P2P Security

Shruti Parihar

PEER-TO-PEER SECURITY

Addressing P2P Security

P2P applications primarily deal with file sharing across peer groups, distributed computing and instant messaging between peers. Each of these applications tend to expose users to a whole gamut of security holes. Some crucial security issues are discussed below.

Denial of Service attacks

P2P technology circumvents firewalls and NAT devices exposing intranets to all kinds of attacks, bugs and viruses. As illustrated in the following figure, a external peer can intrude into a firewall protected network, and incapacitate it by loading software on client machines on the network, which bombard the server with requests, hence flooding the network [2].

Steganography

Using a freeware utility called Wrapster, a P2P wrapping tool, a user can disguise a .zip file containing source code as an MP3. An accomplice could then download the 'music' file from the user's PC. Millions of dollars worth of proprietary information can be stolen under the appearance of a relatively common abuse of company resources [3].

Encryption Cracking

Although distributed computing has its advantages like maximizing throughput over a network of computers, it can also be abused by hackers. On a P2P architecture of about a 100,000 peers, it is possible to test 245 billion keys per second to break the 56 bit DES encryption algorithm in less than 24 hours (22 hours and 15 minutes). This is done by only using CPU idle time.

Bandwidth Clogging

The most visible problem with P2P programs concerns file-sharing. This traffic clogs institution networks to the detriment of ordinary business related traffic. This affects response times for internal users as well as e-business customers. Many organizations have taken to using Internet links to create virtual private networks (VPNs) between their disparate offices or on the road users. If legitimate traffic has to compete with non-business file-sharing traffic, VPN performance will suffer.

Viruses, Sabotage, Theft

An attacker could also convince a naïve user to download and install a virus-trapped P2P application that does damage or allows obtaining more information than they should have (backdoor access). A user of P2P software can misconfigure to expose confidential information for gain or revenge. P2P file-sharing applications can also cause a loss of control over what data is shared outside of the organization. Viruses attacking p2p networks can cause havoc by spreading rapidly. For example, in 2001, W32/Gnuman worm targeted Gnutella users, which when downloaded and run, spread itself to other users.

 Backdoor Access

Combine a P2P application with a VPN and security problems compound. If a user starts Gnutella and then clicks into the corporate VPN to check email, a determined attacker could use this backdoor to gain access to the corporate LAN. Many companies delay rollouts of VPNs in spite of the potential cost savings.

 Non-encrypted IM

 Instant message leaf clients also pose an information leakage threat to the organization. All the messages sent back and forth in plain text across the network or Internet can be captured and read using a simple network monitoring program.
Bugs

This problem involves exploitation of installed client software bugs. Hackers can utilize bugs in client software to gain control over one’s system. The best security against this threat is to make sure your client software is the most current version with the latest known patches. For instance, in August 1999 a bug in the AOL Instant Messenger (AIM) client allowed an attacker to overflow internal buffers by sending URLs constructed in a certain manner. In this situation, it was possible to crash the client, obtain control of the AIM program, execute arbitrary code, and add random buddies to a buddy list via a Web page or e-mail.
Eavesdropping

P2P computing opens up corporate security problems like information leakage. Since peers are connected and chatting with each other, it is very easy for peers to discuss private information about a company. Also, the information messages are sent to each other in the clear, so anyone can intercept and read them. A way to deal with this issue is to encrypt the messages as they are sent to each peer.

Impersonation

A related problem deals with impersonation. When you are chatting with someone, you really don’t know for certain that you are speaking with the person you really want to chat with. In most IM clients, all you need is a username/email and a password to log on to the system and impersonate that user. If IM clients would employ certificate authentication, it would result in a more reliable and assumable method of authenticating the other peer.

Intrusion of Privacy

Each peer needs to have a client installed on their system to support the distributed data. A potential security risk deals with Trojan horse programs. A Trojan horse is a malicious program hidden inside another seemingly legitimate program. These programs can collect data from your system and send them to a hacker.
Protocol for Secure P2P Communication
Overview

This security protocol [1] deals with some of the afore-mentioned security issues. It aims at establishing a peer’s group membership in the form of a certificate for a peer group, that performs a specific service, after which the peer can contact other members of the group, authenticate itself with its certificate and finally establish a secure communication channel between each other. Hence, the protocol has two phases:

· Login Protocol

The peer wishing to gain membership of a particular group, contacts the group authority, authenticates itself and gets the group membership certificate.

· Mutual Authentication Protocol

One peer can communicate with another peer belonging to the same group, after they successfully authenticate themselves to each other, over a secure communications channel. As a result, one peer cannot eavesdrop on the conversation of two other peers.

Assumptions

· A peer group is a collection of peers which perform a specific function/service. Initially, all peers belong to a default group, they can later add/drop group memberships depending on the services they offer.

· File service can be centralized, with one peer supporting all files to be shared. In that case, peers belonging to a group may need to communicate.

