
Hellman’s TMTO 1

Hellman’s TMTO Attack

Hellman’s TMTO 2

Popcnt
 Before we consider Hellman’s attack,

consider simpler Time-Memory Trade-Off
 “Population count” or popcnt

o Let x be a 32-bit integer
o Define popcnt(x) = number of 1’s in binary

expansion of x

 How to compute popcnt(x) efficiently?

Hellman’s TMTO 3

Simple Popcnt
 Most obvious thing to do is

popcnt(x) // assuming x is 32-bit value
t = 0
for i = 0 to 31

t = t + ((x >> i) & 1)
next i
return t

end popcnt
 Is this the most efficient method?

Hellman’s TMTO 4

More Efficient Popcnt

 Pre-compute popcnt for all 256 bytes
 Store pre-computed values in a table
 Given x, lookup its bytes in this table

o Sum these values to find popcnt(x)

 Note that pre-computation is done once
 Each popcnt now requires 4 steps, not 32

Hellman’s TMTO 5

More Efficient Popcnt
Initialize: table[i] = popcnt(i) for i = 0,1,…,255

popcnt(x) // assuming x is 32-bit word
p = table[x & 0xff]

+ table[(x >> 8) & 0xff]
+ table[(x >> 16) & 0xff]
+ table[(x >> 24) & 0xff]

return p
end popcnt

Hellman’s TMTO 6

TMTO Basics

 Pre-computation
o One-time work
o Results stored in a table

 Pre-computation results used to make each
subsequent computation faster

 Try to balance “memory” and “time”
 In general, larger pre-computation requires

more initial work and larger “memory” but
then each computation takes less “time”

Hellman’s TMTO 7

Block Cipher Notation
 Consider a block cipher

C = E(P, K)

where
P is plaintext block of size n
C is ciphertext block of size n
K is key of size k

Hellman’s TMTO 8

Block Cipher as Black Box

 For TMTO, treat block cipher as black box
 Details of crypto algorithm not important

Hellman’s TMTO 9

Hellman’s TMTO Attack
 Chosen plaintext attack: choose P and

obtain C, where C = E(P, K)

 Want to find the key K
 Two “obvious” approaches

1. Exhaustive key search
“Memory” is 0, but “time” of 2k-1 for each attack

2. Pre-compute C = E(P, K) for all keys K
Given C, simply look up key K in the table
“Memory” of 2k but “time” of 0 for each attack

 TMTO lies between 1. and 2.

Hellman’s TMTO 10

Chain of Encryptions
 Assume block length n and key length k are

equal: n = k

 Then a chain of encryptions is
SP = K0 = Starting Point
K1 = E(P, SP)
K2 = E(P, K1)

:
:

EP = Kt = E(P, Kt−1) = End Point

Hellman’s TMTO 11

Encryption Chain

 Ciphertext used as key at next iteration
 Same (chosen) plaintext P used at each

iteration

Hellman’s TMTO 12

Pre-computation
 Pre-compute m encryption chains, each

of length t +1

 Save only the start and end points
(SP0, EP0)

(SP1, EP1)
:

(SPm-1, EPm-1)

EP0

SP0

SP1

SPm-1

EP1

EPm-1

Hellman’s TMTO 13

TMTO Attack
 Memory: Pre-compute encryption chains and

save (SPi, EPi) for i = 0,1,…,m−1
o This is one-time work
o Must be sorted on EPi

 To attack a particular unknown key K
o For the same chosen P used to find chains, we

know C where C = E(P, K) and K is unknown key
o Time: Compute the chain (maximum of t steps)

X0 = C, X1 = E(P, X0), X2 = E(P, X1),…

Hellman’s TMTO 14

TMTO Attack
 Consider the computed chain

X0 = C, X1 = E(P, X0), X2 = E(P, X1), …

 Suppose for some i we find Xi = EPj

SPj

EPjC

K

 Since C = E(P, K) key K should lie before
ciphertext C in chain!

Hellman’s TMTO 15

TMTO Attack

 Summary of attack phase: we compute chain
X0 = C, X1 = E(P, X0), X2 = E(P, X1),…

 If for some i we find Xi = EPj

 Then reconstruct chain from SPj

Y0 = SPj, Y1 = E(P,Y0), Y2 = E(P,Y1),…

 Find C = Yt−i = E(P, Yt−i−1) (always?)
 Then K = Yt−i−1 (always?)

