
Breaking Protection 1

Breaking Protection

Breaking Protection 2

Overview
 Here, we discuss cracking examples
 Examples are not from real software

o “Crackme” --- program designed for studying
cracking/protection techniques

 Why learn cracking?
o So that you can better protect software
o “…protection technologies developed by people

who have never attempted cracking are never
effective!”

Breaking Protection 3

Patching
 Consider the following application

o KeygenMe-3 by Bengaly
 No useful info here
 What to do?
 Enter some data

and see what
happens

Breaking Protection 4

Patching
 Get invalid serial number message:

 Now what?
 OllyDbg, of course…

Breaking Protection 5

Patching
 Looking for message box

Breaking Protection 6

Patching
 What about lpk.dll?

Breaking Protection 7

Patching
 Imports/exports

Breaking Protection 8

Patching
 References to MessageBoxA

 OK, now what?

Breaking Protection 9

Patching
 Third

MsgBoxA
reference

Breaking Protection 10

Patching
 Now patch it in OllyDbg…

 …success

Breaking Protection 11

Keygenning
 Spse program asks for ID & serial number
 Such a program may have keygen algorithm

o Generate a “key” or serial number based on ID
 Attacker might want access to keygen

algorithm
 Why?

o To generate many valid ID/serial number pairs
o Why isn’t 1 such pair sufficient?

Breaking Protection 12

Ripping Keygen Algorithm
 Goal is to create working copy of keygen

algorithm
 Just for creating valid ID/serial number

pairs
 This code can be “ripped” from the

application
 Following example is from…

o KeygenMe-3 by Bengaly

Breaking Protection 13

Ripping Keygen Algorithm
 Code Part 1

Breaking Protection 14

Ripping Keygen Algorithm

Code
Part 2

Breaking Protection 15

Ripping Keygen Algorithm
 Code Part 3

Breaking Protection 16

Ripping Keygen Algorithm
 Take a

look at
Key4.00401388

Breaking Protection 17

Ripping Keygen Algorithm
 Code for keygen

algorithm…
 Uppercase asm is

ripped from app
 Note: there is no

need to understand
the details!

Breaking Protection 18

Ripping Keygen Algorithm
 Insert previous code into console app

 And try it out…

Breaking Protection 19

Advanced Cracking: Defender
 Application developed to demonstrate

protection techniques
o “…similar to what you would find in real-

world commercial protection…”

 Difficult, but not impossible
o “…all it takes is a lot of knowledge and a

lot of patience”

Breaking Protection 20

Defender Interface
 Launch without command-line options

Breaking Protection 21

Defender Interface
 Launched with “random” username/serial number

Breaking Protection 22

Defender: Linked Modules
 Load into OllyDbg and look at Executable

Modules window
o Gives exe modules that are statically linked

 Just standard stuff here

Breaking Protection 23

Defender: Imports/Exports
 Imports/exports

 Only API called is IsDebuggerPresent?
o This is very strange

Breaking Protection 24

Defender: DUMPBIN

 Anything?
 Still just

one API?
 What

about
summary?

Breaking Protection 25

DUMPBIN /HEADERS
 Try long listing --- find the following

 ……………………………………………………………

Breaking Protection 26

DUMPBIN /HEADERS
 And…

 ……………………………………………………………

Breaking Protection 27

DUMPBIN /HEADERS
 And…

 ……………………………………………………………

Breaking Protection 28

DUMPBIN /HEADERS
 And…

 ……………………………………………………………

Breaking Protection 29

Strange Section Names
 May be indication that program is

packed
 What to do?
 Try unpacking
 Will only work if it is standard packer

Breaking Protection 30

Defender: PEiD
 Try PEiD for common packers
 Nothing interesting…

Breaking Protection 31

Defender: Initialization
 Want to figure out where “Bad key,

try again” msg comes from
o But, Defender does not call any API???
o So, no obvious place to set break point

 What to do?
 Look at initialization routine…

Breaking Protection 32

Initialization Disassembly I

Breaking Protection 33

Initialization Disassembly II

Breaking Protection 34

Initialization Disassembly III

Breaking Protection 35

Initialization Disassembly IV

Breaking Protection 36

Initialization Disassembly V

Breaking Protection 37

Initialization
 Consider this code

 fs register for thread-related info
o What’s at offset “+30”?

