Hellman's TMTO Attack

Hellman's TMTO

Popcnt

- Before we consider Hellman's attack, consider simpler Time-Memory Trade-Off
- Population count" or popent
 - o Let x be a 32-bit integer
 - Define popent(x) = number of 1's in binary expansion of x
- □ How to compute popcnt(*x*) efficiently?

Simple Popcnt

```
Most obvious thing to do is
     popent(x) // assuming x is 32-bit value
          t = 0
           for i = 0 to 31
                t = t + ((x >> i) \& 1)
           next i
           return t
     end popcnt
□ Is this the most efficient method?
```

More Efficient Popcnt

Pre-compute popent for all 256 bytes
Store pre-computed values in a table
Given x, lookup its bytes in this table
Sum these values to find popent(x)
Note that pre-computation is done once
Each popent now requires 4 steps, not 32

More Efficient Popcnt

Initialize: table[i] = popcnt(i) for i = 0,1,...,255

popcnt(x) // assuming x is 32-bit word p = table[x & 0xff] + table[(x >> 8) & 0xff] + table[(x >> 16) & 0xff] + table[(x >> 24) & 0xff]return p
end popcnt

TMTO Basics

Pre-computation

o One-time work

• Results stored in a table

- Pre-computation results used to make each subsequent computation faster
- Try to balance "memory" and "time"
- In general, larger pre-computation requires more initial work and larger "memory" but then each computation takes less "time"

Block Cipher Notation Consider a block cipher C = E(P, K)where *P* is plaintext block of size *n* C is ciphertext block of size n K is key of size k

Block Cipher as Black Box

For TMTO, treat block cipher as black box
 Details of crypto algorithm not important

Hellman's TMTO Attack

- Chosen plaintext attack: choose P and obtain C, where C = E(P, K)
- Want to find the key K
- Two "obvious" approaches
 - 1. Exhaustive key search

"Memory" is 0, but "time" of 2^{k-1} for each attack

- 2. Pre-compute C = E(P, K) for all keys K Given C, simply look up key K in the table "Memory" of 2^k but "time" of 0 for each attack
- TMTO lies between 1. and 2.

Chain of Encryptions

- Assume block length n and key length k are equal: n = k
- Then a chain of encryptions is

$$SP = K_0 = \text{Starting Point}$$

$$K_1 = E(P, SP)$$

$$K_2 = E(P, K_1)$$
:
$$EP = K_t = E(P, K_{t-1}) = \text{End Point}$$

Encryption Chain

Ciphertext used as key at next iteration
 Same (chosen) plaintext P used at each iteration

Pre-computation

- Pre-compute *m* encryption chains, each of length *t*+1
- Save only the start and end points

TMTO Attack

□ Memory: Pre-compute encryption chains and save (SP_i, EP_i) for i = 0, 1, ..., m-1

• This is one-time work

• Must be sorted on EP_i

 \Box To attack a particular unknown key K

- For the same chosen P used to find chains, we know C where C = E(P, K) and K is unknown key
- o Time: Compute the chain (maximum of t steps)

$$X_0 = C, X_1 = E(P, X_0), X_2 = E(P, X_1), \dots$$

Hellman's TMTO

TMTO Attack

 Consider the computed chain
 X₀ = C, X₁ = E(P, X₀), X₂ = E(P, X₁), ...

 Suppose for some *i* we find X_i = EP_j

□ Since C = E(P, K) key K should lie before ciphertext C in chain!

Hellman's TMTO

TMTO Attack

Summary of attack phase: we compute chain $X_0 = C, X_1 = E(P, X_0), X_2 = E(P, X_1), \dots$ \Box If for some *i* we find $X_i = EP_i$ \Box Then reconstruct chain from SP_i $Y_0 = SP_i, Y_1 = E(P, Y_0), Y_2 = E(P, Y_1), \dots$ $\Box \operatorname{Find} C = Y_{t-i} = E(P, Y_{t-i-1}) \text{ (always?)}$ $\Box \text{ Then } K = Y_{t-i-1} \text{ (always?)}$

Trudy's Perfect World

- Suppose block cipher has k = 56
 - That is, the key length is 56 bits
- Spse we find $m = 2^{28}$ chains each of length $t = 2^{28}$ and no chains overlap (unrealistic)
- $\square \quad \text{Memory: } 2^{28} \text{ pairs } (SP_i, EP_i)$
- **Time:** about 2^{28} (per attack)
 - Start at C, find some EP_i in about 2^{27} steps
 - Find K with about 2²⁷ more steps
- Attack never fails!

