
Breaking Protection                                                                                                           1

Breaking Protection



Breaking Protection                                                                                                           2

Overview
 Here, we discuss cracking examples
 Examples are not from real software

o “Crackme” --- program designed for studying
cracking/protection techniques

 Why learn cracking?
o So that you can better protect software
o “…protection technologies developed by people

who have never attempted cracking are never
effective!”
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Patching
 Consider the following application

o KeygenMe-3 by Bengaly
 No useful info here
 What to do?
 Enter some data

and see what
happens
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Patching
 Get invalid serial number message:

 Now what?
 OllyDbg, of course…



Breaking Protection                                                                                                           5

Patching
 Looking for message box
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Patching
 What about lpk.dll?
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Patching
 Imports/exports
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Patching
 References to MessageBoxA

 OK, now what?
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Patching
 Third

MsgBoxA
reference
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Patching
 Now patch it in OllyDbg…

 …success
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Keygenning
 Spse program asks for ID & serial number
 Such a program may have keygen algorithm

o Generate a “key” or serial number based on ID
 Attacker might want access to keygen

algorithm
 Why?

o To generate many valid ID/serial number pairs
o Why isn’t 1 such pair sufficient?
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Ripping Keygen Algorithm
 Goal is to create working copy of keygen

algorithm
 Just for creating valid ID/serial number

pairs
 This code can be “ripped” from the

application
 Following example is from…

o KeygenMe-3 by Bengaly



Breaking Protection                                                                                                           13

Ripping Keygen Algorithm
 Code Part 1
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Ripping Keygen Algorithm

Code
Part 2
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Ripping Keygen Algorithm
 Code Part 3
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Ripping Keygen Algorithm
 Take a

look at
Key4.00401388
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Ripping Keygen Algorithm
 Code for keygen

algorithm…
 Uppercase asm is

ripped from app
 Note: there is no

need to understand
the details!
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Ripping Keygen Algorithm
 Insert previous code into console app

 And try it out…
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Advanced Cracking: Defender
 Application developed to demonstrate

protection techniques
o “…similar to what you would find in real-

world commercial protection…”

 Difficult, but not impossible
o “…all it takes is a lot of knowledge and a

lot of patience”
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Defender Interface
 Launch without command-line options
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Defender Interface
 Launched with “random” username/serial number
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Defender: Linked Modules
 Load into OllyDbg and look at Executable

Modules window
o  Gives exe modules that are statically linked

 Just standard stuff here
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Defender: Imports/Exports
 Imports/exports

 Only API called is IsDebuggerPresent?
o This is very strange
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Defender: DUMPBIN

 Anything?
 Still just

one API?
 What

about
summary?
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DUMPBIN /HEADERS
 Try long listing --- find the following

 ……………………………………………………………
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DUMPBIN /HEADERS
 And…

 ……………………………………………………………
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DUMPBIN /HEADERS
 And…

 ……………………………………………………………
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DUMPBIN /HEADERS
 And…

 ……………………………………………………………
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Strange Section Names
 May be indication that program is

packed
 What to do?
 Try unpacking
 Will only work if it is standard packer



Breaking Protection                                                                                                           30

Defender: PEiD
 Try PEiD for common packers
 Nothing interesting…
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Defender: Initialization
 Want to figure out where “Bad key,

try again” msg comes from
o But, Defender does not call any API???
o So, no obvious place to set break point

 What to do?
 Look at initialization routine…
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Initialization Disassembly I
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Initialization Disassembly II
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Initialization Disassembly III
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Initialization Disassembly IV
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Initialization Disassembly V
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Initialization
 Consider this code

 fs register for thread-related info
o What’s at offset “+30”?
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Initialization
 For any thread fs:0 is “Thread

Environment Block” (TEB)
 What to do?
 Look up the TEB data stucture…
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TEB

 At +30 we have PEB
o Process Environment Block

 Just like TEB, but for a process
o Program access +c in PEB

 So, program accesses PEB via TEB
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PEB

 What is at +c in PEB?
o _PEB_LDR_DATA

 Go look at that data structure…
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_PEB_LDR_DATA
 Program get +c here too

 LIST_ENTRY
 Look at data structure (next slide)
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LIST_ENTRY
 Goes to offset +0 here

o That is, LIST_ENTRY again
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LIST_ENTRY
 Goes to offset +18 here

o That is, DllBase
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What Does it all Mean?
 After all of that, program has found

base of some DLL
 Dump loader data structures

o InLoadOrderModuleList from
PEB_LDR_DATA

o Next slide…
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Initialization
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Initialization
 Bottom line?
 The function at 00402EA8 obtains in-

memory address of NTDLL.DLL
 Program must communicate with OS

o And this is a highly obfuscated way to
(begin to) do so!
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Initialization
 Then what?
 Next, goes to function at 004033D1
 Listing starts on next slide…
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Function at 004033D1
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Function at 004033D1
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Function at 004033D1
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Function at 004033D1
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Function at 004033D1
 Boxed part

represents
12 pages of
“data”

