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8. To iterate or not to iterate, that is the question.

iters = iters+ 1
� = |logProb� oldLogProb|

if(iters < minIters or � > ") then
oldLogProb = logProb

goto 3.
else

return � = (A,B,⇡)
end if

2.9 The Bottom Line

Hidden Markov models are powerful, e�cient, and extremely useful in prac-
tice. Virtually no assumptions need to be made, yet the HMM process can
extract significant statistical information from data. Thanks to e�cient train-
ing and scoring algorithms, HMMs are practical, and they have proven useful
in a wide range of applications. Even in cases where the underlying assump-
tion of a (hidden) Markov process is questionable, HMMs are often applied
with success. In Chapter 9 we consider selected applications of HMMs. Most
of these applications are in the field of information security.

In subsequent chapters, we often compare and contrast other machine
learning techniques to HMMs. Consequently, a clear understanding of the
material in this chapter is crucial before proceeding with the remainder of
the book. The homework problem should help the dedicated reader to clarify
any remaining issues. And the applications in Chapter 9 are highly recom-
mended, with the English text example in Section 9.2 being especially highly
recommended.

2.10 Problems

When faced with a problem you do not understand,

do any part of it you do understand, then look at it again.

— Robert Heinlein

1. Suppose that we train an HMM and obtain the model � = (A,B,⇡)
where

A =

✓
0.7 0.3
0.4 0.6

◆
, B =

✓
0.1 0.4 0.5
0.7 0.2 0.1

◆
, ⇡ =

�
0.0 1.0

�
.
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Furthermore, suppose the hidden states correspond to H and C, re-
spectively, while the observations are S, M , and L, which are mapped
to 0, 1, and 2, respectively. In this problem, we consider the observation
sequence O = (O0,O1,O2) = (M,S,L) = (1, 0, 2).

a) Directly compute P (O |�). That is, compute

P (O |�) =
X

X

P (O, X |�)

using the probabilities in � = (A,B,⇡) for each of the following
cases, based on the given observation sequence O.

P (O, X = HHH) = · · · · · =

P (O, X = HHC) = · · · · · =

P (O, X = HCH) = · · · · · =

P (O, X = HCC) = · · · · · =

P (O, X = CHH) = · · · · · =

P (O, X = CHC) = · · · · · =

P (O, X = CCH) = 1.0 · 0.2 · 0.6 · 0.7 · 0.4 · 0.5 =

P (O, X = CCC) = · · · · · =

The desired probability is the sum of these eight probabilities.

b) Compute P (O |�) using the ↵ pass. That is, compute

↵0(0) = · =

↵0(1) = 1.0 · 0.2 =

↵1(0) = ( · + · ) · =

↵1(1) = ( · + · ) · =

↵2(0) = ( · + · ) · =

↵2(1) = ( · + · ) · =

where we initialize

↵0(i) = ⇡ibi(O0), for i = 0, 1, . . . , N � 1

and the recurrence is

↵t(i) =

 
N�1X

j=0

↵t�1(j)aji

!
bi(Ot)

for t = 1, 2, . . . , T�1 and i = 0, 1, . . . , N�1. The desired probability
is given by

P (O |�) =
N�1X

i=0

↵T�1(i).
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c) In terms of N and T , and counting only multiplications, what is the
work factor for the method in part a)? What is the work factor for
the method in part b)?

2. For this problem, use the same model � and observation sequence O

given in Problem 1.

a) Determine the best hidden state sequence (X0, X1, X2) in the dy-
namic programming sense.

b) Determine the best hidden state sequence (X0, X1, X2) in the HMM
sense.

3. Summing the numbers in the “probability” column of Table 2.2, we
find P (O |�) = 0.009629 for O = (0, 1, 0, 2).

a) By a similar direct calculation, compute P (O |�) for each observa-
tion sequence of the form O = (O0,O1,O2,O3), where Oi 2 {0, 1, 2}.
Verify that

P
P (O |�) = 1, where the sum is over the observation

sequences of length four. Note that you will need to use the proba-
bilities for A, B, and ⇡ given in equations (2.4), (2.5), and (2.6) in
Section 2.2, respectively.

b) Use the forward algorithm to compute P (O |�) for the same obser-
vation sequences and model as in part a). Verify that you obtain
the same results as in part a).

4. From equation (2.9) and the definition of ↵t(i) in equation (2.10), it
follows that

↵t(i)=
X

X

⇡
X0
b
X0
(O0)aX0,X1

b
X1
(O1) · · · aXt�2,Xt�1

b
Xt�1

(Ot�1)aXt�1,i
bi(Ot)

where X = (X0, X1, . . . , Xt�1). Use this expression for ↵t(i) to directly
verify the forward algorithm recurrence

↵t(i) =

 
N�1X

j=0

↵t�1(j)aji

!
bi(Ot).

