
Hellman’s TMTO 1

Hellman’s TMTO Attack

Hellman’s TMTO 2

Popcnt
 Before we consider Hellman’s attack,

consider simpler Time-Memory Trade-Off
 “Population count” or popcnt

o Let x be a 32-bit integer
o Define popcnt(x) = number of 1’s in binary

expansion of x

 How to compute popcnt(x) efficiently?

Hellman’s TMTO 3

Simple Popcnt
 Most obvious thing to do is

popcnt(x) // assuming x is 32-bit value
t = 0
for i = 0 to 31

t = t + ((x >> i) & 1)
next i
return t

end popcnt
 Is this the most efficient method?

Hellman’s TMTO 4

More Efficient Popcnt

 Pre-compute popcnt for all 256 bytes
 Store pre-computed values in a table
 Given x, lookup its bytes in this table

o Sum these values to find popcnt(x)

 Note that pre-computation is done once
 Each popcnt now requires 4 steps, not 32

Hellman’s TMTO 5

More Efficient Popcnt
Initialize: table[i] = popcnt(i) for i = 0,1,…,255

popcnt(x) // assuming x is 32-bit word
p = table[x & 0xff]

+ table[(x >> 8) & 0xff]
+ table[(x >> 16) & 0xff]
+ table[(x >> 24) & 0xff]

return p
end popcnt

Hellman’s TMTO 6

TMTO Basics

 Pre-computation
o One-time work
o Results stored in a table

 Pre-computation results used to make each
subsequent computation faster

 Try to balance “memory” and “time”
 In general, larger pre-computation requires

more initial work and larger “memory” but
then each computation takes less “time”

Hellman’s TMTO 7

Block Cipher Notation
 Consider a block cipher

C = E(P, K)

where
P is plaintext block of size n
C is ciphertext block of size n
K is key of size k

Hellman’s TMTO 8

Block Cipher as Black Box

 For TMTO, treat block cipher as black box
 Details of crypto algorithm not important

Hellman’s TMTO 9

Hellman’s TMTO Attack
 Chosen plaintext attack: choose P and

obtain C, where C = E(P, K)

 Want to find the key K
 Two “obvious” approaches

1. Exhaustive key search
“Memory” is 0, but “time” of 2k-1 for each attack

2. Pre-compute C = E(P, K) for all keys K
Given C, simply look up key K in the table
“Memory” of 2k but “time” of 0 for each attack

 TMTO lies between 1. and 2.

Hellman’s TMTO 10

Chain of Encryptions
 Assume block length n and key length k are

equal: n = k

 Then a chain of encryptions is
SP = K0 = Starting Point
K1 = E(P, SP)
K2 = E(P, K1)

:
:

EP = Kt = E(P, Kt−1) = End Point

Hellman’s TMTO 11

Encryption Chain

 Ciphertext used as key at next iteration
 Same (chosen) plaintext P used at each

iteration

Hellman’s TMTO 12

Pre-computation
 Pre-compute m encryption chains, each

of length t +1

 Save only the start and end points
(SP0, EP0)

(SP1, EP1)
:

(SPm-1, EPm-1)

EP0

SP0

SP1

SPm-1

EP1

EPm-1

Hellman’s TMTO 13

TMTO Attack
 Memory: Pre-compute encryption chains and

save (SPi, EPi) for i = 0,1,…,m−1
o This is one-time work
o Must be sorted on EPi

 To attack a particular unknown key K
o For the same chosen P used to find chains, we

know C where C = E(P, K) and K is unknown key
o Time: Compute the chain (maximum of t steps)

X0 = C, X1 = E(P, X0), X2 = E(P, X1),…

Hellman’s TMTO 14

TMTO Attack
 Consider the computed chain

X0 = C, X1 = E(P, X0), X2 = E(P, X1), …

 Suppose for some i we find Xi = EPj

SPj

EPjC

K

 Since C = E(P, K) key K should lie before
ciphertext C in chain!

Hellman’s TMTO 15

TMTO Attack

 Summary of attack phase: we compute chain
X0 = C, X1 = E(P, X0), X2 = E(P, X1),…

 If for some i we find Xi = EPj

 Then reconstruct chain from SPj

Y0 = SPj, Y1 = E(P,Y0), Y2 = E(P,Y1),…

 Find C = Yt−i = E(P, Yt−i−1) (always?)
 Then K = Yt−i−1 (always?)

