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Introduction to Machine Learning
with Applications in Information Security

by Mark Stamp

May 9, 2020

A Note to Instructors

For my previous book, Information Security: Principles and Practice, published by Wiley,
I provided a solutions manual with almost every problem solved in detail. After a short
period of time, many students began submitting exactly these same solutions. It’s probably
inevitable that solutions will become available, but I don’t want those solutions to be mine.

For this “solutions” manual, I’ve only provided brief (or nonexistent) solutions, which
(at best) are designed to confirm that you are on the right track. Many of the solutions
include blanks, like this: . The blanks can represent digits or words, for example, and
whatever is missing should be reasonably clear from context. I’ve included a few comments
and references where it seemed appropriate.

Believe it or not, I find it more difficult to write these partial solutions than to provide
complete solutions. As a result, there are quite a few problems here that have no solution.
I plan to add more solutions (or hints), so you might want to check for an updated version
periodically.
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Chapter 2

1. a) For example,

𝑃 (𝒪, 𝑋 = 𝐶𝐻𝐶) = 1.0 · 0.2 · 0.4 · 0.1 · 0.3 · 0.1 = 0.00024

𝑃 (𝒪, 𝑋 = 𝐶𝐶𝐻) = 1.0 · 0.2 · 0.6 · 0.7 · 0.4 · 0.5 = 0.00504

The sum is 0.0 4 .

b) For example,

𝛼0(1) = 1.0 · 0.2 = 0.2

𝛼2(0) = (0.008 · 0.7 + 0.084 · 0.4) · 0.5 = 0.0392

Again, sum is 0.0 4 .

c) The work factor for the brute force approach is 2𝑇𝑁𝑇 , while the work factor for the
forward algorithm is 𝑁2𝑇 . Since 𝑇 is typically large and 𝑁 is small, the forward
algorithm (aka 𝛼 pass) is the way to go.

2. a) The best hidden state sequence, in the HMM sense is (𝑋0, 𝑋1, 𝑋2) = (𝐶,𝐶,𝐻).

b) The best hidden state sequence, in the DP sense is also (𝑋0, 𝑋1, 𝑋2) = (𝐶,𝐶,𝐻),
so it’s a trick question.

3. a) In this case, there are 34 = 81 observation sequences. Students would be well ad-
vised to write a program to solve this, as working it by hand would take forever and
it would be highly error-prone. A correct solution would require all 81 probabilities,
and they must sum to 1. As a couple of random examples, 𝑃 (1, 1, 0, 1) = 0.009757
and 𝑃 (2, 1, 0, 1) = 0.010458.

b) This is the same as part a), except that the forward algorithm is used instead of
a direct calculation. Again, students need to provide all 81 probabilities and show
that they sum to 1. When I teach this class, I require that students submit a
working program for this part.

4. Derivation.

5. a) The backward algorithm computes the probabilities of partial sequences beginning
at the end of the observation sequence and working towards the beginning. Hence,

𝑃 (𝒪 |𝜆) =
𝑁−1∑︁
𝑖=0

.

b) Write a program and verify that using the formula in part a) gives the same result
as the forward algorithm.
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6. a) For example, the re-estimation formula for 𝜋𝑖 can be written as

𝜋𝑖 = 𝛾0(𝑖) =
𝑁−1∑︁
𝑗=0

𝛾𝑡(𝑖, 𝑗) =
𝑁−1∑︁
𝑗=0

𝛼0(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪1)𝛽1(𝑗)

𝑃 (𝒪 |𝜆)
.

The re-estimation formulas for the elements of the 𝐴 and 𝐵 matrices are slightly
more complex.

b) For example, from part a), we have

𝜋𝑖 =
𝑁−1∑︁
𝑗=0

𝛼0(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪1)𝛽1(𝑗)

𝑃 (𝒪 |𝜆)

where

𝑃 (𝒪 |𝜆) =
𝑁−1∑︁
𝑗=0

𝛼𝑇−1(𝑗).

