Hellman's TMTO Attack
Before we consider Hellman’s attack, consider simpler Time-Memory Trade-Off

“Population count” or popcnt

Let x be a 32-bit integer

Define $\text{popcnt}(x) = \text{number of 1's in binary expansion of } x$

How to compute $\text{popcnt}(x)$ efficiently?
Simple Popcnt

- Most obvious thing to do is
 \[\text{popcnt}(x) \] // assuming \(x \) is 32-bit value
 \[
 t = 0 \\
 \text{for } i = 0 \text{ to } 31 \\
 \quad t = t + ((x >> i) \& 1) \\
 \text{next } i \\
 \text{return } t
 \]

- Is this the most efficient method?
More Efficient Popcnt

- Pre-compute popcnt for all 256 bytes
- Store pre-computed values in a table
- Given x, lookup its bytes in this table
 - Sum these values to find $\text{popcnt}(x)$
- Note that pre-computation is done once
- Each popcnt now requires 4 steps, not 32
More Efficient Popcnt

Initialize: \(\text{table}[i] = \text{popcnt}(i) \) for \(i = 0,1,\ldots,255 \)

\[
\text{popcnt}(x) \quad \text{// assuming } x \text{ is 32-bit word}
\]

\[
p = \text{table}[x \& 0xff] + \text{table}[(x >> 8) \& 0xff] + \text{table}[(x >> 16) \& 0xff] + \text{table}[(x >> 24) \& 0xff]
\]

return \(p \)

end popcnt
TMTO Basics

- Pre-computation
 - One-time work
 - Results stored in a table
- Pre-computation results used to make each subsequent computation faster
- Try to balance “memory” and “time”
- In general, larger pre-computation requires more initial work and larger “memory” but then each computation takes less “time”
Block Cipher Notation

- Consider a block cipher

\[C = E(P, K) \]

where

- \(P \) is plaintext block of size \(n \)
- \(C \) is ciphertext block of size \(n \)
- \(K \) is key of size \(k \)
For TMTO, treat block cipher as black box
Details of crypto algorithm not important
Hellman’s TMTO Attack

- **Chosen plaintext attack:** choose P and obtain C, where $C = E(P, K)$
- Want to find the key K
- Two “obvious” approaches
 1. **Exhaustive key search**
 “Memory” is 0, but “time” of 2^{k-1} for each attack
 2. **Pre-compute** $C = E(P, K)$ for all keys K
 Given C, simply look up key K in the table
 “Memory” of 2^k but “time” of 0 for each attack
- **TMTO lies between 1. and 2.**
Chain of Encryptions

- Assume block length \(n \) and key length \(k \) are equal: \(n = k \)
- Then a **chain** of encryptions is

\[
SP = K_0 = \text{Starting Point}
\]

\[
K_1 = E(P, SP)
\]

\[
K_2 = E(P, K_1)
\]

\[
\vdots
\]

\[
EP = K_t = E(P, K_{t-1}) = \text{End Point}
\]
Encryption Chain

- Ciphertext used as **key** at next iteration
- Same (chosen) **plaintext** P used at each iteration

Hellman’s TMTO
Pre-computation

- Pre-compute m encryption chains, each of length $t + 1$
- Save only the start and end points

$$(SP_0, EP_0)$$
$$(SP_1, EP_1)$$
$$\vdots$$
$$(SP_{m-1}, EP_{m-1})$$
TMTO Attack

- **Memory**: Pre-compute encryption chains and save \((SP_i, EP_i)\) for \(i = 0, 1, \ldots, m-1\)
 - This is one-time work
 - Must be sorted on \(EP_i\)

- **To attack a particular unknown key** \(K\)
 - For the same chosen \(P\) used to find chains, we know \(C\) where \(C = E(P, K)\) and \(K\) is unknown key
 - **Time**: Compute the chain (maximum of \(t\) steps)
 \[
 X_0 = C, \quad X_1 = E(P, X_0), \quad X_2 = E(P, X_1), \ldots
 \]
TMTO Attack

- Consider the computed chain
 \[X_0 = C, \quad X_1 = E(P, X_0), \quad X_2 = E(P, X_1), \ldots \]

- Suppose for some \(i \) we find \(X_i = EP_j \)

- Since \(C = E(P, K) \) key \(K \) should lie before ciphertext \(C \) in chain!
TMTO Attack

- Summary of attack phase: we compute chain
 \[X_0 = C, X_1 = E(P, X_0), X_2 = E(P, X_1), \ldots \]
- If for some \(i \) we find \(X_i = EP_j \)
- Then reconstruct chain from \(SP_j \)
 \[Y_0 = SP_j, Y_1 = E(P, Y_0), Y_2 = E(P, Y_1), \ldots \]
- Find \(C = Y_{t-i} = E(P, Y_{t-i-1}) \) (always?)
- Then \(K = Y_{t-i-1} \) (always?)
Trudy’s Perfect World