Breaking Protection 38

Initialization
 For any thread fs:0 is “Thread

Environment Block” (TEB)
 What to do?
 Look up the TEB data stucture…

Breaking Protection 39

TEB

 At +30 we have PEB
o Process Environment Block

 Just like TEB, but for a process
o Program access +c in PEB

 So, program accesses PEB via TEB

Breaking Protection 40

PEB

 What is at +c in PEB?
o _PEB_LDR_DATA

 Go look at that data structure…

Breaking Protection 41

_PEB_LDR_DATA
 Program get +c here too

 LIST_ENTRY
 Look at data structure (next slide)

Breaking Protection 42

LIST_ENTRY
 Goes to offset +0 here

o That is, LIST_ENTRY again

Breaking Protection 43

LIST_ENTRY
 Goes to offset +18 here

o That is, DllBase

Breaking Protection 44

What Does it all Mean?
 After all of that, program has found

base of some DLL
 Dump loader data structures

o InLoadOrderModuleList from
PEB_LDR_DATA

o Next slide…

Breaking Protection 45

Initialization

Breaking Protection 46

Initialization
 Bottom line?
 The function at 00402EA8 obtains in-

memory address of NTDLL.DLL
 Program must communicate with OS

o And this is a highly obfuscated way to
(begin to) do so!

Breaking Protection 47

Initialization
 Then what?
 Next, goes to function at 004033D1
 Listing starts on next slide…

Breaking Protection 48

Function at 004033D1

Breaking Protection 49

Function at 004033D1

Breaking Protection 50

Function at 004033D1

Breaking Protection 51

Function at 004033D1

Breaking Protection 52

Function at 004033D1
 Boxed part

represents
12 pages of
“data”

 Why all of
this data
embedded
in code???

Breaking Protection 53

Function at 004033D1
 “Data” is probably encrypted code

o Goes from 4034DD to 403CE5

 What about unencrypted parts?
 Looks like a big if-then-else

o But one clause looks like it’s “dead”

 So look at the “live” branch…

Breaking Protection 54

Function at 004033D1
 Note XOR at 403431

o Appear to be XORing within a loop
o Note that XORing a constant value

 Beginning at 4033DD we see 4034DD put
into [ebp-20h], via the stack
o What’s special about address 4034DD??

 At 403410, use [ebp-20h] to get initial
address for XORing

 Aha --- the decryption loop!

Breaking Protection 55

Decrypted Code
 Use OllyDbg and breakpt at end of

decryption loop (40346B)
 Then OllyDbg shows the following

 Tell OllyDbg to re-analyze code
o Reveals many pages of decrypted code

Breaking Protection 56

Decrypted Code
 Code digs thru NTDLL’s PE header

o Gets export directory

 For each export, “performs an
interesting … bit of arithmetic on
each function name string”

 Code is on next slide…

Breaking Protection 57

Unusual Calculation

 Debugger: [ebp-68] is
len. of current string
o [ebp-64] has its address

 Then for each char in
string, shifts left by
its index, modulo 24

 What the… ?
 It’s a “checksum”

Breaking Protection 58

NTDLL
 After all chars have been processed…

 What’s going on here?
 Looking for an export entry (NTDLL)

that has “checksum” 39DBA17A
 Put a breakpoint on line after JNZ…

o …and [ebp-64] shows you what was found

Breaking Protection 59

Allocate Memory
 It turns out that it calls
o NtAllocateVirtualMemory

 Which is (undocumented) native API
equivalent of document API
o VirtualAlloc

 It’s for allocating memory pages

Breaking Protection 60

Read Time-stamp Counter
 Code to call NtAllocateVirtualMemory
 What is RDTSC?

o “Read time-
stamp counter”

o A 64-bit
counter,
incremented at
each tick

Breaking Protection 61

Parameters
 Timestamp bits ANDed with constant
 2nd parameter

to memory alloc.
function

 Look at function
prototype
o Undocumented

Breaking Protection 62

Base Address
 2nd param points to “base address”
 This is where

memory will be
allocated

Breaking Protection 63

Allocate Memory
 What just happened?
 Generated a “random” number using

timer
 Use this random number as location

(base address) for allocated memory
 Interesting idea!

