants: K₀ = 0x00000000, K₁ = 0x5a827999, K₂ = 0x6ed9eba1
 Let W_i, i = 0,1,...47 be (permuted) inputs, Y_i

 $// M = (Y_0, Y_1, \ldots, Y_{N-1})$, message to hash, after padding // Each Y_i is a 32-bit word and N is a multiple of 16 MD4(M)// initialize (A, B, C, D) = IV(A, B, C, D) = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476)for i = 0 to N/16 - 1// Copy block i into X $X_{i} = Y_{16i+i}$, for j = 0 to 15 // Copy X to W $W_j = X_{\sigma(j)}$, for j = 0 to 47 // initialize Q $(Q_{-4}, Q_{-3}, Q_{-2}, Q_{-1}) = (A, D, C, B)$ // Rounds 0, 1 and 2 $\operatorname{Round}(Q, X)$ Round1(Q, X)Round2(Q, X)// Each addition is modulo 2^{32} $(A, B, C, D) = (Q_{44} + Q_{-4}, Q_{47} + Q_{-1}, Q_{46} + Q_{-2}, Q_{45} + Q_{-3})$ next ireturn A, B, C, Dend MD4

```
\begin{array}{l} \operatorname{Round0}(Q,W)\\ //\operatorname{steps} 0 \ \mathrm{through} \ 15\\ \text{for }i=0 \ \mathrm{to} \ 15\\ Q_i=(Q_{i-4}+F(Q_{i-1},Q_{i-2},Q_{i-3})+W_i+K_0) \lll s_i\\ \text{next }i\\ \text{end Round0} \end{array}
```

Round 0: Steps 0 thru 15, uses F function
 Round 1: Steps 16 thru 31, uses G function
 Round 2: Steps 32 thru 47, uses H function



MD4: One Step

 $\square \text{ Where } f_i(A, B, C) = \begin{cases} F(A, B, C) + K_0 & \text{if } 0 \le i \le 15 \\ G(A, B, C) + K_1 & \text{if } 16 \le i \le 31 \\ H(A, B, C) + K_2 & \text{if } 32 \le i \le 47 \end{cases}$

MD4

Notation

Let MD4_{i...j}(A,B,C,D,M) be steps i thru j

"Initial value" (A,B,C,D) at step i, message M

Note that MD4_{0...47}(IV,M) ≠ h(M)

Due to padding and final transformation

Let f(IV,M) = (Q₄₄,Q₄₇,Q₄₆,Q₄₅) + IV

Where "+" is addition mod 2³², per 32-bit word

Then f is the MD4 compression function

MD4 Attack: Outline

Dobbertin's attack strategy

- Specify a differential condition
- If condition holds, probability of collision
- Derive system of nonlinear equations: solution satisfies differential condition
- Find efficient method to solve equations
- Find enough solutions to yield a collision

MD4 Attack: Motivation

- □ Find one-block collision, where $M = (X_0, X_1, ..., X_{15}), M' = (X'_0, X'_1, ..., X'_{15})$
- Difference is subtraction mod 2³²
- Blocks differ in only 1 word
 - Difference in that word is exactly 1
- Limits avalanche effect to steps 12 thru 19
 - Only 8 of the 48 steps are critical to attack!
 - System of equations applies to these 8 steps

More Notation

- □ Spse (Q_j,Q_{j-1},Q_{j-2},Q_{j-3}) = MD4_{0...j}(IV,M) and (Q'_j,Q'_{j-1},Q'_{j-2},Q'_{j-3}) = MD4_{0...j}(IV,M')
 □ Define
- $\Delta_{j} = (Q_{j} Q'_{j}, Q_{j-1} Q'_{j-1}, Q_{j-2} Q'_{j-2}, Q_{j-3} Q'_{j-3})$ where subtraction is modulo 2³² $\Box \text{ Let } \pm 2^{n} \text{ denote } \pm 2^{n} \text{ mod } 2^{32}, \text{ for example,}$
 - $2^{25} = 0x02000000$ and $-2^5 = 0xfffffe0$

