
Breaking Protection 1

Breaking Protection

Breaking Protection 2

Overview
 Here, we discuss cracking examples
 Examples are not from real software

o “Crackme” --- program designed for studying
cracking/protection techniques

 Why learn cracking?
o So that you can better protect software
o “…protection technologies developed by people

who have never attempted cracking are never
effective!”

Breaking Protection 3

Patching
 Consider the following application

o KeygenMe-3 by Bengaly
 No useful info here
 What to do?
 Enter some data

and see what
happens

Breaking Protection 4

Patching
 Get invalid serial number message:

 Now what?
 OllyDbg, of course…

Breaking Protection 5

Patching
 Looking for message box

Breaking Protection 6

Patching
 What about lpk.dll?

Breaking Protection 7

Patching
 Imports/exports

Breaking Protection 8

Patching
 References to MessageBoxA

 OK, now what?

Breaking Protection 9

Patching
 Third

MsgBoxA
reference

Breaking Protection 10

Patching
 Now patch it in OllyDbg…

 …success

Breaking Protection 11

Keygenning
 Spse program asks for ID & serial number
 Such a program may have keygen algorithm

o Generate a “key” or serial number based on ID
 Attacker might want access to keygen

algorithm
 Why?

o To generate many valid ID/serial number pairs
o Why isn’t 1 such pair sufficient?

Breaking Protection 12

Ripping Keygen Algorithm
 Goal is to create working copy of keygen

algorithm
 Just for creating valid ID/serial number

pairs
 This code can be “ripped” from the

application
 Following example is from…

o KeygenMe-3 by Bengaly

Breaking Protection 13

Ripping Keygen Algorithm
 Code Part 1

Breaking Protection 14

Ripping Keygen Algorithm

Code
Part 2

Breaking Protection 15

Ripping Keygen Algorithm
 Code Part 3

Breaking Protection 16

Ripping Keygen Algorithm
 Take a

look at
Key4.00401388

Breaking Protection 17

Ripping Keygen Algorithm
 Code for keygen

algorithm…
 Uppercase asm is

ripped from app
 Note: there is no

need to understand
the details!

Breaking Protection 18

Ripping Keygen Algorithm
 Insert previous code into console app

 And try it out…

Breaking Protection 19

Advanced Cracking: Defender
 Application developed to demonstrate

protection techniques
o “…similar to what you would find in real-

world commercial protection…”

 Difficult, but not impossible
o “…all it takes is a lot of knowledge and a

lot of patience”

Breaking Protection 20

Defender Interface
 Launch without command-line options

Breaking Protection 21

Defender Interface
 Launched with “random” username/serial number

Breaking Protection 22

Defender: Linked Modules
 Load into OllyDbg and look at Executable

Modules window
o Gives exe modules that are statically linked

 Just standard stuff here

Breaking Protection 23

Defender: Imports/Exports
 Imports/exports

 Only API called is IsDebuggerPresent?
o This is very strange

Breaking Protection 24

Defender: DUMPBIN

 Anything?
 Still just

one API?
 What

about
summary?

Breaking Protection 25

DUMPBIN /HEADERS
 Try long listing --- find the following

 ……………………………………………………………

Breaking Protection 26

DUMPBIN /HEADERS
 And…

 ……………………………………………………………

Breaking Protection 27

DUMPBIN /HEADERS
 And…

 ……………………………………………………………

Breaking Protection 28

DUMPBIN /HEADERS
 And…

 ……………………………………………………………

Breaking Protection 29

Strange Section Names
 May be indication that program is

packed
 What to do?
 Try unpacking
 Will only work if it is standard packer

Breaking Protection 30

Defender: PEiD
 Try PEiD for common packers
 Nothing interesting…

Breaking Protection 31

Defender: Initialization
 Want to figure out where “Bad key,

try again” msg comes from
o But, Defender does not call any API???
o So, no obvious place to set break point

 What to do?
 Look at initialization routine…

Breaking Protection 32

Initialization Disassembly I

Breaking Protection 33

Initialization Disassembly II

Breaking Protection 34

Initialization Disassembly III

Breaking Protection 35

Initialization Disassembly IV

Breaking Protection 36

Initialization Disassembly V

Breaking Protection 37

Initialization
 Consider this code

 fs register for thread-related info
o What’s at offset “+30”?