- Suppose block cipher has $k = 56$
 - That is, the key length is 56 bits
- Spse we find $m = 2^{28}$ chains each of length $t = 2^{28}$ and no chains overlap (unrealistic)
- **Memory:** 2^{28} pairs (SP_j, EP_i)
- **Time:** about 2^{28} (per attack)
 - Start at C, find some EP_j in about 2^{27} steps
 - Find K with about 2^{27} more steps
- Attack never fails!
Trudy’s Perfect World

- No chains overlap
- Every ciphertext C is in one chain

$SP_0 \rightarrow EP_0$

$SP_1 \rightarrow EP_1

SP_2 \rightarrow EP_2

K

C

Hellman’s TMTO
The Real World

- Chains are not so well-behaved!
- Chains can *cycle* and *merge*

- Chain beginning at C goes to EP
- But chain from SP to EP does not give K
- Is this Trudy’s nightmare?

Hellman’s TMTO
Real-World TMTO Issues

- Merging chains, cycles, false alarms, etc.
- Pre-computation is lots of work
 - Must attack many times to amortize cost
- Success is not assured
 - Probability depends on initial work
- What if block size not equal key length?
 - This is easy to deal with
- What is the probability of success?
 - This is not so easy to compute...
To Reduce Merging

- Compute chain as \(F(E(P, K_{i-1})) \) where \(F \) permutes the bits
- Chains computed using different functions can intersect, but they will **not** merge
Let
- $m =$ random starting points for each F
- $t =$ encryptions in each chain
- $r =$ number of “tables”, i.e., random functions F

Then $mtr =$ total pre-computed chain elements

Pre-computation is about mtr work

Each TMTO attack requires
- About mr “memory” and about tr “time”

If we choose $m = t = r = 2^{k/3}$ then probability of success is at least 0.55
Success Probability

- Throw n balls into m urns
- What is expected number of urns that have at least one ball?
- This is classic “occupancy” problem
 - See Feller, *Intro. to Probability Theory*
- Why is this relevant to TMTO attack?
 - “Urns” correspond to keys
 - “Balls” correspond to constructing chains
Success Probability

- Using occupancy problem approach
- Assuming k-bit key and m, t, r defined as previously discussed
- Then, approximately,
 \[P(\text{success}) = 1 - e^{-mtr/k} \]
- An upper bound can be given that is slightly “better”
Success Probability

- Success probability

\[P(\text{success}) = 1 - e^{-mtr/k} \]

<table>
<thead>
<tr>
<th>mtr</th>
<th>P(success)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2^k - 5)</td>
<td>0.03</td>
</tr>
<tr>
<td>(2^k - 4)</td>
<td>0.06</td>
</tr>
<tr>
<td>(2^k - 3)</td>
<td>0.12</td>
</tr>
<tr>
<td>(2^k - 2)</td>
<td>0.22</td>
</tr>
<tr>
<td>(2^k - 1)</td>
<td>0.39</td>
</tr>
<tr>
<td>(2^k)</td>
<td>0.63</td>
</tr>
<tr>
<td>(2^k + 1)</td>
<td>0.86</td>
</tr>
<tr>
<td>(2^k + 2)</td>
<td>0.98</td>
</tr>
<tr>
<td>(2^k + 3)</td>
<td>0.99</td>
</tr>
<tr>
<td>(\infty)</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Distributed TMTO

- Employ “distinguished points”
- Do not use fixed-length chains
- Instead, compute chain until some distinguished point is found
- Example of distinguished point:

\[
(x_0, x_1, \ldots, x_{s-1}, \underbrace{0, 0, \ldots, 0}_{n-s})
\]
Distributed TMTO

- Similar pre-computation, except we have triples:

 \[(SP_i, EP_i, l_i) \text{ for } i = 0, 1, \ldots, rm\]

 - Where \(l_i\) is the length of the chain
 - And \(r\) is number of tables
 - And \(m\) is number of random starting points

- Let \(M_i\) be the maximum \(l_j\) for the \(i^{th}\) table

- Each table has a fixed random function \(F\)
Distributed TMTO

- Suppose \(r \) computers are available
- Each computer deals with one table
 - That is, one random function \(F \)
- “Server” gives computer \(i \) the values \(F_i, M_i, C \) and definition of distinguished point
- Computer \(i \) computes chain beginning from \(C \) using \(F_i \) of (at most) length \(M_i \)
Distributed TMTO

- If computer i finds a distinguished point within M_i steps
 - Returns result to “server” for secondary test
 - Server searches for K on corresponding chain (same as in non-distributed TMTO)
 - False alarms possible (distinguished points)
- If no distinguished point found in M_i steps
 - Computer i gives up
 - Key cannot lie on any F_i chains
- Note that computer i does not need any SP
- Only server needs (SP_i, EP_i, l_i) for $i = 0, 1, \ldots, rm$
TMTO: The Bottom Line

- Attack is feasible against DES
- Pre-computation is about 2^{56} work
- Each attack requires about 2^{37} “memory” and 2^{37} “time”
- Attack not particular to DES
- No fancy math is required!
- Lesson: *Clever algorithms can break crypto!*