Attacks on PRNGs

 Nupura Neurgaonkar

Attacks on Pseudo Random Number Generators

Nupura Neurgaonkar

April 14th, 2003
Introduction and Motivation

What is a Pseudo Random Number Generator (PRNG)?

PRNG is a mechanism for generating random numbers on a computer. They are called pseudorandom, because you can't get truly random numbers from a completely non-random, deterministic thing like computer. In theory, true random numbers only come from truly random sources: atmospheric noise, radioactive decay, thermal noise of semiconductor diodes or precise timing of Geiger counter clicks. It is hard to imagine a well-designed cryptographic application that doesn't use random numbers. Session keys, initialization vectors, salts, unique parameters in digital signature operations, and nonces are all assumed to be random by system designers. Unfortunately, many cryptographic applications don't have a reliable source of real random bits; instead, they use a cryptographic mechanism, called a Pseudo-Random Number Generator to generate these values. The PRNG collects randomness from various low-entropy input streams and tries to generate outputs that are in practice indistinguishable from truly random streams.

In this report, I will present how PRNGs work and the possible attacks on PRNGs by giving a specific example of real-world PRNGs.

Why study PRNGs?

1. A PRNG is its own kind of cryptographic primitive, which has not so far been examined in the literature. People don't think much about pseudo random generators, but they are used just about everywhere in cryptography. Random numbers are in session keys, initialization vectors, public-key generation, and many other places.

2. A PRNG is a single point of failure for many real-world cryptosystems. If the random numbers are insecure, then the entire application is insecure. An attack on the PRNG can make irrelevant the careful selection of good algorithms and protocols.

3. Many systems use badly designed PRNGs, or use them in ways that make various attacks easier than they need be.

PRNG Design

Typical PRNG consists of unpredictable input called “seed” value and a secret state “S”. Software approaches use machine state information like movement of the mouse, keystrokes, contents of memory registers, and hardware latency to create a seed value. PRNGs operate by repeatedly scrambling the seed to generate random output. Typically, the seed is a short, random number that the PRNG expands into a longer, random-looking bitstream.

A PRNG often starts in a random state and must process many seeds to reach a secure state S. Upon request, it must generate outputs that are indistinguishable from random numbers to an attacker who doesn’t know and cannot guess S. In this, it is very similar to a stream cipher. Additionally, however, a PRNG must be able to alter its secret state by repeatedly processing input values (seed).

See Figure 1 for a high-level view of a PRNG.

[image: image1.png]pseudo-random outputs
generate

unpredictable inputs

 Fig 1. Model of PRNGs
Classes of Attacks

PRNGs are typically constructed from other cryptographic primitives, such as block ciphers, hash functions, and stream ciphers. There is a natural tendency to assume that the security of these underlying primitives will translate to security for the PRNG. Rest of the paper describes attacks against PRNGs. In principle, any method that distinguishes between PRNG outputs and random outputs is an attack. The attacks are mainly classified as follows.

1. Direct Cryptanalytic Attack. When an attacker is directly able to distinguish between PRNG outputs and random outputs, this is a direct cryptanalytic attack. It allows an attacker to make inferences about the internal state of the PRNG. This kind of attack is applicable to most, but not all, uses of PRNGs. For example, a PRNG used only to generate triple-DES keys may never be vulnerable to this kind of attack, since the PRNG outputs are never directly seen.

2. Input-Based Attacks. An input attack occurs when an attacker is able to use knowledge or control of PRNG inputs to cryptanalyze the PRNG. Input attacks may be further divided into known-input, replayed-input, chosen-input attacks.

· Chosen input attacks require an attacker to be able to choose or manipulate the input to the generator, passwords for example. It may be practical against smart-cards and other tamper-resistant tokens under a physical/cryptanalytic attack; they may also be practical for applications that feed incoming messages, user-selected passwords, network statistics, etc., into their PRNG as entropy samples.
· Replayed-input attacks depend on the reuse of seed elements in the generation of new pseudo-random numbers. They are practical in the same situations, but require slightly less control or sophistication on the part of the attacker.

· Known-input attacks are successful when an attacker can easily predict some or all of the elements used to create a seed value; examples include computer system information such as network statistics and process information that is observable by the attacker. (An obvious example of this is an application, which uses hard-drive latency for some of its PRNG inputs, but is being run using a network drive whose timings are observable to the attacker.)

3. State Compromise Extension Attacks. A state compromise extension attack attempts to extend the advantages of a previously successful effort that has recovered S as far as possible. Suppose that, for whatever reason a temporary penetration of computer security, an inadvertent leak, a cryptanalytic success, etc. the adversary manages to learn the internal state, S, at some point in time. A state compromise extension attack succeeds when the attacker is able to recover unknown PRNG outputs (or distinguish those PRNG outputs from random values) from before S was compromised, or recover outputs from after the PRNG has collected a sequence of inputs, which the attacker cannot guess. State compromise extension attacks are most likely to work when a PRNG is started in an insecure (guessable) state due to insufficient starting entropy. They can also work when S has been compromised by any of the above attacks. State Compromise Extension attacks can be further classified as:

· Backtracking Attacks: A backtracking attack uses the compromise of the PRNG state S at time t to learn previous PRNG outputs.
· Permanent Compromise Attacks: A permanent compromise attack occurs if, once an attacker compromises S at time t, all future and past S values are vulnerable to attack. This attack is possible when a generator is not sufficiently re-seeded.
· Iterative Guessing Attacks: Iterative guessing attacks use the knowledge of some state information to cut the amount of guessing needed to learn future inputs to the generator.