Substituting ̂︀𝛼𝑡(𝑖) and ̂︀𝛽𝑡(𝑗), the term in the numerator is

̂︀𝛼0(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪1)̂︀𝛽1(𝑗) = (𝑐0𝑐1 · · · 𝑐𝑡)𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)(𝑐𝑡+1𝑐𝑡+2 · · · 𝑐𝑇−1)𝛽𝑡+1(𝑗)

= (𝑐0𝑐1 · · · 𝑐𝑇−1)𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝒪𝑡+1)𝛽𝑡+1(𝑗)

while the denominator is

𝑁−1∑︁
𝑗=0

̂︀𝛼𝑇−1(𝑗) =
𝑁−1∑︁
𝑗=0

(𝑐0𝑐1 · · · 𝑐𝑇−1)𝛼𝑇−1(𝑗).

It follows that we can compute the exact value of 𝜋𝑖 using the same formula, with
the scaled values in place of the unscaled values.

7. a) Derivation

b) We can use either

log
(︀
𝑃 (𝒪 |𝜆)

)︀
= −

𝑇−1∑︁
𝑗=0

log 𝑐𝑗

or

log
(︀
𝑃 (𝒪 |𝜆)

)︀
= −

𝑇−1∑︁
𝑗=0

log 𝑑𝑗.

8. Plug these values into the re-estimation formulas and show that the same values as
given in the book are obtained as the re-estimates.

9. a) Similar to the pseudo-code given for the 𝛼-pass in the book, but use matrices 𝐵𝑡 in
place of 𝐵.
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b) Similar to the pseudo-code given for the 𝛼-pass in the book, but the equivalent
of the 𝐵 matrix will depend on the current state 𝑋𝑡 and the previous state 𝑋𝑡−1,
instead of just depending on 𝑋𝑡. Although not required for the solution to this
problem, note that the re-estimation process becomes fairly complex in this case.
Of course, for higher order HMMs, things become progressively more complex.

10. a) Programming problem. Must be clear that the model converged—see Section 9.2
for an example.

b) Programming problem.

c) Programming problem.

d) Programming problem.

11. a) Programming problem.

b) Closely related to the English text example given in Section 9.2 and in problem 10,
above.

c) Programming problem. Note that an alternative (and perhaps better) approach
here would be to simply generate an HMM using a large number of characters of
English text and use the resulting 𝐴 matrix.

d) Programming problem. An alternative (and pehaps better) approach to determine
the key would be to generate an HMM using a large number of characters of English
text, then try to match rows of the 𝐵𝑇 obtained for this ciphertext problem to the
rows of 𝐵𝑇 from the English text version of the problem. The only issue with such
an approach is that the hidden states do not need to match in both cases.

12. a) Programming problem.

b) Programming problem.

c) Programming problem. This will be particularly challenging, even if restricted to
just a couple of thousand characters, as a very large amount of text will be needed
(and a correspondingly large amount of computation) to ensure a reasonable chance
of convergence.

13. Programming problem. This paper discusses an HMM analysis of Hamptonese: E. Le
and M. Stamp, Hamptonese and hidden Markov models, Lecture Notes in Control and
Information Sciences, Vol. 321, New Directions and Applications in Control Theory,
Springer 2005, W. P. Dayawansa, A. Lindquist, and Y. Zhou, editors, pp. 367–378.

14. a) Programming problem.

b) Programming problem. Results can vary, depending on the initialization strategy
used, but in general we expect to obtain better results with more data and/or more
random restarts. Also, note that if we first do 𝑛 = 1000 random restarts, we can
average each of the 1000 results and consider the result as the solution for the 𝑛 = 1
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case (averaged over 1000 trials), while the very best solution over those 1000 restarts
would be the answer for the 𝑛 = 1000 case. Similarly, we can obtain averages for
the 𝑛 = 10 (over 100 trials) and 𝑛 = 100 (over 10 trials) cases, all from a single
experiment with 1000 random restarts.

c) Programming problem.

d) Programming problem.

15. a) Programming problem. Note that the program will need to be very efficient to
test 1,000,000 random restarts—a program that takes only 1 second per restart
will require more than 11.5 days to complete 1,000,000 random restarts. Also,
another issue that is not addressed here is that the distribution on the random
restarts can matter. That is, it might make a difference if the restarts are initialized
close together (i.e., with a small variance) or farther apart (larger variance). It is
interesting to experiment with this aspect as well.

b) Programming problem.

c) Programming problem.

d) Programming problem.

e) Programming problem.

f) Programming problem.

g) Programming problem.

h) Programming problem.