Hellman’s TMTO 16

Trudy’s Perfect World
 Suppose block cipher has k = 56

o That is, the key length is 56 bits
 Spse we find m = 228 chains each of length

t = 228 and no chains overlap (unrealistic)
 Memory: 228 pairs (SPj, EPi)

 Time: about 228 (per attack)
o Start at C, find some EPj in about 227 steps
o Find K with about 227 more steps

 Attack never fails!

Hellman’s TMTO 17

Trudy’s Perfect World
 No chains overlap
 Every ciphertext C is in one chain

EP0
SP0

C
SP1

SP2

EP1

EP2

K

Hellman’s TMTO 18

The Real World
 Chains are not so well-behaved!
 Chains can cycle and merge

EP

SP

C

 Chain beginning at C goes to EP
 But chain from SP to EP does not give K
 Is this Trudy’s nightmare?

K

Hellman’s TMTO 19

Real-World TMTO Issues
 Merging chains, cycles, false alarms, etc.
 Pre-computation is lots of work

o Must attack many times to amortize cost
 Success is not assured

o Probability depends on initial work
 What if block size not equal key length?

o This is easy to deal with
 What is the probability of success?

o This is not so easy to compute…

Hellman’s TMTO 20

To Reduce Merging
 Compute chain as F(E(P, Ki−1)) where F

permutes the bits
 Chains computed using different functions

can intersect, but they will not merge

EP1

SP0

SP1
EP0

F0 chain

F1 chain

Hellman’s TMTO 21

Hellman’s TMTO in Practice
 Let

o m = random starting points for each F
o t = encryptions in each chain
o r = number of “tables”, i.e., random functions F

 Then mtr = total pre-computed chain elements
 Pre-computation is about mtr work
 Each TMTO attack requires

o About mr “memory” and about tr “time”
 If we choose m = t = r = 2k/3 then probability of

success is at least 0.55

Hellman’s TMTO 22

Success Probability
 Throw n balls into m urns
 What is expected number of urns that

have at least one ball?
 This is classic “occupancy” problem

o See Feller, Intro. to Probability Theory
 Why is this relevant to TMTO attack?

o “Urns” correspond to keys
o “Balls” correspond to constructing chains

Hellman’s TMTO 23

Success Probability
 Using occupancy problem approach
 Assuming k-bit key and m,t,r defined

as previously discussed
 Then, approximately,

P(success) = 1 − e−mtr/k

 An upper bound can be given that is
slightly “better”

Hellman’s TMTO 24

Success
Probability

 Success probability
P(success) = 1 − e−mtr/k

Hellman’s TMTO 25

Distributed TMTO

 Employ “distiguished points”
 Do not use fixed-length chains
 Instead, compute chain until some

distinguished point is found
 Example of distinguished point:

Hellman’s TMTO 26

Distributed TMTO
 Similar pre-computation, except we have

triples:
(SPi, EPi, li) for i = 0,1,…,rm

o Where li is the length of the chain
o And r is number of tables
o And m is number of random starting points

 Let Mi be the maximum lj for the ith table
 Each table has a fixed random function F

Hellman’s TMTO 27

Distributed TMTO
 Suppose r computers are available
 Each computer deals with one table

o That is, one random function F

 “Server” gives computer i the values Fi, Mi,
C and definition of distinguished point

 Computer i computes chain beginning from
C using Fi of (at most) length Mi

Hellman’s TMTO 28

Distributed TMTO
 If computer i finds a distinguished point

within Mi steps
o Returns result to “server” for secondary test
o Server searches for K on corresponding chain

(same as in non-distributed TMTO)
o False alarms possible (distinguished points)

 If no distinguished point found in Mi steps
o Computer i gives up
o Key cannot lie on any Fi chains

 Note that computer i does not need any SP
 Only server needs (SPi, EPi, li) for i = 0,1,…,rm

Hellman’s TMTO 29

TMTO: The Bottom Line
 Attack is feasible against DES
 Pre-computation is about 256 work
 Each attack requires about

237 “memory” and 237 “time”

 Attack not particular to DES
 No fancy math is required!
 Lesson: Clever algorithms can break crypto!