· Meet-in-the-Middle Attacks: A meet in the middle attack is essentially a combination of an iterative guessing attack with a backtracking attack. Knowledge of S at times t and t +2(allow the attacker to recover S at time t + (. Meet-in-the-middle attacks use two compromises to backtrack on the latest one, and iteratively guess from the earliest one to gain information on the intermediate states.

Attacking Real-world PRNGs

SSL

A good method to select seed values for the PRNG is an essential part of a cryptographic system such as SSL, a cryptographic protocol developed by Netscape to provide secure Internet transactions. If the seed values for the PRNG can easily be guessed, the level of security offered by the program is diminished significantly, since it requires less work for an attacker to decrypt an intercepted message.

An example of a compromised PRNG is the one used by early version of the Netscape browser for its implementation of the Secure Sockets Layer (SSL). At its most basic level, SSL protects communications by encrypting messages with a secret key - a large, random number known only to the sender and receiver. Netscape used four values to calculate a seed value: the time in seconds and microseconds, the process id (pid), and the parent process id (ppid). On a UNIX workstation it is a trivial matter to determine the pid, and the ppid by looking at the process list. Even if they could not be directly monitored, the range usually included only a few thousand possibilities for each. It is trivial to get time in seconds; most popular Ethernet sniffing tools (tcpdump) record the precise time as they see each packet. Using the output from such a program, the attacker can guess the time of day on the system running the Netscape browser. All that remains is to guess the time in microseconds. However, there are only one million possible values for it, resulting in only one million possible choices for the seed. Testing all one million possibilities takes about 25 seconds on an HP 712/80. Thus due to PRNG weakness it can broken very easily.

ANSI X9.17

Another PRNG that is vulnerable to state compromise extension attacks is the ANSI X9.17 PRNG. The ANSI X9.17 PRNG is used in a variety of banking applications. It uses a triple-DES key as part of its internal state. K is a secret triple-DES key generated at initialization time. It is part of the PRNG's secret state which is never changed by any PRNG input.

Each time we wish to generate an output, we do the following:

(a) Ti = Ek (current timestamp)

(b) output[i] = Ek(Ti ((seed[i]):

(c) seed[i + 1] = Ek (Ti (output[i]):

ANSI X9.17 is vulnerable to Input-based attack. An attacker who can force the T values to freeze can distinguish the PRNG's outputs from random outputs after seeing about 2 32 64-bit outputs. In a sequence of random 64-bit numbers, we would expect to see a collision after about 2 32 outputs.

ANSI x9.17 is also vulnerable to State Compromise attack. While the PRNG is in use the triple-DES key, K never changes, no matter how much entropy is brought in from the seed values. So if this key is compromised X9.17 can never recover. The seed[i + 1] value is a function of the previous output, the previous Ti, and K. To an attacker who knows K from a previous state compromise, and knows the basic properties of the timestamp used to derive Ti, seed[i +1] is simply not very hard to guess.

Summary and Conclusions

In this report, we have argued for treating PRNGs as their own kind of cryptographic primitive, distinct from stream ciphers, hash functions, and block ciphers. We discussed abstract attacks against an idealized PRNG, and then demonstrated those attacks against two real-world PRNGs. Here is a list of ways to protect PRNGs against each of the attacks discussed above.

1. Use a hash function to protect vulnerable PRNG outputs. If a PRNG is suspected to be vulnerable to direct cryptanalytic attack, then outputs from the PRNG should be preprocessed with a cryptographic hash function.

2. To prevent most chosen-input attacks, the inputs should be hashed with a timestamp or counter, before being sent into the PRNG. If this is too expensive to be done every time an input is processed, the system designer may want to only hash inputs that could conceivably be under an attacker's control.

3. Occasionally generate a new starting PRNG state. For PRNGs like ANSI X9.17, which leave a large part of their state unchangeable once initialized, a whole new PRNG state should occasionally be generated from the current PRNG.

4. Pay special attention to PRNG starting points and seed files. The best way to resist all the state-compromise extension attacks is simply never to have the PRNG's state compromised. System designers should spend a lot of effort on starting their PRNG from an unguessable point, handling PRNG seed files intelligently.

References:

Randomness and the Netscape Browser, How secure is the World Wide Web?, Ian Goldberg and David Wagner, Dr. Dobb's Journal, 2001.
Cryptanalytic Attacks on Pseudorandom Number Generators, J. Kelsey, B. Schneier, D. Wagner, and C. Hall, Fifth International Workshop Proceedings(March 1998), Springer-Verlag, 1998, pp. 168-188.

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf Handbook of Applied Cryptography, by A. Menezes, P. van Oorschot, and S. Vanstone, CRC Press, 1996.

Page 2 of 5

