
RSA Security Inc. Crypto Blunders

Crypto Blunders
Steve Burnett, RSA Security Inc.

Abstract
Cryptography has emerged as an enormously important
component of the networked world. People are hesitant to
trust the World Wide Web and e-commerce without the
protections crypto provides. As companies build Virtual
Private Networks, demand secure communications and
require stronger authentication techniques, more and more
applications are built with crypto as core components.
Many cryptographic algorithms are virtually unbreakable . . .
if used properly. If applied incorrectly, it doesn't matter
how strong an algorithm or key is, the tools of crypto will
provide no protection. This paper will describe some of the
blunders people have made over the years in their use of
cryptography. Some of these mistakes made headlines,
some did not. Some might even be a little humorous — to
those not involved. If nothing else, readers will learn what
not to do in their products.

Blunder #1

In 1917, the respected journal Scientific
American described the Vigenére Cipher as
"impossible of translation." The problem
with that statement was that the Union
Army in the US Civil War had broken the
Vigenére Cipher in the 1860s. [K]

During a visit to the United States in 1930,
German officials demonstrated their code
machine, Enigma, to Maj. P.W. Evans of the
US Army Signal Corps. They boasted to
Maj. Evans that this encryption device was
"unbreakable." [Mo] During World War II,
the Luftwaffe High Command sent a
message to a field officer assuring him
Enigma was "unbreakable." This message
was encrypted using Enigma. How do we
know such a message was sent? Because
British code breakers at Bletchley park
were able to decrypt it shortly after it was
intercepted. [Lipp]

In 1977, Scientific American is the first to
publish the RSA algorithm in Martin
Gardner's column, Mathematical
Recreations. This article also gave the first
RSA Challenge. Ron Rivest, Adi Shamir and
Len Adleman (the "R," "S" and "A")
encrypted a message using their new
algorithm and offered $100 to anyone who
could decode it. Gardner claimed the code
was a cipher which human ingenuity could
not resolve. Not quite as confident as
Gardner, Rivest remarked it would take "40
quadrillion years" to crack. They paid up 17
years later. [see Levy]

This leads us to

Crypto Blunder #1:
Declare your algorithm unbreakable.

No crypto algorithm is unbreakable. The
best inventors are honest and simply assert
that it will, on average, take the attacker
too long to crack any individual message. As
soon as you declare a cipher unbreakable,
cryptanalysts come out of nowhere to shoot
down your claim. Surely modern crypto
designers have learned that lesson.
And yet . . .

A recent survey of crypto products finds
several interesting claims. The web site
http://www.atlantic-coast.com/ube/ is
offering for sale the software package
"UnBreakable Encryption." That's the name
of the product, "UnBreakable Encryption."
Or go to http://www.meganet.com/
index.htm to find out how you can
purchase "VME", which promises "100%
security for $100 only."

Are these products destined for the same
fate as other unbreakable algorithms?
Counterpane Systems, Bruce Schneier's
company, reported on TriStrata, a company
in Redwood City, California, that offered
unbreakable encryption, only to quickly
amend their claims after further scrutiny.
This is an example of someone learning
their lesson the hard way. [Co1]

Incidentally, it is only fair to add this post-
script to the Ron Rivest 40 quadrillion year
statement. The claim was actually prefaced
with, "Given current technology. . ."
Technology, in the form of faster
computers and new factoring techniques

RSA Security Inc. Crypto Blunders

made the crack possible. Furthermore, at
the time, research into developing good
security estimates for public key algorithms
was practically nonexistent. In fact, after
studying the problem further, Rivest did
revise his estimate downward. To this day,
RSA is still secure, as long as the key is long
enough. The 1977 challenge was on a 428-
bit key, most uses of RSA today rely on
1024-bit keys.

Blunder #2

Speaking of unbreakable cryptography,
there is a belief that "The one-time pad is
the only unbreakable encryption
algorithm." This is a rather casual
description. To be at least a little more
rigorous, it would be better to say, "The
one-time pad encryption scheme has
provable security properties if the pad is
random and used only once."

Here is a simple version of the one-time
pad algorithm. Generate a series of

random numbers, printing two copies on
two pads. Each correspondent receives one
of the copies of the pad, this list of random
numbers.

To encrypt a message, take the first letter
of plaintext and add to it the first random
number of the pad. This is the first letter of
ciphertext. Then add the second pad
number to the second letter of plaintext.
And so on. Each letter of plaintext is
encrypted with a number from the pad.