 Why all of
this data
embedded
in code???
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Function at 004033D1
 “Data” is probably encrypted code

o Goes from 4034DD to 403CE5

 What about unencrypted parts?
 Looks like a big if-then-else

o But one clause looks like it’s “dead”

 So look at the “live” branch…
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Function at 004033D1
 Note XOR at 403431

o Appear to be XORing within a loop
o Note that XORing a constant value

 Beginning at 4033DD we see 4034DD put
into [ebp-20h], via the stack
o What’s special about address 4034DD??

 At 403410, use [ebp-20h] to get initial
address for XORing

 Aha --- the decryption loop!
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Decrypted Code
 Use OllyDbg and breakpt at end of

decryption loop (40346B)
 Then OllyDbg shows the following

 Tell OllyDbg to re-analyze code
o Reveals many pages of decrypted code
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Decrypted Code
 Code digs thru NTDLL’s PE header

o Gets export directory

 For each export, “performs an
interesting … bit of arithmetic on
each function name string”

 Code is on next slide…
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Unusual Calculation

 Debugger: [ebp-68] is
len. of current string
o [ebp-64] has its address

 Then for each char in
string, shifts left by
its index, modulo 24

 What the… ?
 It’s a “checksum”
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NTDLL
 After all chars have been processed…

 What’s going on here?
 Looking for an export entry (NTDLL)

that has “checksum” 39DBA17A
 Put a breakpoint on line after JNZ…

o …and [ebp-64] shows you what was found
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Allocate Memory
 It turns out that it calls
o NtAllocateVirtualMemory

 Which is (undocumented) native API
equivalent of document API
o VirtualAlloc

 It’s for allocating memory pages
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Read Time-stamp Counter
 Code to call NtAllocateVirtualMemory
 What is RDTSC?

o “Read time-
stamp counter”

o A 64-bit
counter,
incremented at
each tick
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Parameters
 Timestamp bits ANDed with constant
 2nd parameter

to memory alloc.
function

 Look at function
prototype
o Undocumented
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Base Address
 2nd param points to “base address”
 This is where

memory will be
allocated
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Allocate Memory
 What just happened?
 Generated a “random” number using

timer
 Use this random number as location

(base address) for allocated memory
 Interesting idea!
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Parameters
 Consider also 4th parameter

o This gives the allocated block size

 Loaded from [ebp-4]
 Code on next slide involved with find

block size…
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Parameters
 Consider 4th parameter
 Recall [ebp+8] is

NTDLL base addr
 Accesses PE hdr
 Ptr to PE hdr

stored in [ebp-74]
 Get offset +1c
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Parameters
 PE header ==>
 What’s at +1c?

o That is, at +4 in
OptionalHeader

 SizeOfCode
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Size Calculation
 Code below related to size calculation
 Value read from [ebp-7c] points into

NTDLL header
o Beginning of NTDLL’s export directory

 Q: What’s at offset +18?
 A: NumberOfFunctions
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Block Size
 Final preparation of block size

 So computed block size is…
o NTDLLcodesize + NumExports  * 8 + 8

 Why?
 Not clear at this point…
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Checksum
 Another strange checksum

o This time, NTDLL’s export list

 Includes following 2 lines:

 First, is function’s checksum
 Second is function’s RVA
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Interesting Code
 More “interesting” code
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Memory Copy
 Code on previous slide is a common

“sentence” in assembly code
 A memory copy

o REP MOV repeatedly copies DWORDS
from address at ESI to address at EDI
until ECX is 0

 So, what is being copied?
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Memory Copy
 ESI is loaded with [ebp+8]
 Why is that familiar?
 NTDLL’s base address
 Then increment by value at [eax+2c]

o BaseOfCode

 EDI gets addr of new memory block
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What Just Happened?
 To recap…
 Memory allocated at random location
 In this memory, write a table of

o Checksums of NTDLL exported functions
o Corresponding RVAs

 Finally, write a copy of entire NTDLL
code section
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Data Structure

 Representation of
description on previous
slide
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What’s Next?
 After this, next function starts with…

 Followed by…
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Searching For…
 What does this do?