Breaking Protection 38

Initialization
 For any thread fs:0 is “Thread

Environment Block” (TEB)
 What to do?
 Look up the TEB data stucture…

Breaking Protection 39

TEB

 At +30 we have PEB
o Process Environment Block

 Just like TEB, but for a process
o Program access +c in PEB

 So, program accesses PEB via TEB

Breaking Protection 40

PEB

 What is at +c in PEB?
o _PEB_LDR_DATA

 Go look at that data structure…

Breaking Protection 41

_PEB_LDR_DATA
 Program get +c here too

 LIST_ENTRY
 Look at data structure (next slide)

Breaking Protection 42

LIST_ENTRY
 Goes to offset +0 here

o That is, LIST_ENTRY again

Breaking Protection 43

LIST_ENTRY
 Goes to offset +18 here

o That is, DllBase

Breaking Protection 44

What Does it all Mean?
 After all of that, program has found

base of some DLL
 Dump loader data structures

o InLoadOrderModuleList from
PEB_LDR_DATA

o Next slide…

Breaking Protection 45

Initialization

Breaking Protection 46

Initialization
 Bottom line?
 The function at 00402EA8 obtains in-

memory address of NTDLL.DLL
 Program must communicate with OS

o And this is a highly obfuscated way to
(begin to) do so!

Breaking Protection 47

Initialization
 Then what?
 Next, goes to function at 004033D1
 Listing starts on next slide…

Breaking Protection 48

Function at 004033D1

Breaking Protection 49

Function at 004033D1

Breaking Protection 50

Function at 004033D1

Breaking Protection 51

Function at 004033D1

Breaking Protection 52

Function at 004033D1
 Boxed part

represents
12 pages of
“data”

 Why all of
this data
embedded
in code???

Breaking Protection 53

Function at 004033D1
 “Data” is probably encrypted code

o Goes from 4034DD to 403CE5

 What about unencrypted parts?
 Looks like a big if-then-else

o But one clause looks like it’s “dead”

 So look at the “live” branch…

Breaking Protection 54

Function at 004033D1
 Note XOR at 403431

o Appear to be XORing within a loop
o Note that XORing a constant value

 Beginning at 4033DD we see 4034DD put
into [ebp-20h], via the stack
o What’s special about address 4034DD??

 At 403410, use [ebp-20h] to get initial
address for XORing

 Aha --- the decryption loop!

Breaking Protection 55

Decrypted Code
 Use OllyDbg and breakpt at end of

decryption loop (40346B)
 Then OllyDbg shows the following

 Tell OllyDbg to re-analyze code
o Reveals many pages of decrypted code

Breaking Protection 56

Decrypted Code
 Code digs thru NTDLL’s PE header

o Gets export directory

 For each export, “performs an
interesting … bit of arithmetic on
each function name string”

 Code is on next slide…

Breaking Protection 57

Unusual Calculation

 Debugger: [ebp-68] is
len. of current string
o [ebp-64] has its address

 Then for each char in
string, shifts left by
its index, modulo 24

 What the… ?
 It’s a “checksum”

Breaking Protection 58

NTDLL
 After all chars have been processed…

 What’s going on here?
 Looking for an export entry (NTDLL)

that has “checksum” 39DBA17A
 Put a breakpoint on line after JNZ…

o …and [ebp-64] shows you what was found

Breaking Protection 59

Allocate Memory
 It turns out that it calls
o NtAllocateVirtualMemory

 Which is (undocumented) native API
equivalent of document API
o VirtualAlloc

 It’s for allocating memory pages

Breaking Protection 60

Read Time-stamp Counter
 Code to call NtAllocateVirtualMemory
 What is RDTSC?

o “Read time-
stamp counter”

o A 64-bit
counter,
incremented at
each tick

Breaking Protection 61

Parameters
 Timestamp bits ANDed with constant
 2nd parameter

to memory alloc.
function

 Look at function
prototype
o Undocumented

Breaking Protection 62

Base Address
 2nd param points to “base address”
 This is where

memory will be
allocated

Breaking Protection 63

Allocate Memory
 What just happened?
 Generated a “random” number using

timer
 Use this random number as location

(base address) for allocated memory
 Interesting idea!