MD4 Attack

- □ All arithmetic is modulo 2³²
- □ Denote $M = (X_0, X_1, ..., X_{15})$
- □ Define M' by $X'_i = X_i$ for i ≠12 and

$$X'_{12} = X_{12} + 1$$

- □ Word X₁₂ last appears in step 35
- □ So, if $\Delta_{35} = (0,0,0,0)$ we have a collision
- **Goal is to find pair M and M' with** $\Delta_{35} = 0$

MD4 Attack

- Analyze attack in three phases
- 1. Show: $\Delta_{19} = (2^{25}, -2^5, 0, 0)$ implies probability at least $1/2^{30}$ that the Δ_{35} condition holds

• Uses differential cryptanalysis

- 2. "Backup" to step 12: We can start at step 12 and have Δ_{19} condition hold
 - By solving system of nonlinear equations
- 3. "Backup" to step 0: And find collision

MD4 Attack

- In each phase of attack, some words of M are determined
- When completed, have M and M'

• Where $M \neq M'$ but h(M) = h(M')

- Equation solving step is tricky part
 Nonlinear system of equations
 - Must be able to solve efficiently

Differential phase of the attack Suppose M and M' as given above • Only differ in word 12 • Assume that $\Delta_{19} = (2^{25}, -2^5, 0, 0)$ • And $G(Q_{19}, Q_{18}, Q_{17}) = G(Q'_{19}, Q'_{18}, Q'_{17})$ \Box Then we compute probabilities of " Δ " conditions at steps 19 thru 35

			A					
	Δ_j							_
$_j$	ΔQ_j	ΔQ_{j-1}	ΔQ_{j-2}	ΔQ_{j-3}	i	s_{j}	p	Input
19	2^{25}	-2^{5}	0	0	*	*	*	*
20	0	2^{25}	-2^5	0	1	3	1	X_1
21	0	0	2^{25}	-2^5	1	5	1/9	X_5
22	-2^{14}	0	0	2^{25}	1	9	1/3	X_9
23	2^{6}	-2^{14}	0	0	1	13	1/3	X_{13}
24	0	2^6	-2^{14}	0	1	3	1/9	X_2
25	0	0	2^6	-2^{14}	1	5	1/9	X_6
26	-2^{23}	0	0	2^6	1	9	1/3	X_{10}
27	2^{19}	-2^{23}	0	0	1	13	1/3	X_{14}
28	0	2^{19}	-2^{23}	0	1	3	1/9	X_3
29	0	0	2^{19}	-2^{23}	1	5	1/9	X_7
30	-1	0	0	2^{19}	1	9	1/3	X_{11}
31	1	-1	0	0	1	13	1/3	X_{15}
32	0	1	$^{-1}$	0	2	3	1/3	X_0
33	0	0	1	-1	2	9	1/3	X_8
34	0	0	0	1	2	11	1/3	X_4
35	0	0	0	0	2	15	1	$X_{12}, X_{12} + 1$

Differential and probabilities

Steps 19 thru 35

□ For example, consider Δ_{35} □ Spse j = 34 holds: Then $\Delta_{34} = (0,0,0,1)$ and $Q_{35} = (Q_{31} + H(Q_{34},Q_{33},Q_{32}) + X_{12} + K_2) \iff 15$ $= ((Q'_{31} + 1) + H(Q'_{34},Q'_{33},Q'_{32}) + X_{12} + K_2) \iff 15$ $= (Q'_{31} + H(Q'_{34},Q'_{33},Q'_{32}) + (X_{12} + 1) + K_2) \iff 15$ $= Q'_{35}$

Implies ∆₃₅ = (0,0,0,0) with probability 1
 o As summarized in j = 35 row of table