Breaking Protection 64

Parameters
 Consider also 4th parameter

o This gives the allocated block size

 Loaded from [ebp-4]
 Code on next slide involved with find

block size…

Breaking Protection 65

Parameters
 Consider 4th parameter
 Recall [ebp+8] is

NTDLL base addr
 Accesses PE hdr
 Ptr to PE hdr

stored in [ebp-74]
 Get offset +1c

Breaking Protection 66

Parameters
 PE header ==>
 What’s at +1c?

o That is, at +4 in
OptionalHeader

 SizeOfCode

Breaking Protection 67

Size Calculation
 Code below related to size calculation
 Value read from [ebp-7c] points into

NTDLL header
o Beginning of NTDLL’s export directory

 Q: What’s at offset +18?
 A: NumberOfFunctions

Breaking Protection 68

Block Size
 Final preparation of block size

 So computed block size is…
o NTDLLcodesize + NumExports * 8 + 8

 Why?
 Not clear at this point…

Breaking Protection 69

Checksum
 Another strange checksum

o This time, NTDLL’s export list

 Includes following 2 lines:

 First, is function’s checksum
 Second is function’s RVA

Breaking Protection 70

Interesting Code
 More “interesting” code

Breaking Protection 71

Memory Copy
 Code on previous slide is a common

“sentence” in assembly code
 A memory copy

o REP MOV repeatedly copies DWORDS
from address at ESI to address at EDI
until ECX is 0

 So, what is being copied?

Breaking Protection 72

Memory Copy
 ESI is loaded with [ebp+8]
 Why is that familiar?
 NTDLL’s base address
 Then increment by value at [eax+2c]

o BaseOfCode

 EDI gets addr of new memory block

Breaking Protection 73

What Just Happened?
 To recap…
 Memory allocated at random location
 In this memory, write a table of

o Checksums of NTDLL exported functions
o Corresponding RVAs

 Finally, write a copy of entire NTDLL
code section

Breaking Protection 74

Data Structure

 Representation of
description on previous
slide

Breaking Protection 75

What’s Next?
 After this, next function starts with…

 Followed by…

Breaking Protection 76

Searching For…
 What does this do?

 Goes thru export table…
 …looking for checksum 190BC2
 That is, looking for a specific API

Breaking Protection 77

Found It —But What Is It?
 This is what happens when entry found

 Where have we (just) seen offset +4?
 Apparently, that’s the RVA

o Gets added to “base address” of NTDLL

Breaking Protection 78

Leaving User Mode
 Later, we have this…

 …which (eventually) calls this

 SYSENTER is “kernel-mode switch”
o So cannot follow with OllyDbg

Breaking Protection 79

What Now?
 How to determine which system call?
 Three choices…

o Switch to kernel mode debugger (SoftICE)
o Find RVA from checksum table (it’s probably

the same as actual RVA in NTDLL)
o Find system call based on order in checksum list

(and hope order wasn’t changed)
 Author chooses first option — SoftICE

Breaking Protection 80

System Call
 First, it goes into KiSystemService

o All system calls go thru this function
o Look for CALL EBX, which transfers to actual

system call
o In this case, it’s NtAllocateVirtualMemory
o Again???

 Then back to user mode…
 …and program calls NtCreateThread

Breaking Protection 81

Thread and Then…
 After creating thread, calls

“function” 006DEF20
 Find that this is NtDelayExecution

o Equivalent to SleepEx
 This should “cause new thread to

execute immediately”
 Then calls “function” 403A41

Breaking Protection 82

Function 403A41
 Function call just skips ahead 30 bytes
 Those 30 bytes consist of…

 Function’s only purpose is to avoid
“executing” this string!

 Then searches for 2 more “functions”
o 6DEF20 and 1974C

Breaking Protection 83

SoftICE Disappears
 Before getting to function 1974C,

SoftICE disappears
o Defender has quit

 Apparently, secondary thread has
killed primary thread
o Secondary thread that was just created

Breaking Protection 84

Reversing Secondary Thread
 This code is encrypted, like before
 Set breakpoint after it’s decrypted
 Obtain code on next few slides…

Breaking Protection 85

Function at 00402FFE (I)

 More dead
code at line
4030C7?

 Note RDTSC
at line 403007

Breaking Protection 86

Function at 00402FFE (II)
 Note second

RDTSC

 Subtracted
from first
RDTSC ???

Breaking Protection 87

Function at
00402FFE (III)
 Infinite loop at

line 4030C2?
 Comparison with

constant at line
403077…

 What “function”
is 1BF08AE?