5. As discussed in this chapter, the forward algorithm is used solve HMM
Problem 1, while the forward algorithm and backward algorithm to-
gether are used to compute the gammas, which are then used to solve
HMM Problem 2.

a) Explain how you can solve HMM Problem 1 using the backward
algorithm instead of the forward algorithm.
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b) Using the model � = (A,B,⇡) and the observation sequence O in
Problem 1, compute P (O |�) using the backward algorithm, and
verify that you obtain the same result as when using the forward
algorithm.

6. This problem deals with the Baum-Welch re-estimation algorithm.

a) Write the re-estimation formulae, as given in lines 3, 7, and 12 of
Algorithm 2.3, directly in terms of the ↵t(i) and �t(i).

b) Using the re-estimation formulae obtained in part a), substitute the
scaled values b↵t(i) and b�t(i) for ↵t(i) and �t(i), respectively, and
show that the resulting re-estimation formulae are exact.

7. Instead of using ct to scale the �t(i), we can scale each �t(i) by

dt = 1

�N�1X

j=0

e�t(j)

where the definition of e�t(i) is analogous to that of e↵t(i) as given in
Algorithm 2.6.

a) Using the scaling factors ct and dt show that the Baum-Welch re-
estimation formulae in Algorithm 2.3 are exact with b↵ and b� in place
of ↵ and �.

b) Write log
�
P (O |�)

�
in terms of ct and dt.

8. When training, the elements of � can be initialized to approximately
uniform. That is, we let ⇡i ⇡ 1/N and aij ⇡ 1/N and bj(k) ⇡ 1/M ,
subject to the row stochastic conditions. In Section 2.5.3, it is stated
that it is a bad idea to initialize the values to exactly uniform, since
the HMM would be stuck at a local maximum and hence it could not
climb to an improved solution. Suppose that ⇡i = 1/N and aij = 1/N
and bj(k) = 1/M . Verify that the re-estimation process leaves all of
these values unchanged.

9. In this problem, we consider generalizations of the HMM formulation
discussed in this chapter.

a) Consider an HMM where the state transition matrix is time depen-
dent. Then for each t, there is an N ⇥N row-stochastic At = {at

ij
}

that is used in place of A in the HMM computations. For such an
HMM, provide pseudo-code to solve HMM Problem 1.

b) Consider an HMM of order two, that is, an HMM where the un-
derlying Markov process is of order two. Then the state at time t
depends on the states at time t � 1 and t � 2. For such an HMM,
provide pseudo-code to solve HMM Problem 1.
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10. Write an HMM program for the English text problem in Section 9.2 of
Chapter 9. Test your program on each of the following cases.

a) There are N = 2 hidden states. Explain your results.

b) There are N = 3 hidden states. Explain your results.

c) There are N = 4 hidden states. Explain your results.

d) There are N = 26 hidden states. Explain your results.

11. In this problem, you will use an HMM to break a simple substitution
ciphertext message. For each HMM, train using 200 iterations of the
Baum-Welch re-estimation algorithm.

a) Obtain an English plaintext message of 50,000 plaintext characters,
where the characters consist only of lower case a through z (i.e., re-
move all punctuation, special characters, and spaces, and convert all
upper case to lower case). Encrypt this plaintext using a randomly
generated shift of the alphabet. Remember the key.

b) Train an HMM with N = 2 and M = 26 on your ciphetext from
part a). From the final B matrix, determine the ciphertext letters
that correspond to consonants and vowels.

c) Generate a digraph frequency matrix A for English text, where aij is
the count of the number of times that letter i is followed by letter j.
Here, we assume that a is letter 0, b is letter 1, c is letter 2, and so on.
This matrix must be based on 1,000,000 characters where, as above,
only the 26 letters of the alphabet are used. Next, add five to each
element in your 26⇥ 26 matrix A. Finally, normalize your matrix A
by dividing each element by its row sum. The resulting matrix A
will be row stochastic, and it will not contain any 0 probabilities.

d) Train an HMM with N = M = 26, using the first 1000 characters of
ciphertext you generated in part a), where the A matrix is initialized
with your A matrix from part c). Also, in your HMM, do not re-
estimate A. Use the final B matrix to determine a putative key
and give the fraction of putative key elements that match the actual
key (as a decimal, to four places). For example, if 22 of the 26 key
positions are correct, then your answer would be 22/26 = 0.8462.

12. Write an HMM program to solve the problem discussed in Section 9.2,
replacing English text with the following.

a) French text.

b) Russian text.

c) Chinese text.
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13. Perform an HMM analysis similar to that discussed in Section 9.2, re-
placing English with “Hamptonese,” the mysterious writing system de-
veloped by James Hampton. For information on Hamptonese, see

http://www.cs.sjsu.edu/faculty/stamp/Hampton/hampton.html

14. Since HMM training is a hill climb, we are only assured of reaching a
local maximum. And, as with any hill climb, the specific local maximum
that we find will depend on our choice of initial values. Therefore, by
training a hidden Markov model multiple times with di↵erent initial
values, we would expect to obtain better results than when training
only once.