□ Analyze steps 12 to 19, find conditions that ensure $\Delta_{19} = (2^{25}, -2^5, 0, 0)$

- o And $G(Q_{19},Q_{18},Q_{17}) = G(Q'_{19},Q'_{18},Q'_{17})$, as required in differential phase
- Step 12 to 19—equation solving phase
- This is most complex part of attack

o Last phase, steps 0 to 11, is easy

Info for steps 12 to 19 given here If i = 0, function F, if i = 1, function G

j	i	s_{j}	M Input	M' Input
12	0	3	X_{12}	$X_{12} + 1$
13	0	7	X_{13}	X_{13}
14	0	11	X_{14}	X_{14}
15	0	19	X_{15}	X_{15}
16	1	3	X_0	X_0
17	1	5	X_4	X_4
18	1	9	X_8	X_8
19	1	13	X_{12}	$X_{12} + 1$

• To apply differential phase, must have $\Delta_{19} = (2^{25}, -2^5, 0, 0) \text{ which states that}$ $Q_{19} = Q'_{19} + 2^{25}$ $Q_{18} + 2^5 = Q'_{18}$ $Q_{17} = Q'_{17}$ $Q_{16} = Q'_{16}$

Derive equations for steps 12 to 19...

Step 12

At step 12 we have Q₁₂ = (Q₈ + F(Q₁₁,Q₁₀,Q₉) + X₁₂) <<< 3 Q'₁₂ = (Q'₈ + F(Q'₁₁,Q'₁₀,Q'₉) + X'₁₂) <<< 3
Since X'₁₂ = X₁₂ + 1 and (Q₈,Q₉,Q₁₀,Q₁₁) = (Q'₈,Q'₉,Q'₁₀,Q'₁₁) it follows that (Q'₁₂ <<< 29) - (Q₁₂ <<< 29) = 1

Similar analysis for remaining steps yields system of equations:

 $1 = (Q'_{12} \lll 29) - (Q_{12} \lll 29)$ $F(Q'_{12}, Q_{11}, Q_{10}) - F(Q_{12}, Q_{11}, Q_{10}) = (Q'_{13} \lll 25) - (Q_{13} \lll 25)$ $F(Q'_{13}, Q'_{12}, Q_{11}) - F(Q_{13}, Q_{12}, Q_{11}) = (Q'_{14} \lll 21) - (Q_{14} \lll 21)$ $F(Q'_{14}, Q'_{13}, Q'_{12}) - F(Q_{14}, Q_{13}, Q_{12}) = (Q'_{15} \lll 13) - (Q_{15} \lll 13)$ $G(Q'_{15}, Q'_{14}, Q'_{13}) - G(Q_{15}, Q_{14}, Q_{13}) = Q_{12} - Q'_{12}$ $G(Q_{16}, Q'_{15}, Q'_{14}) - G(Q_{16}, Q_{15}, Q_{14}) = Q_{13} - Q'_{13}$ $G(Q_{17}, Q_{16}, Q'_{15}) - G(Q_{17}, Q_{16}, Q_{15}) = Q_{14} - Q'_{14} + (Q'_{18} \lll 23) - (Q_{18} \lll 23)$ $G(Q'_{18}, Q_{17}, Q_{16}) - G(Q_{18}, Q_{17}, Q_{16}) = Q_{15} - Q'_{15} + (Q'_{19} \lll 19) - (Q_{19} \lll 19) - 1$

MD4

To solve this system must find

 (Q₁₀, Q₁₁, Q₁₂, Q₁₃, Q₁₄, Q₁₅, Q₁₆, Q₁₇, Q₁₈, Q₁₉, Q'₁₂, Q'₁₃, Q'₁₄, Q'₁₅)
 so that all equations hold
 Given such a solution, we determine
 X_j for j = 13,14,15,0,4,8,12
 so that we begin at step 12 and arrive at
 step 19 with Δ₁₉ condition satisfied