To decrypt, subtract the pad numbers from
the ciphertext letters. The pad is secure
because anyone intercepting a message
could try any number of possible pads that
"decrypt" to something reasonable. For
instance, an attacker could try the pad
"7,17,8,25,22,14,4,20,23" with the
ciphertext in Figure 1. That would produce
plaintext of "NEVERMORE". That's not the
correct answer, but it is reasonable. How
can anyone know when they've stumbled
onto the correct pad?

RSA Security Inc. Crypto Blunders

U V D D N A S L B

Pad: 7 17 8 25 22 14 4 20 23

N E V E R M O R E

Figure 2: An example of an incorrect pad producing a reasonable answer. The ciphertext "UVDDNASLB"

can be decrypted to "NEVERMORE". U-7=N, V-17=E and so on.

P L A I N T E X T

Pad: 5 10 3 21 0 7 14 14 8

U V D D N A S L B

Figure 1: An example of a one-time pad. The word "PLAINTEXT" is encrypted to

"UVDDNASLB". P+5=U, L+10=V and so on.

But if the correspondents use the same pad
twice, an attacker will be able to try a
plausible pad on both messages. Although
many pads will produce reasonable
answers for each message, only one pad
(the correct pad) will produce reasonable
results for both messages. This is why it is
imperative to use a pad only once.

The next condition is randomness. If the
pad is not random, that means some
patterns in the pad will exist. An attacker
will try only those pads that possess those
patterns. Or maybe if portions of the pad
can be deduced because some of the
plaintext is known or guessed, an attacker
may be able to figure out what the next
pad numbers will be because the next
numbers are not random.

In the 1930s and 1940s, The Soviet Union
was using one-time pads to encrypt
messages sent to diplomatic missions
throughout the world. In 1942, the Soviet
crypto center accidentally printed duplicate
copies of one-time pads. US cryptanalysts
discovered this flaw in 1943 and were able
to extract information from many
messages sent between 1942 and 1948.
[CIA]

This leads us to

Crypto Blunder #2:
Use a one-time pad more than once.

Surely modern users of cryptography have
learned the lesson that one cannot be
casual about one-time pads. And yet . . .

RC4® is a cipher that is similar to a one-time
pad. It encrypts by performing an XOR
operation on each byte of input with a
byte of "key stream." The algorithm

generates the key stream "on-the-fly." As
you need more stream bytes, RC4 gives
them to you. It generates its key stream
from the encrypting key. That is, from a
128-bit key, you can build a practically
unlimited amount (well, 10100 bytes) of key
stream.

This key stream is similar to a one-time pad
in that it is pseudo-random. Pseudo-
random means the output passes tests of
randomness, but because it is possible to
recreate key streams, the values are not
truly random.

If you use the same key twice, you will
generate the same key stream. Using the
same RC4 key twice is essentially the same
as using a one-time pad twice.

In 1998, Microsoft® released an
implementation of PPTP, the "Point-to-
Point Tunneling Protocol." This was
software that allowed users to make
"Point-to-Point Protocol (PPP) connections
to be tunneled through an IP network,
creating a Virtual Private Network (VPN)."
[Co2]

In PPTP there is a client and a server.
Messages between the two entities can be
encrypted using RC4. Microsoft decided to
make the encryption of client to server
messages independent of the encryption of
server to client messages. The client used
one RC4 instantiation to encrypt messages
to the server, and the server used another
RC4 instantiation to encrypt messages to
the client.

The problem was that the Microsoft
implementation used the same key for
both directions. They were using the same
RC4 key twice for two messages. [Co2].

RSA Security Inc. Crypto Blunders

Think of it this way, each side had two
pads, an encrypting pad for when they
sent messages, and a decrypting pad for
when they received messages. But the pads
were the same. For example, the first
message the client would send would use,
say, the first 128 bytes of the pad. The
server's first message, a response to the
client, would use the same first 128 bytes
of that pad.

When the US was trying to decrypt Soviet
messages, the cryptanalysts did not know
which messages were encrypted using
duplicate pads, it was hard work to find
such message pairs. And not all messages
used a duplicate pad. Microsoft was kind
enough to let eavesdroppers know which
messages were encrypted using the same
RC4 key, they were messages in the same
session. And all sessions contained such
message pairs.