16. a) Programming problem. Anyone who can solve the Zodiac 340 would certainly get
an A+ in my class!

b) Programming problem.
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Chapter 3

1. Easy.

2. a) Not sure that there is a nice closed form expression for any of these.

b) TBD

c) TBD

d) TBD

3. For example, column 1 is a match state and the emission probabilities are given by
𝑃 (A) = 𝑃 (C) = 5/28, 𝑃 (2) = 2/28, and 𝑃 (𝑥) = 1/28 for all symbols 𝑥 ̸∈ {A, C, 2}.

4. TBD

5. a) These plots nicely highlight local alignments.

b) See part a).

c) See part a).

6. TBD

TBD

a)7. a) Use the same dynamic program used to generate the pairwise alignments, but mod-
ify the gap penalty function 𝑔 for the (partial) MSA under consideration.

b) The obvious disadvantage is that this alternative approach is much slower.

8. TBD

9. Verification.

10. a) TBD

b) TBD

c) TBD

d) TBD

11. a) There are 63 states, one of which, for example, is (𝐼0, 𝐼3,𝑀2). To get credit (at least
in my class), you need to list all of these states.

b) The answer here is 25. For example, one of the 25 sequences is (𝐼0,𝑀1,𝑀2).

c) There are also 25 states here, including (𝐼3,𝑀1)

12. a) TBD

b) Yes.
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Chapter 4

1. a) Easy.

b) Easy.

c) Easy.

d) Easy.

e) Undefined.

f) Undefined

2. a) Amongst other things, reducing the dimensionality serves to concentrate the rele-
vant statistical information, which might otherwise be sparse, and hence difficult
to separate from the noise.

b) The key point is that in PCA we obtain linear combinations of input features,
which are in a lower dimensional space (assuming we eliminate some directions
corresponding to small eigenvalues). However, we do not directly reduce the number
of input features (more about this topic below).

3. If a student studies for a test, they might focus on a few major topics, as these are
likely to be the source of most of the test questions. So, a student might be able to
do very well, even though they have ignored various aspects of the material. However,
this strategy is not advisable in my class.

4. a)

𝐶 =

⎡⎣ 2.5

2.5

4.0

⎤⎦
b) 𝜆1 = 1.5 and 𝜆2 = .

c) Unit eigenvector for 𝜆1 is ⎡⎣ −0.816497

⎤⎦
Unit eigenvector for 𝜆2 is ⎡⎣

0.707107

⎤⎦
5. a) If 𝑥 is an eigenvalue of ̂︀𝐶, then ̂︀𝐶𝑥 = 𝜆𝑥, and 𝐶 = 1/𝑛 ̂︀𝐶. The answer is straight-

forward from here.

b) This is clear from the solution to part a).
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6. That the score is 0 is clear from the definition. This is also clearly desirable.

7. a) TBD

b) TBD

c) Verify that all of the eigenvectors 𝑢𝑖 are unit vectors. TBD

8. a) Multiply by 𝐴 on both sides to obtain 𝐴𝐴𝑇𝐴𝑣𝑖 = 𝜆𝑖𝐴𝑣𝑖. Thus the eigenvectors
of 𝐶 are 𝐴𝑣𝑖 with eigenvalues 𝜆𝑖/𝑛.

b) The matrix 𝐴𝑇𝐴 is 𝑛× 𝑛 matrix while 𝐶 is 𝑚×𝑚.

c) TBD

9. a) The variances appear on the main diagonal of the covariance matrix. Summing
these elements, in this case we obtain a total variance of 6. 6, to 2 decimal places.

b) Sum the eigenvalues.

c) Using only the first eigenvector accounts for a fraction of 𝜆1/𝑠 of the total variance,
where 𝑠 is the sum of the eigenvalues, and so on.

10. Let 𝑠𝑖 be the score of 𝑌𝑖. Then 𝑠1 = 0. 0, 𝑠2 = 3.7 , 𝑠3 = 0.9 , and 𝑠4 = 0. 8.

11. a)

Δ =

⎡⎣ −4.38 − 3.74

−1.16 − 1.44

1.53 −0.54 −

⎤⎦
b) Let 𝑠𝑖 be the score of 𝑌𝑖. Then 𝑠1 = 3. 7, 𝑠2 = 0.0 , 𝑠3 = 1. 3, and 𝑠4 = 3.2 .

12. a) TBD

b) TBD

13. a)

Δ =

[︂
− −0.82 −0.50

−1.15 − − 0.81

]︂
b)

∇ =

[︂
− −1.82 −0.74

0.26 − −1.22

]︂
c) Easy calculation.