- This phase reduces to solving (nonlinear) system of equations
- Can manipulate the equations so that
 - o Choose $(Q_{14}, Q_{15}, Q_{16}, Q_{17}, Q_{18}, Q_{19})$ arbitrary
 - o Which determines (Q₁₀,Q₁₃,Q'₁₃,Q'₁₄,Q'₁₅)

See textbook for details

Result is 3 equations must be satisfied (next slide)

Three conditions must be satisfied:

 $egin{aligned} &G(Q_{15},Q_{14},Q_{13})-G(Q_{15}',Q_{14}',Q_{13}')=1\ &F(Q_{14}',Q_{13}',0)-F(Q_{14},Q_{13},-1)-(Q_{15}'\ll 13)+(Q_{15}\ll 13)=0,\ &G(Q_{19},Q_{18},Q_{17})=G(Q_{19}',Q_{18}',Q_{17}). \end{aligned}$

□ First 2 are "check" equations

• Third is "admissible" condition

Naïve algorithm: choose six Q_j, yields five Q_j,Q'_j until 3 equations satisfied
 How much work is this?

Continuous Approximation

Each equation holds with prob 1/2³² Appears that 2⁹⁶ iterations required • Since three 32-bit check equations • Birthday attack on MD4 is only 264 work! Dobbertin has a clever solution • A "continuous approximation" • Small changes, converge to a solution

Continuous Approximation

- Generate random Q_i values until first check equation is satisfied
 - Random one-bit modifications to Q_i
 - Save if 1st check equation still holds and 2nd check equation is "closer" to holding
 - Else try different random modifications
- Modifications converge to solution
 - Then 2 check equations satisfied
 - Repeat until admissible condition holds

Continuous Approximation

- For complete details, see textbook
- Why does continuous approx work?
 - Small change to arguments of F (or G) yield small change in function value
- What is the work factor?
 - Not easy to determine analytically
 - Easy to determine empirically (homework)
 - Efficient, and only once per collision

Steps 0 to 11

- At this point, we have $(Q_8, Q_9, Q_{10}, Q_{11})$ and MD4_{12...47} $(Q_8, Q_9, Q_{10}, Q_{11}, X) = MD4_{12...47}(Q_8, Q_9, Q_{10}, Q_{11}, X')$
- To finish, we must have MD4_{0...11}(IV,X) = MD4_{0...11}(IV,X') = (Q₈,Q₉,Q₁₀,Q₁₁)
- □ Recall, X₁₂ is only difference between M, M'
- □ Also, X₁₂ first appears in step 12
- Have already found X_i for j = 0,4,8,12,13,14,15
- Free to choose X_j for j = 1,2,3,5,6,7,9,10,11 so that MD4_{0...11} equation holds — very easy!

All Together Now

- Attack proceeds as follows...
- 1. Steps 12 to 19: Find $(Q_8, Q_9, Q_{10}, Q_{11})$ and X_j for j = 0, 4, 8, 12, 13, 14, 15
- 2. Steps 0 to 11: Find X_i for remaining j
- 3. Steps 19 to 35: Check $\Delta_{35} = (0,0,0,0)$
 - If so, have found a collision!
 - If not, goto 2.

Meaningful Collision

- MD4 collisions exist where M and M' have meaning
 - Attack is so efficient, possible to find meaningful collisions
- Let "*" represent a "random" byte
 Inserted for "security" purposes
- Can find collisions on next slide...

Meaningful Collision

Different contracts, same hash value

CONTRACT

At the price of \$176,495 Alf Blowfish sells his house to Ann Bonidea ...

CONTRACT

At the price of \$276,495 Alf Blowfish sells his house to Ann Bonidea ...

MD4 Conclusions

MD4 weaknesses exposed early • Never widely used But took long time to find a collision Dobbertin's attack Clever equation solving phase • Also includes differential phase □ Next, MD5...