
A study of anti-virus’ response to unknown threats

Christophe Devine <devine(@t)bob.cat>

Nicolas Richaud <nicolas.richaud(@t)lab.b-care.net>

Abstract
This study presents the evaluation of twelve anti-virus products with regards to programs not
known from the signature files that show different kinds of malicious behavior. In practical terms, a
set of twenty-one tests implementing various actions were developed; they cover key-logging,
injection of code into other processes, network evasion, rootkit-like behaviour and exploitation of
software vulnerabilities. The test programs were then run against each anti-virus program, and
results were collected and consolidated. It was shown that all products tested here show
deficiencies in at least one area, and some in all areas. For example, eleven anti-virus programs
out of twelve still do not detect one code injection technique, which has been known for more than
five years. Programs that spy on the user, such as recording the microphone, are not detected at
all. Finally, this study provides recommendations to anti-virus vendors to enhance the capabilities
of their products to detect malware, and improve safeguards against known attack techniques.

Introduction
Detection of malicious programs has traditionnaly relied on signature-based analysis. This method
has the advantage of providing, in most cases, precise identification of the threat and relieves the
user from the burden of making an informed decision. However, signatures may prove inadequate
in several situations:

• When a new malware is being released in the wild, a small window of time exists between
the first infections and the release of updated signature files; the number of computers that
become infected will then be correlated to propagation speed of the malware [1].

• Targeted attacks exploiting “0-day” vulnerabilities that launch custom malicious code will
thwart signature-based analysis. Although not widespread, a few targeted attacks have
been identified in the past (for example, see [2]).

• Detecting a full range of known malware programs is a complex problem, as anti-virus are
constrained by CPU resources; a perfect detection rate is not feasible [3]. Furthermore,
users expect to be able to perform tasks without being hindered by their anti-virus program.

A new trend which has recently emerged is black-box detection of malware activity based on their
behaviour, as exemplified by in the works of [4] and [5]. This method has the advantage of being
able to detect malware in a more proactive fashion, at the cost of generating an higher number of
false positives.

Rather than focusing on theoritical aspects of behavioural detection, this study concentrates on
single test cases, each showing one particular method for performing a malicious action. Most
surveys of anti-virus products only tested their signature-based detection engines; nevertheless, a
few studies similar to this one do exist (such as [6]).

Methodology

Selection of anti-virus programs to be tested
The choice of products to be tested was based on their popularity, in order to cover the largest
installed based as possible. Furthermore, time constraints would not have allowed testing the full
range of all available anti-virus programs. Considering no recent and freely available study of anti-
virus market share could be found, we relied on three denominators to make our decision:

• Download statistics for the Anti-virus section of the Softpedia website [7],

• Google number of results for the query “download [name of anti-virus X]”,

• The anti-virus vendor had to provide a free evaluation version of his product.

An initial list of thirty-eight products was retrieved from Virustotal [8]. This list was then narrowed
down to twelve products chosen for subsequent testing, and are shown as follows:

Product name Version tested

avast! professional edition 4.8.1296

AVG Internet Security 8.0.200

Avira Premium Security Suite 8.2.0.252

BitDefender Total Security 2009 12.0.11.2

ESET Smart Security (NOD32) 3.0.672.0

F-Secure Internet Security 2009 9.00 build 149

Kaspersky Anti-Virus For Windows Workstations 6.0.3.837

McAfee Total Protection 2009 13.0.218

Norton 360 Version 2.0 2.5.0.5

Panda Internet Security 2009 14.00.00

Sophos Anti-Virus & Client Firewall 7.6.2

Trend Micro Internet Security Pro 17.0.1305

Table 1: List of evaluated anti-virus programs

A Windows XP operating system (english version) with SP3 integrated was installed inside a
VMware virtual machine. Two accounts were created, one with administrative rights (named
“localadmin”), and another without (“localuser”). No additional patches or configuration changes
were applied. A snapshot of the virtual machine state was then made, which served as the install
base as well as the control subject.

Then, each anti-virus was installed as a leaf of the snapshot made previously, and fully updated to
the latest version of the signatures. After this step, access to the internet was removed by
switching the network adapter from “NAT” to “Host-only” mode, to ensure the tests could be
reproduced identically for all anti-virus programs. It is important to note the anti-virus programs

were left in their default configuration. In a few cases, the user was asked about the type of
network he was connected to; we always chose the most restrictive setting (“public network”,
“internet”, etc.).

The installation phase was conducted between the 10th and 12th of December 2008.