Trudy's Perfect World

No chains overlap Every ciphertext C is in one chain

The Real World

Chains are not so well-behaved!
 Chains can cycle and merge

Chain beginning at C goes to EP
But chain from SP to EP does not give K
Is this Trudy's nightmare?

Real-World TMTO Issues

- Merging chains, cycles, false alarms, etc.
- Pre-computation is lots of work
 - Must attack many times to amortize cost
- Success is not assured
 - o Probability depends on initial work
- What if block size not equal key length?
 - This is easy to deal with
- What is the probability of success?
 - This is not so easy to compute...

To Reduce Merging

- Compute chain as $F(E(P, K_{i-1}))$ where F permutes the bits
- Chains computed using different functions can intersect, but they will not merge

Hellman's TMTO in Practice

🗆 Let

- o m = random starting points for each F
- o t = encryptions in each chain
- o r = number of "tables", i.e., random functions F
- \Box Then mtr = total pre-computed chain elements
- Pre-computation is about *mtr* work
- Each TMTO attack requires
 - About mr "memory" and about tr "time"
- □ If we choose $m = t = r = 2^{k/3}$ then probability of success is at least 0.55

Success Probability

- Throw n balls into m urns
- What is expected number of urns that have at least one ball?
- This is classic "occupancy" problem
 - See Feller, Intro. to Probability Theory
- Why is this relevant to TMTO attack?
 - "Urns" correspond to keys
 - "Balls" correspond to constructing chains

Success Probability

Using occupancy problem approach

Assuming k-bit key and m,t,r defined as previously discussed

Then, approximately,

 $P(\text{success}) = 1 - e^{-mtr/k}$

An upper bound can be given that is slightly "better"

Success Probability

• Success probability $P(\text{success}) = 1 - e^{-mtr/k}$

P(success)	mtr
0	0
0.03	2^{k-5}
0.06	2^{k-4}
0.12	2^{k-3}
0.22	2^{k-2}
0.39	2^{k-1}
0.63	2^k
0.86	2^{k+1}
0.98	2^{k+2}
0.99	2^{k+3}
1.00	∞
0.06 0.12 0.22 0.39 0.63 0.86 0.98 0.99 1.00	2^{k-4} 2^{k-3} 2^{k-2} 2^{k-1} 2^{k} 2^{k+1} 2^{k+2} 2^{k+3} ∞

Employ "distiguished points" Do not use fixed-length chains Instead, compute chain until some distinguished point is found Example of distinguished point: $(x_0, x_1, \ldots, x_{s-1}, \underbrace{0, 0, \ldots, 0})$

n-s

Similar pre-computation, except we have triples:

 (SP_i, EP_i, l_i) for i = 0, 1, ..., rm

• Where l_i is the length of the chain

• And r is number of tables

• And *m* is number of random starting points

- □ Let M_i be the maximum l_j for the i^{th} table
- \square Each table has a fixed random function F

- \Box Suppose r computers are available
- Each computer deals with one table
 - o That is, one random function F
- "Server" gives computer *i* the values F_i , M_i , *C* and definition of distinguished point
- Computer *i* computes chain beginning from C using F_i of (at most) length M_i

- □ If computer *i* finds a distinguished point within M_i steps
 - Returns result to "server" for secondary test
 - Server searches for K on corresponding chain (same as in non-distributed TMTO)
 - False alarms possible (distinguished points)
- \Box If no distinguished point found in M_i steps
 - Computer *i* gives up
 - Key cannot lie on any F_i chains
- □ Note that computer *i* does not need any SP □ Only server needs (SP_i, EP_i, l_i) for i = 0, 1, ..., rm

TMTO: The Bottom Line

- Attack is feasible against DES
- □ Pre-computation is about 2⁵⁶ work
- Each attack requires about

2³⁷ "memory" and 2³⁷ "time"

- Attack not particular to DES
- No fancy math is required!
- Lesson: Clever algorithms can break crypto!