14. a) TBD

b) TBD

c) TBD

d) TBD
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15. a) TBD

b) TBD

c) TBD

16. a) Yes, since we are, in effect, throwing away low-variance parts of the data.

b) We convert 𝑚× 𝑛 numbers into ℓ× 𝑛, so (ℓ𝑛)/(𝑚𝑛) = ℓ/𝑚.

c) TBD

17. a) The second feature has the highest positive correlation, while the feature
has the highest negative correlation.

b) Let 𝐿𝑖 be the component loading vector corresponding to 𝑢𝑖. Then

𝐿1 =
(︀

1.269 − −1.089 0.152
)︀

𝐿2 =
(︀
0.272 −0.891 −0.153 −

)︀
𝐿3 =

(︀
− 0.253 0.296 −0.610

)︀

c) Feature 3 is most important, while feature 6 is least important.
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Chapter 5

1. Derivation.

2. TBD

3. Combining these equations, we have 𝑛/𝑒 2−𝜆 = 1 which implies 𝜆 = log2(𝑛/𝑒). It is
straightforward to complete the problem from this point.

4. The Langrangian can be written as

𝐿(𝑤1, 𝑤2, 𝑏, 𝜆) =
𝑤2

1 + 𝑤2
2

2
+

𝑛∑︁
𝑖=1

𝜆𝑖(1− 𝑧𝑖(𝑤1𝑥𝑖 + 𝑤2𝑦𝑖 + 𝑏)).

Compute partial derivatives with respect to 𝑤1, 𝑤2, 𝑏, and each 𝜆𝑖, then substitute and
simplify. It is tedious, but it does work out.

5. TBD

6. We have 𝑎1𝑥+ 𝑎2𝑦 = 𝛼 and 𝑎1𝑥+ 𝑎2𝑦 = 𝛽 and 𝑎1𝑥+ 𝑎2𝑦 − (𝛽 + 𝛼)/2 = 0. Let

𝑤1 =
𝛼− 𝛽

, 𝑤2 =
𝛼− 𝛽

, and 𝑏 = −
𝛼− 𝛽

and the desired result follows.

7. TBD

8. a) TBD

b) TBD

9. a) The scoring function is 𝑓(𝑋) = 𝑏 +
∑︀𝑛

𝑖=1 𝜆𝑖𝑧𝑖(𝑋𝑖 ∙ 𝑋) Expand this expression
for 𝑓(𝑋) to show that the weight associated with 𝑋𝑖 is 𝜆𝑖𝑧𝑖( + 𝑦𝑖)

b) Bigger is better (or at least “more important”, in some sense).

c) We can reduce dimensionality by getting rid of features that have small weights in
a linear SVM. In PCA, the situation (at least with respect to the individual input
features) is more complex—explain why this is the case.

10. a) Accuracy is 97%.

b) Accuracy is %.

c) Accuracy is 92%.

d) Accuracy is %.

11. TBD
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12. a) HMM feature weight is 0.1969, SSD feature weight is - , OGS feature weight

is -0.7049, The biggest weight belongs to the score, while the smallest weight
belongs to the HMM score.

b) Remove the score with smallest weight and recompute linear SVM, then again
remove the score with the smallest weight.

13. Since 𝑓(𝑋) =
∑︀𝑠

𝑖=1 𝜆𝑖𝑧𝑖𝐾(𝑋𝑖, 𝑋) + 𝑏, we can let 𝑋 = 𝑋𝑗 for any 𝑗 ∈ {1, 2, . . . , 𝑛} and
solve for 𝑏. To solve for 𝑠 we just need to find the vectors for which equality holds,
which correspond to the non-zero 𝜆𝑖.

14. a) TBD

b) TBD

c) TBD

15. a) We find that 𝜆 = (0.00, , 2.50, 0.00, , 1.25) and 𝑏 = − . For these 𝜆

and 𝑏 values, we have 𝑓(𝑋0) = and 𝑧0 = 1 𝑓(𝑋1) = 2.75 and 𝑧1 =

𝑓(𝑋2) = and 𝑧2 = 1 𝑓(𝑋3) = −3.50 and 𝑧3 = − 𝑓(𝑋4) = − and

𝑧4 = −1 𝑓(𝑋5) = −1.00 and 𝑧5 = − where we have listed the 𝑧𝑖 from the
training data for comparison. The support vectors correspond to the non-zero 𝜆𝑖.

b) We find that 𝜆 = (0.20,− , 1.79, 0.00, , 0.92) and 𝑏 = −4.83.

c) For part b), for example, the equation of the hyperplane is 𝑥+ 𝑦 = −4.83.