 Goes thru export table…
 …looking for checksum 190BC2
 That is, looking for a specific API
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Found It —But What Is It?
 This is what happens when entry found

 Where have we (just) seen offset +4?
 Apparently, that’s the RVA

o Gets added to “base address” of NTDLL
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Leaving User Mode
 Later, we have this…

 …which (eventually) calls this

 SYSENTER is “kernel-mode switch”
o So cannot follow with OllyDbg
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What Now?
 How to determine which system call?
 Three choices…

o Switch to kernel mode debugger (SoftICE)
o Find RVA from checksum table (it’s probably

the same as actual RVA in NTDLL)
o Find system call based on order in checksum list

(and hope order wasn’t changed)
 Author chooses first option — SoftICE
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System Call
 First, it goes into KiSystemService

o All system calls go thru this function
o Look for CALL EBX, which transfers to actual

system call
o In this case, it’s NtAllocateVirtualMemory
o Again???

 Then back to user mode…
 …and program calls NtCreateThread
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Thread and Then…
 After creating thread, calls

“function” 006DEF20
 Find that this is NtDelayExecution

o Equivalent to SleepEx
 This should “cause new thread to

execute immediately”
 Then calls “function” 403A41
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Function 403A41
 Function call just skips ahead 30 bytes
 Those 30 bytes consist of…

 Function’s only purpose is to avoid
“executing” this string!

 Then searches for 2 more “functions”
o 6DEF20 and 1974C
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SoftICE Disappears
 Before getting to function 1974C,

SoftICE disappears
o Defender has quit

 Apparently, secondary thread has
killed primary thread
o Secondary thread that was just created
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Reversing Secondary Thread
 This code is encrypted, like before
 Set breakpoint after it’s decrypted
 Obtain code on next few slides…
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Function at 00402FFE (I)

 More dead
code at line
4030C7?

 Note RDTSC
at line 403007
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Function at 00402FFE (II)
 Note second

RDTSC

 Subtracted
from first
RDTSC ???
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Function at
00402FFE (III)
 Infinite loop at

line 4030C2?
 Comparison with

constant at line
403077…

 What “function”
is 1BF08AE?
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“Function” at 1BF08AE
 Stepping into this, the compare

(almost) always fails
 This code is checking a to see if

process is paused
o Recall the 2 calls to RTDSC

 If paused, process is terminated
 What’s the purpose?
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Defeating “Killer” Thread
 Patch code to avoid check…

 However, you cannot save this change
o So, must do this in each debug session

 Why can’t you save this change?
o Not clear at this point… we’ll see later
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“Function” 1974C
 This one is not a call into kernel
 Instead, code contained in NTDLL
 How to determine what API?

o Use RVA or its order in table
o Author uses order in export table

 Finds result on next slide…
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Loading KERNEL32.DLL

 What is LdrLoadDll?
 Native API version of LoadLibrary
 What DLL is it loading?
 We saw a name earlier: KERNEL32.DLL
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Loading KERNEL32.DLL
 As with NTDLL, Defender generates

checksum/RVA table
 Then inserts code section of

KERNEL32.DLL
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After Loading KERNEL3.DLL
 Another “function” skips 30 bytes or so
 What are those bytes?

 Defender’s welcome message
o Ready to be printed out!
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KERNEL32.DLL
 Next, obfuscated call to something in

KERNEL32.DLL
 What could this be?

 No need to work too hard…
 …this must be printing welcome msg
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Re-Encrypting
 At end of this function, we have

 JMP is far away, but we’ve been there…
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Re-Encrypting
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Re-Encrypting
 Dead code … NOT!
 This code very similar to decryption

o Convincing “dead code”?
 But actually encryption code

o Computes checksum of encrypted code
o Jumps to end of encrypted code

 Why re-encrypt???
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Back at the Entry Point

 Blah
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Back at the Entry Point
 Blah
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Parsing Parameters
 Blah
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Parsing Parameters
 Blah
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Parsing Parameters
 Blah
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Processing Username
 Blah
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Processing Username
 Blah
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User Info
 Formula used to validate user input
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User Info
 Blah
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User Info
 Blah
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User Info
 Blah
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Unlocking Code



Breaking Protection                                                                                                           110

Brute-Forcing
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah



Breaking Protection                                                                                                           116

Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing

 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
 Blah
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Brute-Forcing
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Cracking Defender: Summary
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Protections in Defender
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Localized Encryption
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Obfuscation
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Time-Stamp Thread
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Decryption Keys
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Inlining



Breaking Protection                                                                                                           135

Conclusions
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Assignment
 Rip keygen code from “keygen.exe”

o http://www.cs.sjsu.edu/~stamp/CS286/progs/keygen.exe.zip

 Make a separate app that generates valid
serial number for given ID/username

 Test on each of following ID/usernames
o aaaaa
o qwert
o qwerty