Figure 1: VMware snapshot tree

Selection of the tests to be performed
Tests to be run were selected as being able to represent a wide range of malicious behaviors that
may be found “in the wild”. For this purpose, research articles documenting specific malware were
consulted (notably [9] and [10]), as well as “hacking” tutorials available on the Internet.

Identified malicious behaviors were implemented as series of single tests. Each test only contained
the strictest number of operations required for the action to be completed successfully (for
example, capturing keystrokes). After a test was run, the virtual machine was reset to the current
snapshot, to prevent unwanted interaction between tests.

Three checks were added in each test program to prevent accidental execution outside the virtual
machine:

• A warning message box is shown and allows cancelling the operation,

• The current computer name is checked against the expected computer name,

• The address of the Interrupt Descriptor Table is checked to verify the program is running
inside VMware [11].

Some tests did require administrative privileges and are shown with [A] in from of them. Tests,
which have been run from a non-privileged user account, are shown with [U].

The testing phase was conducted between the 14th and 19th of December 2008. Final tests were
performed between the 7th and 9th of January 2009.

Limits of this study
• The tests only cover the evaluation versions of aforementioned anti-virus products and may

generate different results from the paying versions.

• This study focused on HIPS-like (on-the-fly) detection of malicious behavior. Henceforth, it
may not be relevant to the scanning capabilities of said products.

• This set of tests is limited and does not cover typical methods for malware to become
persistent across reboots (such as the adding or modification of registry keys).

• Each test program was run for a limited amount of time (typically, one minute).

Test results

Keyloggers
This series of tests includes six keylogging techniques, three of which can be run from user space
and do not require administration privileges. Others require the loading of a kernel driver, and were
originally developed by Thomas Sabono [12] for the purpose of testing anti-rootkit programs.

• [U] testA01: The GetRawInputData() API was introduced in Windows XP to access input
devices at a low level, mainly for DirectX-enabled games. This function was documented in
2008 on the Firewall Leak Tester [6] web site.

• [U] testA02 installs a WH_KEYBOARD_LL windows hook to capture all keyboard events
(contrary to the WH_KEYBOARD hook, it does not inject a DLL into other processes).

• [U] testA03: The GetAsyncKeyState() API allows querying the state of the keyboard
asynchronously.

• [A] testA11 hooks the keyboard driver’s IRJ_MJ_READ function.

• [A] testA12 hooks the keyboard driver’s Interrupt Service Request.

• [A] testA13 installs a “chained” device driver which places itself between the keyboard
driver and upper level input device drivers.

The tests were run for one minute, during which keys were entered. The output of each sample
was then checked.

Product
name

testA01 testA02 testA03 testA11 testA12 testA13

avast! No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

AVG No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Avira No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

BitDefender No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

ESET No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Product
name

testA01 testA02 testA03 testA11 testA12 testA13

F-Secure No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Kaspersky No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

McAfee No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Norton No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Panda No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Sophos No alert; keys
logged.

No alert; keys
logged.

No alert;
keys logged.

User
alerted; keys
logged.

User
alerted; keys
logged.

User alerted;
keys logged.

Trend Micro No alert; keys
logged.

Program
blocked; user
alerted and
prompted for
action.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

No alert;
keys logged.

Table 2: Results of testing keyloggers

• Sophos warned the user about the loading of a kernel driver (rule “HIPS-/RegMod-013”),
but did not prevent it from loading. It copied the driver in quarantine and recommended the
user to send the sample to Sophos labs.

• Trend Micro detected and blocked the WH_KEYBOARD_LL hook. However the message
shown was incorrect: it identified the threat at “Program Library Injection”.

• Kaspersky did not detect the loading of a malicious kernel driver, but warned the user four
times when the program DbgView was run to inspect the driver’s output.

• The default configuration of Kaspersky anti-virus leaves the rules for detecting windows
hooks and keyloggers unchecked. When both rules are enabled, Kaspesky detects and
blocks testA02 and testA03.

Figure 2: Kaspersky’s “Proactive Defense” default configuration screen

Code injection and network access
This series of tests stresses the capabilities of anti-virus programs to prevent the unauthorized
hijacking of a process by another, as well as attempts to access the network (for example, to
upload gathered information or send spam).

• [A] testA21 installs a service running with SYSTEM privileges. It can operate as a server,
listening on incoming connections on port 12345 and offering the client a CMD shell. It may
also operate in the opposite direction, by initiating an outgoing connection.

• [U] testA22 starts Internet Explorer and attempts to inject its DLL into the target process
using the QueueUserAPC() API. Then an outgoing connection on port 8080 is initiated; if
successful, a CMD shell is attached.

• [A] testA23 is a passive network monitor; it captures HTTP traffic, using a RAW socket (this
method does not require the loading of a separate driver).