Breaking Protection 64

Parameters
 Consider also 4th parameter

o This gives the allocated block size

 Loaded from [ebp-4]
 Code on next slide involved with find

block size…

Breaking Protection 65

Parameters
 Consider 4th parameter
 Recall [ebp+8] is

NTDLL base addr
 Accesses PE hdr
 Ptr to PE hdr

stored in [ebp-74]
 Get offset +1c

Breaking Protection 66

Parameters
 PE header ==>
 What’s at +1c?

o That is, at +4 in
OptionalHeader

 SizeOfCode

Breaking Protection 67

Size Calculation
 Code below related to size calculation
 Value read from [ebp-7c] points into

NTDLL header
o Beginning of NTDLL’s export directory

 Q: What’s at offset +18?
 A: NumberOfFunctions

Breaking Protection 68

Block Size
 Final preparation of block size

 So computed block size is…
o NTDLLcodesize + NumExports * 8 + 8

 Why?
 Not clear at this point…

Breaking Protection 69

Checksum
 Another strange checksum

o This time, NTDLL’s export list

 Includes following 2 lines:

 First, is function’s checksum
 Second is function’s RVA

Breaking Protection 70

Interesting Code
 More “interesting” code

Breaking Protection 71

Memory Copy
 Code on previous slide is a common

“sentence” in assembly code
 A memory copy

o REP MOV repeatedly copies DWORDS
from address at ESI to address at EDI
until ECX is 0

 So, what is being copied?

Breaking Protection 72

Memory Copy
 ESI is loaded with [ebp+8]
 Why is that familiar?
 NTDLL’s base address
 Then increment by value at [eax+2c]

o BaseOfCode

 EDI gets addr of new memory block

Breaking Protection 73

What Just Happened?
 To recap…
 Memory allocated at random location
 In this memory, write a table of

o Checksums of NTDLL exported functions
o Corresponding RVAs

 Finally, write a copy of entire NTDLL
code section

Breaking Protection 74

Data Structure

 Representation of
description on previous
slide

Breaking Protection 75

What’s Next?
 After this, next function starts with…

 Followed by…

Breaking Protection 76

Searching For…
 What does this do?

 Goes thru export table…
 …looking for checksum 190BC2
 That is, looking for a specific API

Breaking Protection 77

Found It —But What Is It?
 This is what happens when entry found

 Where have we (just) seen offset +4?
 Apparently, that’s the RVA

o Gets added to “base address” of NTDLL

Breaking Protection 78

Leaving User Mode
 Later, we have this…

 …which (eventually) calls this

 SYSENTER is “kernel-mode switch”
o So cannot follow with OllyDbg

Breaking Protection 79

What Now?
 How to determine which system call?
 Three choices…

o Switch to kernel mode debugger (SoftICE)
o Find RVA from checksum table (it’s probably

the same as actual RVA in NTDLL)
o Find system call based on order in checksum list

(and hope order wasn’t changed)
 Author chooses first option — SoftICE

Breaking Protection 80

System Call
 First, it goes into KiSystemService

o All system calls go thru this function
o Look for CALL EBX, which transfers to actual

system call
o In this case, it’s NtAllocateVirtualMemory
o Again???

 Then back to user mode…
 …and program calls NtCreateThread

Breaking Protection 81

Thread and Then…
 After creating thread, calls

“function” 006DEF20
 Find that this is NtDelayExecution

o Equivalent to SleepEx
 This should “cause new thread to

execute immediately”
 Then calls “function” 403A41

Breaking Protection 82

Function 403A41
 Function call just skips ahead 30 bytes
 Those 30 bytes consist of…

 Function’s only purpose is to avoid
“executing” this string!

 Then searches for 2 more “functions”
o 6DEF20 and 1974C

Breaking Protection 83

SoftICE Disappears
 Before getting to function 1974C,

SoftICE disappears
o Defender has quit

 Apparently, secondary thread has
killed primary thread
o Secondary thread that was just created

Breaking Protection 84

Reversing Secondary Thread
 This code is encrypted, like before
 Set breakpoint after it’s decrypted
 Obtain code on next few slides…

Breaking Protection 85

Function at 00402FFE (I)

 More dead
code at line
4030C7?

 Note RDTSC
at line 403007

Breaking Protection 86

Function at 00402FFE (II)
 Note second

RDTSC

 Subtracted
from first
RDTSC ???

Breaking Protection 87

Function at
00402FFE (III)
 Infinite loop at

line 4030C2?
 Comparison with

constant at line
403077…

 What “function”
is 1BF08AE?