16. a) Verification required.

b) Easy calculation.

c) The first sum is independent of 𝑥, so to minimize MSE(𝑥), we must maximize the

sum 1
𝑛

∑︀
(̃︀𝑉𝑖 ∙ 𝑥)2, which is the mean of the squares of the scalar projections. By

the hint, we have 𝜇𝑥2 = 𝜇2
𝑥 + 𝜎2

𝑥, which in this particular case tells us that

1

𝑛

∑︁
(̃︀𝑉𝑖 ∙ 𝑥)2 =

1

𝑛

∑︁ ̃︀𝑉𝑖 ∙ 𝑥+ 𝜎2
𝑥

From part a), the projected means are 0, which implies

𝜎2
𝑥 =

1

𝑛

∑︁
( ∙ 𝑥)2

d) This follows from the fact that the covariances in the projection space are all 0.

e) We find 𝜕𝐿(𝑥, 𝜆)/𝜕𝜆 = 𝑥 ∙ 𝑥− 1 and 𝜕𝐿(𝑥, 𝜆)/𝜕𝑥 = 2𝐶𝑥− 2𝜆𝑥. The first of these

recovers the constraint, 𝑥 ∙ 𝑥 = 1 and the second yields 𝐶𝑥 = . Together, these
imply that by selecting 𝑥 to be a unit eigenvector of the covariance matrix 𝐶, we
will maximize the variance in the projection space.
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Chapter 6

1. a) Calculus is your friend.

b) Similar to a), just a bit more notation to deal with.

2. a) The real question here is, why is -1 the good case, instead of +1?

b) TBD

3. a) Varies.

b) Varies, depending on your answer to part a).

c) Also varies, depending on your answer to part a).

4. Clustering 1, entropy.

𝐸1 = −
(︂
6

8
ln

6

8
+

1

8
ln

1

8
+

1

8
ln

1

8

)︂
= 0.736

𝐸2 = −
(︁

ln + ln + ln
)︁
=

𝐸3 = −
(︁

ln + ln + ln
)︁
=

𝐸 =
8(0.736) + ( ) + ( )

22
=

Clustering 1, purity.

𝑈1 = 6/8 = 0.750

𝑈2 = =

𝑈3 = =

𝑈 =
8(0.750) + ( ) + ( )

22
=

Clustering 2, entropy.

𝐸1 = −
(︂
3

8
ln

3

8
+

3

8
ln

3

8
+

2

8
ln

2

8

)︂
= 1.082

𝐸2 = −
(︁

ln + ln + ln
)︁
=

𝐸3 = −
(︁

ln + ln + ln
)︁
=

𝐸 =
8(1.082) + ( ) + ( )

22
=
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Clustering 2, purity.

𝑈1 = 3/8 = 0.375

𝑈2 = =

𝑈3 = =

𝑈 =
8(0.375) + ( ) + ( )

22
=

5. a) Programming problem.

b) Programming problem.

6. a) It’s clear that 0 ≤ 𝑝𝑖 ≤ 1 for each 𝑖, so only need to show that
∑︀

𝑝𝑖 = 1.

b) Programming problem.

c) Seems to be quite similar to 𝐾-means.

7. The results are given by

𝑝1,1 = , 𝑝2,1 =

𝑝1,2 = 0.6047, 𝑝2,2 =

𝑝1,3 = , 𝑝2,3 =

𝑝1,4 = , 𝑝2,4 = 0.5357

𝑝1,5 = , 𝑝2,5 =

8. a) Programming problem.

b) Results may vary depending on initial values selected.

9. TBD

10. TBD

11. a) TBD

b) TBD

12. TBD

13. a) Programming problem.

b) May depend on initial values selected.

c) May also depend on initial values selected.

d) May depend on your powers of observation.
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14. a) If there really are 2 distributions, then the mean and (especially) the variance for
each will be likely be much smaller than the overall mean and variance.

b) Follows from part a).

15. One advantage of 𝐾-means is simplicity, while an advantage of EM is that it allows
for more general “shapes” of cluster, depending on the type of distributions.