• [U] testA31 tries to inject its DLL into Notepad using the CreateRemoteThread() API.

• [U] testA32 tries to inject its DLL into interactive processes with a WH_KEYBOARD
windows hook.

It should be noted that both testA22 and testA31 do not require the use of WriteProcessMemory().
Instead, the string “l32.dll” is searched inside the target executable, and the directory containing
the DLL is added to the user’s PATH environment variable.

Product
name

testA21 (bind
shell)

testA21
(reverse
connect)

testA22 testA23 testA31 testA32

avast! No alert; but
incoming
connection
blocked.

No alert; shell
connected
successfully.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Product
name

testA21 (bind
shell)

testA21
(reverse
connect)

testA22 testA23 testA31 testA32

AVG Incoming
connection
detected and
blocked; user
alerted and
prompted for
action.

Outgoing
connection
detected and
blocked; user
alerted and
prompted for
action.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Avira Listening
socket blocked;
user alerted
and prompted
for action.

Outgoing
connection
detected and
blocked; user
alerted and
prompted for
action.

No alert;
shell
connected
successfully.

Access to
raw
sockets
blocked;
user
alerted and
prompted
for action.

Program
blocked;
user
alerted and
prompted
for action.

No alert;
DLL
injected.

BitDefender Listening
socket blocked;
user alerted
and prompted
for action.

Outgoing
connection
detected and
blocked; user
alerted and
prompted for
action.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

ESET No alert; but
incoming
connections
blocked.

No alert; shell
connected
successfully.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

F-Secure Listening
socket blocked;
user alerted
and prompted
for action.

No alert; shell
connected
successfully.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Kaspersky No alert; but
incoming
connection
blocked.

CMD shell
execution
blocked; user
alerted and
prompted for
action.

CMD shell
execution
blocked;
user alerted
and
prompted for
action.

No alert;
packets
captured.

Program
blocked;
user
alerted and
prompted
for action.

No alert;
DLL
injected.

McAfee Listening
socket blocked;
user alerted
and prompted
for action.

No alert; shell
connected
successfully.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Product
name

testA21 (bind
shell)

testA21
(reverse
connect)

testA22 testA23 testA31 testA32

Norton No alert; shell
connected
successfully.

No alert; shell
connected
successfully.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Panda Incoming
connection
detected and
blocked; user
alerted and
prompted for
action.

No alert; shell
connected
successfully.

No alert;
shell
connected
successfully.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Sophos Listening
socket blocked;
user alerted
and prompted
for action.

Outgoing
connection
detected and
blocked; user
alerted and
prompted for
action.

Access to
network
blocked;
user alerted
and
prompted for
action.

No alert;
packets
captured.

No alert;
DLL
injected.

No alert;
DLL
injected.

Trend Micro Listening
socket blocked;
user alerted
and prompted
for action.

Outgoing
connection
detected and
blocked; user
alerted and
prompted for
action.

Attempt to
execute
Internet
Explorer
blocked;
user alerted
and
prompted for
action.

No alert;
packets
captured.

Program
blocked;
user
alerted and
prompted
for action.

Program
blocked;
user alerted
and
prompted
for action.

Table 3: Results of testing code injection and network access

• Surprisingly, Norton 360 allowed incoming connections on TCP port 12345, even though
other ports such as SMB (TCP 139, 445) were blocked.

• Most firewalls could be bypassed by injecting a DLL with the QueueUserAPC() API.
Nonetheless, Sophos detected a connection attempt was made from a DLL inside
IEXPLORE.EXE, and Trend Micro directly blocked the launching of Internet Explorer.

• Once again, Kaspersky’s default configuration prevented it from detecting the
WH_KEYBOARD windows hook. It did detect, however, the redirection of the CMD shell’s
input/output handles and warned the user of a possible hacking attempt.

• Apart from Trend Micro, the WH_KEYBOARD hook was not detected. This allowed
injecting a DLL in several programs, including the anti-virus’ main GUI component.

User-mode and kernel-mode malicious activities
This section contains three tests covering various user-monitoring activities, developed at Thales in
2008 by Jean-Jamil Khalifé during his internship. It also features another set of techniques
representative of classic rootkit behavior.

• [U] testA41 captures the contents of the clipboard repeatedly using the GetClipboardData()
API. After one minute, the results of the capture are examined.

• [U] testA42 records surrounding sounds from the microphone present in the laptop used for
the tests. For this purpose, a set of sound APIs are used (waveInAddBuffer, etc.). After
recording for one minute, the resulting audio file is listened to.

• [U] testA43 captures the screen every three seconds using the BitBlt() API for one minute.
The screenshots are then examined.