Blunder #3

The 1700s saw in Europe a rise in the use of
what were known as "Black Chambers."
These were places where mail was
intercepted. Since a government was the
operator of the post office, it was easy to
divert mail sent to and from foreign
embassies and officials. Experts would
carefully open the letters, copy the contents,
replace the items into the envelopes and, if
necessary, apply a forged seal.

All governments knew which countries had
black chambers and generally established
procedures to encrypt correspondence. The
algorithms chosen were often cracked, so
important secrets were sometimes
uncovered. [K]

Frequently, the encryptors knew when the
algorithms they had chosen had been
broken. Oddly enough, many continued to
use those broken methods.

Odder yet was that the Vigenére cipher
had been invented over 100 years prior to
this era and had not been broken yet. And
still, governments chose not to employ it.

RSA Security Inc. Crypto Blunders

Figure 3: Microsoft's PPTP would encrypt a message from the client to the server using an RC4 key stream.

Then it would encrypt the message from the server to the client using the same RC4 key stream, similar to

using a one-time pad twice.

message C1, client to server, uses RC4 key stream 38 0C 5D 77

message S1, server to client, uses RC4 key stream 38 0C 5D 77
Client

Server

This leads us to

Crypto Blunder #3: Don't use the
best possible algorithms available.

Today there are many encryption
algorithms available, some cost money,
others are free. Whether a company is
willing to spend money or not, there are
plenty of options. So surely developers
today would not choose an unsecure or
unknown algorithm. And yet . . .

When Microsoft was designing the
Operating System "NT" they came up with
a way to protect passwords. It involved
hashing the password. At the time, the two
most well-known and used hash algorithms
were MD2 and MD5. These two had been
very widely studied and tested.

Microsoft decided to use its own algorithm,
called "LANMAN hash." It turned out to be
so weak, researchers were able to crack
passwords in seconds. [La]

When Microsoft decided to use a different
hash algorithm, they chose MD4.
Researchers had very early expressed
doubts about the security of MD4 and
recommended no one use it. In fact, even
the developers of MD4 suggested it not be
used.

The question is, with MD5 available (and
no intellectual property rights attached),
why did Microsoft choose to create their
own algorithm? And when they finally
decided to upgrade, why did they choose
MD4? At this point, there are more
algorithms to choose from, namely SHA-1
and RIPEMD. Why not use those?

Another story on algorithm choice is the
DVD hack. This story is a little longer.

DVD stands for "Digital Video Disc." Just as
music CDs replaced records and tapes,
DVDs are supposed to replace video tape,
since they provide a better quality viewing
experience. Actually, DVDs are touted to
replace CDs (both music and computer)
as well.

Film companies, however, are worried
about piracy since computers can easily
copy the contents of the discs. For
protection from thieves, then, movies are
encrypted, and each licensed DVD player,
whether a hardware device or a software
package, has its own unique unlock key.
Each movie is encrypted using a different
key (the movie key), which is then
encrypted using the unlock keys of each
licensed DVD player. That means each disc
comes preloaded with hundreds of copies
of the movie key, each copy encrypted with
a different unlock key.

When the legitimate consumer uses a valid
DVD player, the player will find a special
location on the disc containing all the copies
of the movie key. It finds the copy that had
been encrypted with its (that particular
player's) unlock key. Using its unlock key,
the licensed player can decrypt the movie
key and using the movie key it can decrypt
the movie and then, of course, play it.

This collection of encrypted movie keys is
on a section of the disc that is supposedly
copy protected. That is, while the movie
itself can be copied from the disc to
another medium (a computer hard drive or
another disc), the movie key cannot.

If a licensed DVD player is fed a movie
which does not have the list of movie keys,
it will not play. So if a movie has been
decrypted and copied, licensed players will
not play that movie.

RSA Security Inc. Crypto Blunders

Suppose a thief wanted to sell copies of
DVD movies to people with licensed
players. This thief would have to make sure
the portion of the disc containing all the
copies of the encrypted movie key exists on
the pirate disc. If the legal disc is truly read
protected and the thief cannot extract
them from the disc, then the thief must
figure out what all the unlock keys are. If
the algorithm is secure, that won't be
possible in a reasonable amount of time.

One group of programmers in Norway
were able to quickly find many unlock
keys. They discovered that one of the DVD
players had neglected to protect its unlock
key. That was one key. Using that key as a
starting point, they were able to quickly
find the unlock keys for well over one
hundred other players.