In the paper [16], the authors use an expectation maximization (EM)
approach with multiple random restarts as a means of attacking ho-
mophonic substitution ciphers. An analogous HMM-based technique is
analyzed in the report [158], where the e↵ectiveness of multiple ran-
dom restarts on simple substitution cryptanalysis is explored in detail.
Multiple random restarts are especially helpful in the most challenging
cases, that is, when little data (i.e., ciphertext) is available. However,
the tradeo↵ is that the work factor can be high, since the number of
restarts required may be very large (millions of random restarts are
required in some cases).

a) Obtain an English plaintext message consisting of 1000 plaintext
characters, consisting only of lower case a through z (i.e., remove all
punctuation, special characters, and spaces, and convert all upper
case letters to lower case). Encrypt this plaintext using a randomly
selected shift of the alphabet. Remember the key. Also generate a
digraph frequency matrix A, as discussed in part c) of Problem 11.

b) Train n HMMs, for each of n = 1, n = 10, n = 100, and n = 1000,
following the same process as in Problem 11, part d), but using
the T = 1000 observations generated in part a) of this problem.
For a given n select the best result based on the model scores and
give the fraction of the putative key that is correct, calculated as in
Problem 11, part d).

c) Repeat part b), but only use the first T = 400 observations.

d) Repeat part c), but only use the first T = 300 observations.

15. The Zodiac Killer murdered at least five people in the San Francisco Bay
Area in the late 1960s and early 1970s. Although police had a prime
suspect, no arrest was ever made and the murders remain o�cially
unsolved. The killer sent several messages to the police and to local
newspapers, taunting police for their failure to catch him. One of these
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messages contained a homophonic substitution consisting of 408 strange
symbols.7 Not surprisingly, this cipher is known as the Zodiac 408.
Within days of its release, the Zodiac 408 was broken by Donald and
Bettye Harden, who were schoolteachers from Salinas, California. The
Zodiac 408 ciphertext is given below on the left, while the corresponding
plaintext appears on the right.

I L I K E K I L L I N G P E O P L
E B E C A U S E I T I S S O M U C
H F U N I T I S M O R E F U N T H
A N K I L L I N G W I L D G A M E
I N T H E F O R R E S T B E C A U
S E M A N I S T H E M O S T D A N
G E R O U E A N A M A L O F A L L
T O K I L L S O M E T H I N G G I
V E S M E T H E M O S T T H R I L
L I N G E X P E R E N C E I T I S
E V E N B E T T E R T H A N G E T
T I N G Y O U R R O C K S O F F W
I T H A G I R L T H E B E S T P A
R T O F I T I S T H A E W H E N I
D I E I W I L L B E R E B O R N I
N P A R A D I C E A N D A L L T H
E I H A V E K I L L E D W I L L B
E C O M E M Y S L A V E S I W I L
L N O T G I V E Y O U M Y N A M E
B E C A U S E Y O U W I L L T R Y
T O S L O I D O W N O R A T O P M
Y C O L L E C T I O G O F S L A V
E S F O R M Y A F T E R L I F E E
B E O R I E T E M E T H H P I T I

Note the (apparently intentional) misspellings in the plaintext, includ-
ing “FORREST”, “ANAMAL”, and so on. Also, the final 18 characters
(underlined in the plaintext above) appear to be random filler.

a) Solve the Zodiac 408 cipher using the HMM approach discussed in
Section 9.4. Initialize the A matrix as in part c) of Problem 11,
and do not re-estimate A. Use 1000 random restarts of the HMM,
and 200 iterations of Baum-Welch re-estimation in each case. Give
your answer as the percentage of characters of the actual plaintext
that are recovered correctly.

b) Repeat part a), but use 10,000 random restarts.

c) Repeat part b), but use 100,000 random restarts.

d) Repeat part c), but use 1,000,000 random restarts.

7The Zodiac 408 ciphertext was actually sent in three parts to local newspapers. Here,
we give the complete message, where the three parts have been combined into one. Also,
a homophonic substitution is like a simple substitution, except that the mapping is many-
to-one, that is, multiple ciphertext symbols can map to one plaintext symbol.
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e) Repeat part a), except also re-estimate the A matrix.

f) Repeat part b), except also re-estimate the A matrix.

g) Repeat part c), except also re-estimate the A matrix.

h) Repeat part d), except also re-estimate the A matrix.

16. In addition to the Zodiac 408 cipher, the Zodiac Killer (see Problem 15)
released a similar-looking cipher with 340 symbols. This cipher is known
as the Zodiac 340 and remains unsolved to this day.8 The ciphertext is
given below.

a) Repeat Problem 15, parts a) through d), using the Zodiac 340 in
place of the Zodiac 408. Since the plaintext is unknown, in each
case, simply print the decryption obtained from your highest scoring
model.

b) Repeat part a) of this problem, except use parts e) through h) of
Problem 15.

8It is possible that the Zodiac 340 is not a cipher at all, but instead just a random
collection of symbols designed to frustrate would-be cryptanalysts. If that’s the case, your
easily frustrated author can confirm that the “cipher” has been wildly successful.