• [A] testA51 installs a simple backdoor by accessing \Device\PhysicalMemory (as described
in [13]), and patches the SeAcessCheck() kernel function following [14]. After this is done,
an attempt to terminate the spoolsv.exe service is done under a normal user account. This
action is normally denied, but will be allowed if the backdoor functions properly.

• [A] testA52 opens \\.\PhysicalDrive0 and injects its code in the Master Boot Record (MBR).
The new boot sector is largely based on eEye’s BootRoot [15], but patches instead
NTLDR’s checksum verification code, then SeAccessCheck(). After rebooting, the same
check (terminating spoolsv.exe under a non-privileged account) is done.

• [A] testA53 installs a kernel driver and hooks ZwQueryDirectoryFile() by modifying the
System Service Dispatch Table (SSTD); the code is based on the implementation provided
in [16]. It hides any file beginning with the word “AVBTS”.

Product
name

testA41 testA42 testA43 testA51 testA52 testA53

avast! No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

AVG No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

Avira No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

Detected as
TR/Dropper.GEN

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

http://fr.wikipedia.org/wiki/System_Service_Dispatch_Table
file:////./PhysicalDrive0

Product
name

testA41 testA42 testA43 testA51 testA52 testA53

BitDefender No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

ESET No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

F-Secure No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

Kaspersky No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

Program
blocked; user
alerted and
prompted for
action.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

McAfee No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

Norton No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

Panda No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

Sophos No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

User alerted;
file hidden.

Trend Micro No alert;
clipboard
contents
captured.

No alert;
microphone
recorded.

No alert;
screen
captured.

No alert; RAM
modified;
backdoor
functional.

No alert;
MBR
modified;
backdoor
functional.

No alert; file
hidden.

Table 4: Results of testing user-mode and kernel-mode malicious activities

• Kaspersky blocked the attempt to access physical memory, whereas Avira detected this
sample as “TR/Dropper.GEN” and blocked its execution.

• Similarly to kernel-mode keylogger tests, Sophos detected the loading of a kernel driver.

• All other tests were not detected.

Exploitation of vulnerabilities
Finally, this series of tests covers the exploitation of three relatively recent vulnerabilities.

• testA61 exploits the MS08-067 vulnerability, made public in October 2008 [17]. A buffer
overflow in the Computer Browser service allows gaining full control over the target
machine. Metasploit 3 [18] was used to perform the attack; for the purpose of this test, the
firewall component of the anti-virus was disabled.

• [U] testA62 exploits the util.printf() buffer overflow vulnerability in Adobe’s Acrobat Reader,
made public in November 2008 [19]. In this test, version 8.1.2 of Acrobat was exploited with
a modified version of the PDF file posted on the milw0rm.com website.

• [U] testA63 exploits a stack overflow in VLC version lesser or equal to 0.9.4, made public in
November 2008 [20]. Similarly, the malicious MPEG file was downloaded from milw0rm.

Product
name

testA61 testA62 testA63

avast! No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

AVG No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

Avira No alert; vulnerability
exploitation successful.

Detected as
HTML/Shellcode.Gen; user
alerted and prompted for
action.

No alert; vulnerability
exploitation successful.

BitDefender No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

ESET No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

F-Secure No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

Kaspersky CMD shell execution
blocked; user alerted and
prompted for action.

No alert; vulnerability
exploitation successful.

No alert; but exploit failed
silently.

Product
name

testA61 testA62 testA63

McAfee Program blocked; user
alerted and prompted for
action.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

Norton No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

Panda No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

Sophos User alerted; but vulnerability
exploitation successful.

Detected as Troj/PDFJs-B
and quarantined; user
alerted.

No alert; vulnerability
exploitation successful.

Trend Micro No alert; vulnerability
exploitation successful.

No alert; vulnerability
exploitation successful.

Program blocked; user
alerted and prompted for
action.

Table 5: Results of testing the exploitation of vulnerabilities

• Kaspersky, McAfee and Sophos were able to detect the execution of Metasploit’s
windows/shell_bind_tcp shellcode, but reacted differently. Kaspersky and McAfee blocked
the shellcode, whereas Sophos let it run.

• Avira and Sophos detected the presence of a malicious JavaScript, even though the
JavaScript code in the original exploit was rewritten to avoid signature-based detection.

• Trend Micro warned the user about “Shell Modification” activity from within vlc.exe. This
activity was flagged as having a low risk (this is the same generic warning as for testA31):

Figure 3: Trend Micro’s warning after exploiting the VLC vulnerability

Conclusion and future work

One main disadvantage of our testing methodology was the requirement to perform all tests by
hand. This made running the test suite against the panel of anti-virus programs very time-
consuming. A possible evolution will be to run each test automatically using a predefined script;
this poses the problem of detecting if the malicious action completed successfully, as well as
detecting if the anti-virus picked up the threat.