16. a) Suppose that we initially select a reachable non-core point, which is then marked
as visited. Complete the explanation.

b) Suppose that 𝑋 is not a core point, and 𝑑(𝑋, 𝑌 ) < 𝜀, 𝑑(𝑋,𝑍) < 𝜀, and 𝑑(𝑌, 𝑍) > 𝜀.
Complete the explanation.

c) Pretty pictures.
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Chapter 7

1. Pretty picture.

2. a) TBD

b) TBD

c) TBD

3. See the errata for a new-and-improved version of this problem.

a) TBD

b) TBD

4. TBD

5. TBD

6. a) To relate ̂︀𝑆𝐵 to 𝑆𝐵, we note that

(̂︀𝜇𝑥 − ̂︀𝜇𝑦)
2 = (𝑤𝑇𝜇𝑥 − 𝑤𝑇𝜇𝑦)

2 =
(︀
𝑤𝑇 (𝜇𝑥 − 𝜇𝑦)

)︀(︀
𝑤𝑇 (𝜇𝑥 − 𝜇𝑦)

)︀
.

Then use the fact that the transpose of a matrix product is the product of the
transposes in reverse order.1

b) TBD

7. a) This depends on the fact that 𝑆𝐵 and 𝑆𝑊 are symmetric matrices.

b) Use the fact that 𝑆 is symmetric.

c) TBD

8. a) TBD

b) TBD

9. TBD

10. a) TBD

b) We have 𝑤1 = 1/(
√
1 +𝑚2 ) and 𝑤2 = .

11. TBD

12. a) TBD

b) TBD

1Try saying “the transpose of a matrix product is the product of the transposes in reverse order” fast,
five times.
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c) In addition to swapping elements, also test the cases where the selected elements
are moved to the other cluster (one at a time). Then there will be 3 cases to test
for each pair selected.

13. TBD

14. Good question.

15. Completely analogous calculation.

16. a) PCA is based on the length of orthogonal bisectors, while least squares is based on

.

b) Linear regression is simpler, but PCA is probably more “accurate” in some sense.

17. Easy.
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Chapter 8

1. a) In each fold, we reserve 𝑀/𝑛 match cases for testing, so this is the number of match
scores per fold. We do this 𝑛 times, the number of match scores is 𝑛 ·𝑀/𝑛 = 𝑀 .

b) We score all 𝑁 nomatch samples in each fold, for 𝑛𝑁 total nomatch scores.

c) A larger 𝑛 will do a better job of smoothing out any bias in the data, while a smaller
values requires fewer models be constructed. In practice 5-fold is often sufficient.

2. a) TBD

b) TBD

3. a) A similar example can be found in the PowerPoint slides.

b) Again, see the slides for a worked example.

4. a) Easy.

b) Easy.

c) Easy.

5. Same process as given in the example.

6. a) Straightforward calculation.

b) Straightforward calculation.

7. The first few points for the ROC curve are given by

FPR TPR
1 1.0 1.0
2 0.8 1.0
3 0.8 0.8
4 0.6 0.8
...

...
...

8. The first few points for the PR curve are given by

Recall Precision
1 1.0 0.5
2 1.0 0.55
3 0.8 0.5
4 0.8 0.57
...

...
...
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9. a) We have TPR = TP /(TP+FN) and FPR = FP /(FP+TN). Now, if we duplicate
each nomatch score 𝑛 times, the TPR is unaffacted, since it only involved match
scores, and the FPR is now calculated as 𝑛FP /(𝑛FP+𝑛TN) = FP /(FP+TN)
and we see that the FPR is also unchanged. For PR curves, recall is the same
as TPR, so it is not affected by changes in the nomatch cases. But, precision is
computed as TP /(TP+FP) and if we duplicate each nomatch score 𝑛 times, the
precision becomes TP /(TP+𝑛FP) ̸= TP /(TP+FP). Thus, from the perspective
of ROC analysis, upsampling is of no use in analyzing an imbalance, but PR curves
might be useful.

b) See part a).

10. a) Similar to problem worked in the book.

b) Similar to problem worked in the book.

c) An advantage of changing the threshold is that it can reduce the FPR. An advantage
of a secondary test is that we can reduce the number of misclassifications.

11. a) See http://ftp.cs.wisc.edu/machine-learning/shavlik-group/davis.icml06.
pdf.

b) See a).

c) See a).

12. Depends on example selected.
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