They attributed the ease of finding unlock
keys to two design flaws. First, the
encryption algorithm was extremely weak.
It was a new, proprietary algorithm called
CSS. As Jon Johansen, one of the
Norwegian programmers, put it, "I wonder
how much they paid for someone to
actually develop that weak algorithm. It's a
very weak encryption algorithm." [P]

Why did the designers choose an unproven
algorithm? They probably did not know in
advance that it would be so weak, but they
had no way of knowing whether it would
be strong enough either. With so many
good, well-tested algorithms on the
market (Triple-DES, RC2,® RC5,™ Blowfish,
CAST, and on and on), why use a new,
proprietary algorithm? Was money an
issue? After all, some of the known good
algorithms are not free, they have to be
licensed. But the DVD people paid
someone to build a new algorithm, it
might have been cheaper to license

technology than invent a new, untested
algorithm. And besides, some of the good
algorithms are indeed free.

The second problem was that the DVD
designers used a 40-bit key. It had been
shown as early as 1995 that 40-bit keys
were woefully inadequate to protect
secrets. Why then use 40-bit keys? For
export reasons? The US government used
to place severe limitations on the export of
crypto. Using 40-bit keys made export
easier. However, At the time DVD was
released, it was fairly simple to get
permission to release 48-bit encryption.
With a little more work, it was possible to
get 56-bit or even 64-bit export licenses.
Furthermore, when an application only
decrypted, never encrypted anything, it
was often possible to get 128-bit
encryption exported.

Why did the DVD management make the
decisions they made? Why did they choose
not to use the best algorithms available?

Blunder #4

During the 1920s and 30s, the Japanese
used what was known as the "Red" cipher
to encrypt messages sent to and from
diplomatic missions. US code breakers had
figured out ways to quickly decrypt those
messages. In response, the Japanese
developed a new cipher. The US
cryptanalysts called this new system
"Purple." It was introduced right before
World War II began. Purple was far superior
to Red. The Japanese were confident the US
could not break their messages.

But the US was able to crack the system.
How? Because when the machine was first
introduced, users made mistakes in
implementation. One particularly

RSA Security Inc. Crypto Blunders

damaging mistake came about in 1941,
when "the Manila legation repeated a
telegram 'because of a mistake on the
plugboard.'" [K]

This leads us to

Crypto Blunder #4: Implement
the algorithm incorrectly.

No matter how good the algorithm is, it
won't provide any security if it is
implemented improperly. By now, surely
crypto engineers (the people who build the
systems that cryptographers design) have
learned that you have to be very careful in
implementation. And yet . . .

When Sun Microsystems released JDK 1.1
(the "second" generation of the Java
language), they included an
implementation of DSA. The letters stand
for "Digital Signature Algorithm." Sun
chose to make it a part of the JDK because
they wanted a digital signature algorithm
as part of the base release and DSA was
really the only algorithm they could use.
Other algorithms (such as RSA, El Gamal
and elliptic curves) are subject to US export
controls or have intellectual property
restrictions or both. DSA cannot encrypt or
perform key exchange, only create and
verify signatures, so is exportable.
Furthermore, it is widely believed that DSA
has no intellectual property attachments,
such as patent license requirements.*

There is a part of DSA called "random k."
This random value is used to create the
digital signature. Each signature must use a
different random k. If an implementation

uses the same random k for two
signatures, it is very easy to determine the
private key. Normally, to break DSA, one
must solve the discrete log problem. But if
the same random k is used in two
signatures, to break DSA, one must simply
apply some high school algebra.

The developers at Sun who wrote the Java
DSA code originally used a hard-coded
random k. They figured they would later on
solve the problem of generating a new k for
each signature. They forgot. The code was
released with that hard-coded random k. All
signatures used the same k.

It's not that the programmers were
ignorant of the way DSA worked, they just
made an implementation mistake. Sun did
fix it in JDK version 1.1.2. Unfortunately,
the fix meant that it took four or five
seconds to compute a single signature
(most applications need a signature
computation to take just a few
milliseconds).

For some applications, an implementation
mistake can simply mean something doesn't
look right, for instance a window does not
resize properly or a font is wrong. But with
cryptography, an implementation mistake
makes the application useless. Actually, it
makes the application dangerous.