It may be tempting to add an increasing number of tests in the future. Those may not be pertinent
however, as malware authors will generally use the simplest method not detected by anti-virus
programs. Why use advanced code injection techniques when a classic windows hook remains
undetected? As such, this study hopes to raise the bar for malware authors, by encouraging
companies that produce anti-malware products to take into account the different techniques
presented in this study.

Adding new behavioural patterns will of course pose the problem of false positives; this may be
mitigated using whitelisting, as well as providing users with correct and informative alert messages.

Finally, it is to be hoped the problems and lost revenue caused by malware will loose relevance as
more secure computing architecture come forward, such as those base on sandboxed virtual
machine (Java, Flash…) and more fine-grained access control. In this regard, the addition of UAC
in Windows Vista, however flawed it may be [21], is a step in the right direction.

References

[1] Zesheng Chen, Chuanyi Ji: An Information-Theoretical View of Network-Aware Malware
Attacks. CoRR abs/0805.0802: (2008)

[2] “The Microsoft Security Response Center (MSRC) : Update on Microsoft Excel Vulnerability”, as
retrieved from http://blogs.technet.com/msrc/archive/2006/06/17/436860.aspx

[3] Shobha Venkataraman, Avrim Blum, Dawn Song: Limits of Learning-based Signature
Generation with Adversaries. Proceedings of the 15th Annual Network and Distributed Systems
Security Symposium (2008)

[4] Eric Filiol, Grégoire Jacob, Mickaël Le Liard: Evaluation methodology and theoretical model for
antiviral behavioural detection strategies. Journal in Computer Virology 3(1): 23-37 (2007)

[5] Sébastien Josse: Rootkit detection from outside the Matrix. Journal in Computer Virology 3(2):
113-123 (2007)

[6] Guillaume Kaddouch: Firewall Leak Tester, http://www.firewallleaktester.com/

[7] http://www.softpedia.com/get/Antivirus/

[8] http://www.virustotal.com/sobre.html

[9] Heng Yin, Zhenkai Liang, Dawn Song: HookFinder: Identifying and Understanding Malware
Hooking Behaviors. Proceedings of ISOC NDSS 2008.

[10] Jamie Butler and Kris Kendal: Blackout: What Really Happened. Black Hat USA 2008

[11] Joanna Rutkowska: Red Pill... or how to detect VMM using (almost) one CPU instruction,
retrieved from http://www.invisiblethings.org/papers/redpill.html

[12] Thomas Sabono: La fiabilité des logiciels anti-rookits Windows 32 bits. SSTIC 2007

[13] “crazyload”: Playing with Windows /dev/(k)mem. Phrack 59 (2002)

[14] Greg Hoglund: A real NT Rootkit, patching the NT Kernel. Phrack 55 (1999)

[15] Derek Soeder and Ryan Permeh: eEye BootRoot. Black Hat USA 2005.

[16] Greg Hoglund, James Butler: Rootkits: Subverting the Windows Kernel. Addison Wesley,
ISBN 0-321-29431-9 (2006)

[17] Vulnerability in Server Service Could Allow Remote Code Execution, as retrieved from
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx

[18] http://www.metasploit.com/framework/download/

[19] CVE-2008-1104: http://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-2992

[20] CVE-2008-4654: http://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-4654

[21] Robert Paveza: User-Prompted Elevation of Unintended Code in Windows Vista, as retrieved
from http://www.robpaveza.net/VistaUACExploit/UACExploitWhitepaper.pdf

http://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-4654
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2008-2992
http://www.metasploit.com/framework/download/
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.invisiblethings.org/papers/redpill.html
http://www.virustotal.com/sobre.html
http://www.softpedia.com/get/Antivirus/
http://www.firewallleaktester.com/
http://www.informatik.uni-trier.de/~ley/db/journals/virology/virology3.html#Josse07
http://www.informatik.uni-trier.de/~ley/db/journals/virology/virology3.html#FiliolJL07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liard:Micka=euml=l_Le.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jacob:Gr=eacute=goire.html
http://blogs.technet.com/msrc/archive/2006/06/17/436860.aspx

	Abstract
	Introduction
	Methodology
	Selection of anti-virus programs to be tested
	Selection of the tests to be performed
	Limits of this study

	Test results
	Keyloggers
	Code injection and network access
	User-mode and kernel-mode malicious activities
	Exploitation of vulnerabilities

	Conclusion and future work