Breaking Protection 88

“Function” at 1BF08AE
 Stepping into this, the compare

(almost) always fails
 This code is checking a to see if

process is paused
o Recall the 2 calls to RTDSC

 If paused, process is terminated
 What’s the purpose?

Breaking Protection 89

Defeating “Killer” Thread
 Patch code to avoid check…

 However, you cannot save this change
o So, must do this in each debug session

 Why can’t you save this change?
o Not clear at this point… we’ll see later

Breaking Protection 90

“Function” 1974C
 This one is not a call into kernel
 Instead, code contained in NTDLL
 How to determine what API?

o Use RVA or its order in table
o Author uses order in export table

 Finds result on next slide…

Breaking Protection 91

Loading KERNEL32.DLL

 What is LdrLoadDll?
 Native API version of LoadLibrary
 What DLL is it loading?
 We saw a name earlier: KERNEL32.DLL

Breaking Protection 92

Loading KERNEL32.DLL
 As with NTDLL, Defender generates

checksum/RVA table
 Then inserts code section of

KERNEL32.DLL

Breaking Protection 93

After Loading KERNEL3.DLL
 Another “function” skips 30 bytes or so
 What are those bytes?

 Defender’s welcome message
o Ready to be printed out!

Breaking Protection 94

KERNEL32.DLL
 Next, obfuscated call to something in

KERNEL32.DLL
 What could this be?

 No need to work too hard…
 …this must be printing welcome msg

Breaking Protection 95

Re-Encrypting
 At end of this function, we have

 JMP is far away, but we’ve been there…

Breaking Protection 96

Re-Encrypting

Breaking Protection 97

Re-Encrypting
 Dead code … NOT!
 This code very similar to decryption

o Convincing “dead code”?
 But actually encryption code

o Computes checksum of encrypted code
o Jumps to end of encrypted code

 Why re-encrypt???

Breaking Protection 98

Back at the Entry Point

 Blah

Breaking Protection 99

Back at the Entry Point
 Blah

Breaking Protection 100

Parsing Parameters
 Blah

Breaking Protection 101

Parsing Parameters
 Blah

Breaking Protection 102

Parsing Parameters
 Blah

Breaking Protection 103

Processing Username
 Blah

Breaking Protection 104

Processing Username
 Blah

Breaking Protection 105

User Info
 Formula used to validate user input

Breaking Protection 106

User Info
 Blah

Breaking Protection 107

User Info
 Blah

Breaking Protection 108

User Info
 Blah

Breaking Protection 109

Unlocking Code

Breaking Protection 110

Brute-Forcing

Breaking Protection 111

Brute-Forcing
 Blah

Breaking Protection 112

Brute-Forcing
 Blah

Breaking Protection 113

Brute-Forcing
 Blah

Breaking Protection 114

Brute-Forcing
 Blah

Breaking Protection 115

Brute-Forcing
 Blah

Breaking Protection 116

Brute-Forcing
 Blah

Breaking Protection 117

Brute-Forcing
 Blah

Breaking Protection 118

Brute-Forcing
 Blah

Breaking Protection 119

Brute-Forcing
 Blah

Breaking Protection 120

Brute-Forcing

 Blah

Breaking Protection 121

Brute-Forcing
 Blah

Breaking Protection 122

Brute-Forcing
 Blah

Breaking Protection 123

Brute-Forcing
 Blah

Breaking Protection 124

Brute-Forcing
 Blah

Breaking Protection 125

Brute-Forcing
 Blah

Breaking Protection 126

Brute-Forcing
 Blah

Breaking Protection 127

Brute-Forcing

Breaking Protection 128

Cracking Defender: Summary

Breaking Protection 129

Protections in Defender

Breaking Protection 130

Localized Encryption

Breaking Protection 131

Obfuscation

Breaking Protection 132

Time-Stamp Thread

Breaking Protection 133

Decryption Keys

Breaking Protection 134

Inlining

Breaking Protection 135

Conclusions

Breaking Protection 136

Assignment
 Rip keygen code from “keygen.exe”

o http://www.cs.sjsu.edu/~stamp/CS286/progs/keygen.exe.zip

 Make a separate app that generates valid
serial number for given ID/username

 Test on each of following ID/usernames
o aaaaa
o qwert
o qwerty