Hellman’s TMTO 16

Trudy’s Perfect World
 Suppose block cipher has k = 56

o That is, the key length is 56 bits
 Spse we find m = 228 chains each of length

t = 228 and no chains overlap (unrealistic)
 Memory: 228 pairs (SPj, EPi)

 Time: about 228 (per attack)
o Start at C, find some EPj in about 227 steps
o Find K with about 227 more steps

 Attack never fails!

Hellman’s TMTO 17

Trudy’s Perfect World
 No chains overlap
 Every ciphertext C is in one chain

EP0
SP0

C
SP1

SP2

EP1

EP2

K

Hellman’s TMTO 18

The Real World
 Chains are not so well-behaved!
 Chains can cycle and merge

EP

SP

C

 Chain beginning at C goes to EP
 But chain from SP to EP does not give K
 Is this Trudy’s nightmare?

K

Hellman’s TMTO 19

Real-World TMTO Issues
 Merging chains, cycles, false alarms, etc.
 Pre-computation is lots of work

o Must attack many times to amortize cost
 Success is not assured

o Probability depends on initial work
 What if block size not equal key length?

o This is easy to deal with
 What is the probability of success?

o This is not so easy to compute…

Hellman’s TMTO 20

To Reduce Merging
 Compute chain as F(E(P, Ki−1)) where F

permutes the bits
 Chains computed using different functions

can intersect, but they will not merge

EP1

SP0

SP1
EP0

F0 chain

F1 chain

Hellman’s TMTO 21

Hellman’s TMTO in Practice
 Let

o m = random starting points for each F
o t = encryptions in each chain
o r = number of “tables”, i.e., random functions F

 Then mtr = total pre-computed chain elements
 Pre-computation is about mtr work
 Each TMTO attack requires

o About mr “memory” and about tr “time”
 If we choose m = t = r = 2k/3 then probability of

success is at least 0.55

Hellman’s TMTO 22

Success Probability
 Throw n balls into m urns
 What is expected number of urns that

have at least one ball?
 This is classic “occupancy” problem

o See Feller, Intro. to Probability Theory
 Why is this relevant to TMTO attack?

o “Urns” correspond to keys
o “Balls” correspond to constructing chains

Hellman’s TMTO 23

Success Probability
 Using occupancy problem approach
 Assuming k-bit key and m,t,r defined

as previously discussed
 Then, approximately,

P(success) = 1 − e−mtr/k

 An upper bound can be given that is
slightly “better”

Hellman’s TMTO 24

Success
Probability

 Success probability
P(success) = 1 − e−mtr/k

Hellman’s TMTO 25

Distributed TMTO

 Employ “distiguished points”
 Do not use fixed-length chains
 Instead, compute chain until some

distinguished point is found
 Example of distinguished point:

Hellman’s TMTO 26

Distributed TMTO
 Similar pre-computation, except we have

triples:
(SPi, EPi, li) for i = 0,1,…,rm

o Where li is the length of the chain
o And r is number of tables
o And m is number of random starting points

 Let Mi be the maximum lj for the ith table
 Each table has a fixed random function F

Hellman’s TMTO 27

Distributed TMTO
 Suppose r computers are available
 Each computer deals with one table

o That is, one random function F

 “Server” gives computer i the values Fi, Mi,
C and definition of distinguished point

 Computer i computes chain beginning from
C using Fi of (at most) length Mi

Hellman’s TMTO 28

Distributed TMTO
 If computer i finds a distinguished point

within Mi steps
o Returns result to “server” for secondary test
o Server searches for K on corresponding chain

(same as in non-distributed TMTO)
o False alarms possible (distinguished points)

 If no distinguished point found in Mi steps
o Computer i gives up
o Key cannot lie on any Fi chains

 Note that computer i does not need any SP
 Only server needs (SPi, EPi, li) for i = 0,1,…,rm

Hellman’s TMTO 29

TMTO: The Bottom Line
 Attack is feasible against DES
 Pre-computation is about 256 work
 Each attack requires about

237 “memory” and 237 “time”

 Attack not particular to DES
 No fancy math is required!
 Lesson: Clever algorithms can break crypto!