Incidentally, here are some of the hard-
coded random k's as computed by the
author. Sun used a different random k for
the different key sizes.

RSA Security Inc. Crypto Blunders

DSA with 512-bit keys used k =

66 d1 f1 17 51 44 7f 6f 2e f7 95 16 50 c7 38 e1

85 0b 38 59

DSA with 1024-bit keys used k =

65 a0 7e 54 72 be 2e 31 37 8a ea 7a 64 7c db ae

c9 21 54 29

*Author’s note: I am not a lawyer. Consult an expert on
intellectural property if you want to know whether DSA is
free to use or whether licensing is required. There is dispute
as to whether a license to a patent by Claus Schnorr is
required before using DSA in a commercial application.

There are more random k's for more key
sizes. Computation of those is left as an
exercise to the reader.

Blunder #5

The Swiss company Crypto AG sells
cryptographic products. Many governments
bought their hardware products for use in
encrypting messages to and from
diplomatic missions throughout the world.

In 1992, a Crypto AG sales representative,
Hans Buehler, was arrested in Iran. The
Iranian officials accused him of spying.
They contended the Crypto AG machinery
had a "back door" built in. Buehler
reported that he "…was questioned for
five hours a day for nine months. I was
never beaten, but I was strapped to
wooden benches and told I would be
beaten."

It turns out there was indeed a back door
in the Crypto AG equipment. Each time
someone used the product, the encryption
key could be "clandestinely transmitted
with the enciphered message." [Ma]

This leads us to

Crypto Blunder #5:
Put a back door into your product.

By now, anyone trying to sell crypto
products knows not to put back doors into
the devices. People don't like to buy crypto
products with back doors. Some people are
so disgusted with back doors they arrest and
"intensely question" people who do put
back doors into their products. And yet . . .

In 1993, the US government offered the
Clipper chip. This was a cryptographic
device to be used on phones, in computers,
on networks, anywhere information would
be encrypted. Coming from the US
government, it seemed probable there
would be a back door. Probable? The US
government advertised that feature. It
announced up front that anything
encrypted could be decrypted by the US
government.

The Clipper is no longer in production.

Incidentally, the Crypto AG sales
representative, Hans Buehler, did not know
there was a back door in the product he
was selling.

Conclusion

There have been many other crypto
blunders throughout history, this paper
simply provided a few choice stories. With
any luck, though, readers will be able to
learn from others' past mistakes and avoid
their own crypto blunders.

RSA Security Inc. Crypto Blunders

References

[Co1] Counterpane Systems, TriStrata, Crypto-Gram Newsletter, Oct. 15, 1998,
see http://www.counterpane.com/crypto-gram-9810.html

[Co2] Counterpane Systems, Cryptanalysis of Microsoft's PPTP Authentication Extensions,
Oct. 19, 1999, see http://www.counterpane.com/pptpv2-paper.html

[CIA] US Central Intelligence Agency: Center for the Study of Intelligence,
Venona: Soviet Espionage and the American Response, 1939-1957, 1996,
see http://www.cia.gov/csi/books/venona/venona.htm

[K] Kahn, David, The Code breakers, 1996

[Ma] Madsen, Wayne, Crypto AG: The NSA's Trojan Whore?, Covert Action Quarterly,
no. 63, Winter 1997-1998, see http://mediafilter.org/caq/cryptogate/

[Mo] Momsen, Bill, Codebreaking and Secret Weapons in World War II, © 1993 – 1999
Nautical Brass, see http://members.aol.com/nbrass/3enigma.htm

[La] Laamanen, Petteri, NT Server Security, Helsinki University of Technology,
see http://www.tcm.hut.fi/Opinnot/Tik-110.501/1997/nt_server.html

[Lipp] Lippman, David, World War II Plus 55, December 27, 1941 - January 3, 1942,
see http://home.flash.net/~hfwright/dl27de41.htm

[Levy] Levy, Steven, Wisecrackers, Wired, March 1996, found in the "Wired Archive 4.03"

[P] Petrizio, Andy, Why the DVD Hack Was a Cinch, Wired, Nov. 2, 1999,
found on WiredNews, http://www.wired.com/news/technology/0,1282,32263,00.html

RC2 and RC4 are registered trademarks and RC5 and RSA are trademarks of RSA Security Inc.

All other trademarks mentioned herein are the property of their respective owners.

©2000 RSA Security Inc. All rights reserved.