Breaking Protection 88

“Function” at 1BF08AE
 Stepping into this, the compare

(almost) always fails
 This code is checking a to see if

process is paused
o Recall the 2 calls to RTDSC

 If paused, process is terminated
 What’s the purpose?

Breaking Protection 89

Defeating “Killer” Thread
 Patch code to avoid check…

 However, you cannot save this change
o So, must do this in each debug session

 Why can’t you save this change?
o Not clear at this point… we’ll see later

Breaking Protection 90

“Function” 1974C
 This one is not a call into kernel
 Instead, code contained in NTDLL
 How to determine what API?

o Use RVA or its order in table
o Author uses order in export table

 Finds result on next slide…

Breaking Protection 91

Loading KERNEL32.DLL

 What is LdrLoadDll?
 Native API version of LoadLibrary
 What DLL is it loading?
 We saw a name earlier: KERNEL32.DLL

Breaking Protection 92

Loading KERNEL32.DLL
 As with NTDLL, Defender generates

checksum/RVA table
 Then inserts code section of

KERNEL32.DLL

Breaking Protection 93

After Loading KERNEL3.DLL
 Another “function” skips 30 bytes or so
 What are those bytes?

 Defender’s welcome message
o Ready to be printed out!

Breaking Protection 94

KERNEL32.DLL
 Next, obfuscated call to something in

KERNEL32.DLL
 What could this be?

 No need to work too hard…
 …this must be printing welcome msg

Breaking Protection 95

Re-Encrypting
 At end of this function, we have

 JMP is far away, but we’ve been there…

Breaking Protection 96

Re-Encrypting

Breaking Protection 97

Re-Encrypting
 Dead code … NOT!
 This code very similar to decryption

o Convincing “dead code”?
 But actually encryption code

o Computes checksum of encrypted code
o Jumps to end of encrypted code

 Why re-encrypt???

Breaking Protection 98

Back at the Entry Point

 Blah

Breaking Protection 99

Back at the Entry Point
 Blah

Breaking Protection 100

Parsing Parameters
 Blah

Breaking Protection 101

Parsing Parameters
 Blah

Breaking Protection 102

Parsing Parameters
 Blah

Breaking Protection 103

Processing Username
 Blah

Breaking Protection 104

Processing Username
 Blah

Breaking Protection 105

User Info
 Formula used to validate user input

Breaking Protection 106

User Info
 Blah

Breaking Protection 107

User Info
 Blah

Breaking Protection 108

User Info
 Blah

Breaking Protection 109

Unlocking Code

Breaking Protection 110

Brute-Forcing

Breaking Protection 111

Brute-Forcing
 Blah

Breaking Protection 112

Brute-Forcing
 Blah

Breaking Protection 113

Brute-Forcing
 Blah

Breaking Protection 114

Brute-Forcing
 Blah

Breaking Protection 115

Brute-Forcing
 Blah

Breaking Protection 116

Brute-Forcing
 Blah

Breaking Protection 117

Brute-Forcing
 Blah

Breaking Protection 118

Brute-Forcing
 Blah

Breaking Protection 119

Brute-Forcing
 Blah

Breaking Protection 120

Brute-Forcing

 Blah

Breaking Protection 121

Brute-Forcing
 Blah

Breaking Protection 122

Brute-Forcing
 Blah

Breaking Protection 123

Brute-Forcing
 Blah

Breaking Protection 124

Brute-Forcing
 Blah

Breaking Protection 125

Brute-Forcing
 Blah

Breaking Protection 126

Brute-Forcing
 Blah

Breaking Protection 127

Brute-Forcing

Breaking Protection 128

Cracking Defender: Summary

Breaking Protection 129

Protections in Defender

Breaking Protection 130

Localized Encryption

Breaking Protection 131

Obfuscation

Breaking Protection 132

Time-Stamp Thread

Breaking Protection 133

Decryption Keys

Breaking Protection 134

Inlining

Breaking Protection 135

Conclusions

Breaking Protection 136

Assignment
 Rip keygen code from “keygen.exe”

o http://www.cs.sjsu.edu/~stamp/CS286/progs/keygen.exe.zip

 Make a separate app that generates valid
serial number for given ID/username

 Test on each of following ID/usernames
o aaaaa
o qwert
o qwerty