· Each group contains an arbitrary number of group members and one or more group authorities (GA). The GA issues group membership certificates, signed by its private RSA key and decides how long the certificate will be valid etc. Group memberships (GM) are issued based on passwords and an Access Control List (ACL), which is maintained for all passwords and their constraints, like maximum duration that a GM can be valid, time after which a key cannot be used to request a GM etc.
· When multiple authorities manage a given group, all memberships are signed with the same private key that was generated by the authority that originated the group. Thus, each new authority has to login once into an existing authority, to get the public/private keys.
Notations

PID

Password ID uniquely identifying a given password

H

message header = (opcode, source IP, source port, destination IP,

 destination IP, destination port,seqno)

D
 digest over transmitted header and message

G

group = (group name, authority(IP and Port) granting group account)

g,p

Base and modulus for DH exponent computation

CA

Random challenge generated by A

KA

long-lived RSA public key of A

K-1B

long-lived RSA private key of A

EXP

Expiry date

GMA

A’s group membership certificate = K-1B (G, EXP, gRA mod p) signed

 by authority B

Login Protocol

The login protocol supports “user-login”, which allows a peer to obtain a group membership, and an “authority-login”, which permits a peer to become an authority by obtaining the group’s public/private keys. The protocol message exchange can be worded as follows:

1. User u1 contacts the GA by sending its password id, group name and a random, one time use Diffie Helman Key exchange exponent encrypted with its password.

2. The GA obtains u1’s password by looking up its ACL by group name and password id and decrypts the exponent with it. It can now compute a one-time-use session key with it. It also generates a random challenge, which it encrypts with the session key and sends to u1 along with “its” DH exponent, encrypted with u1’s password.

3. U1 extracts GA’s exponent and generates the session key too, with which the challenge sent by GA can be decrypted and returned for authentication. All further messages are encrypted with this key. U1 also sends its own challenge to authenticate GA. The type of login is specified in the message header opcode. In case of “user-login”, another DH exponent is generated and sent in the REQUEST field to be included in the group membership certificate by the GA.

4. GA decrypts the above message, checks for the correctness of the response to its challenge, retrieves u1’s challenge to respond to, and sends the group membership certificate and its public key in the RESPONSE field if u1 is a user or its public/private keys if it is an authority.

5. U1 finally extracts the certificate and checks for the correctness of GA’s response to its challenge.

The following message exchange illustrates the above protocol:

U->A: H, G, PID, P(gRtu mod p), D

Krand = gRtuRta mod p

A->U: H, P(gRta mod p), Krand(CA), D

U->A: Krand(H, REQUEST, CA, CU, D)

A->U: Krand(H, CU, RESPONSE, D)

Mutual Authentication Protocol

This protocol establishes a secret, authenticated session key between two users u1 and u2; the key preserves forward/backward secrecy and is established exclusively by the two parties involved, without requiring an authority or a group-wide protocol for generating it.

1. U1 sends its certificate corresponding to the group u1 and u2 belong to.

2. U2 decrypts the certificate using the public key of the authority and verifies it. It also makes sure the certificate has not expired and extracts u1’s DH exponent to generate a symmetric session key with it. It then uses this key to encrypt a random challenge for u1. It is sent along-with its own certificate to u1.

3. U1 computes the session key by the same procedure and decrypts u2’s challenge, computes its own challenge and sends both encrypted with the session key.

4. Upon receipt of u1’s response to its challenge, u2 has authenticated u1 and responds with u1 challenge so that u1 can authenticate u2 too.

5. In order to continue communication over a secure channel, another symmetric session key is computed by u1 and u2 using the two random challenges just exchanged along-with the DH exponents of both. This provides forward/backward secrecy or prevents attacks by imposters using a message exchange from a previous session between u1 and u2.

The following message exchange illustrates the above protocol:

U1->U2: H, G, GMU1, D

K= gRu1Ru2 mod p

U2->U1: H, GMU2, K(CU2), D

U1->U2: K(H, CU1, CU2, D)

U2->U1: K(H, CU1, D)

Krand = gRu1Ru2Cu1Cu2 mod p

Conclusion

Peer-to-peer technology is gaining ground in the networking world very rapidly. It provides a uniform platform for diverse peer networks to communicate with each other and opens doors to communication between any two devices with IP addresses be it pagers, cell-phones etc. As a result, security issues become important due to which, aggressive work is going on in this field. Both of the afore-mentioned protocols followed in that order, can resolve a number of security issues addressed in the previous sections.

REFERENCES

[1]
Mathew L. Delco, Mihut D. Ionescu, Computer Science Divison, University of California, Berkeley. ”Secure Peer-to-Peer File Sharing Within Dynamic Groups”.

[2]
“Emerging Technology: Peer-to-Peer Network Security”, by Michael Hurwicz, February, 2002

 www.networkmagazine.com

[3]
“Security Issues against P2P”, by Ross Lee Graham

http://www.ida.liu.se/~rosgr/p2psecurity.html

November 19th, 2002
1
CS-265

