Consistent Global States of Distributed Systems: Fundamental Concepts and Mechanisms

CS 249 Project
Fall 2005
Wing Wong
Outline

- Introduction
- Asynchronous distributed systems, distributed computations, consistency
- Two different strategies to construct global states
 - Monitor passively observes the system (reactive-architecture)
 - Monitor actively interrogates the system (snapshot protocol)
- Properties of global predicates
- Sample applications: deadlock detection and debugging
Introduction

- global state = union of local states of individual processes
- many problems in distributed computing require:
 - construction of a global state and
 - evaluation of whether the state satisfies some predicate Φ
- difficulties:
 - uncertainties in message delays
 - relative speeds of computations
- global state obtained can be obsolete, incomplete, or inconsistent
Distributed Systems

- collection of sequential processes p_1, p_2, \ldots, p_n
- unidirectional communication channels between pairs of processes
- reliable channels
- messages may be delivered out of order
- network strongly connected (not necessarily completely)
Asynchronous Distributed Systems

- no bounds on relative process speeds
- no bounds on message delays
- no synchronized local clocks
- communication is the only possible mechanism for synchronization
Distributed Computations

- distributed program executed by a collection of processes
- each process executes a sequence of events
- communication through events $send(m)$ and $receive(m)$, m as message identifier
Distributed Computations

- \[h_i = e_{i1}^1 e_{i2}^2 \ldots \]
 - **local history** of process \(p_i \)
 - canonical enumeration
 - total order imposed by sequential execution

- \[h_i^k = e_{i1}^1 e_{i2}^2 \ldots e_i^k \]
 - initial prefix of \(h_i \) containing first \(k \) events

- \[H = h_1 \cup \ldots \cup h_n \]
 - **global history** containing all events
 - does not specify relative timing between events
Distributed Computations

- to order events, define binary relation “→” to capture “cause-and-effect”:
 1. If $e_i^k, e_i^l \in h_i$ and $k < l$, then $e_i^k \rightarrow e_i^l$,
 2. If $e_i = \text{send}(m)$ and $e_j = \text{receive}(m)$, then $e_i \rightarrow e_j$,
 3. If $e \rightarrow e'$ and $e' \rightarrow e''$, then $e \rightarrow e''$.

- $e \rightarrow e'$ if and only if e “causally precedes” e'
- concurrent events: neither $e \rightarrow e'$ nor $e' \rightarrow e$, write $e \parallel e'$
- distributed computation $=$ partially ordered set defined by (H, \rightarrow)
Distributed Computations

Figure 1. Space-Time Diagram Representation of a Distributed Computation

\[e_2^1 \rightarrow e_3^6 ; e_2^2 \parallel e_3^6 \]
Global States, Cuts and Runs

- σ_i^k
 - local state of process ρ_i after event e_i^k

- $\Sigma = (\sigma_1, \ldots, \sigma_n)$
 - global state of distributed computation
 - n-tuple of local states

- cut $C = h_1^{c_1} \cup \ldots \cup h_n^{c_n}$ or (c_1, \ldots, c_n)
 - subset of global history H
Global States, Cuts and Runs

- \((\sigma_1^{c_1}, \ldots, \sigma_n^{c_n})\)
 - global state correspond to cut \(C\)

- \((e_1^{c_1}, \ldots, e_n^{c_n})\)
 - frontier of cut \(C\)
 - set of last events

- run
 - a total ordering \(R\) including all events in global history
 - consistent with each local history
Global States, Cuts and Runs

- cut $C = (5,2,4)$; cut $C' = (3,2,6)$
- a consistent run $R = e_1 e_1 e_2 e_1 e_3 e_3 e_2 e_2 e_1 e_5 e_1 e_4 e_1 e_5 e_3 e_6 e_2 e_1$
Consistency

- cut C is consistent if for all events e and e'
 \[(e \in C) \land (e' \rightarrow e) \Rightarrow e' \in C.\]
 - closed under the causal precedence relation
- **consistent global state** corresponds to a consistent cut
- run R is consistent if for all events, $e \rightarrow e'$ implies e appears before e' in R
Consistency

- run $R = e^1e^2\ldots$ results in a sequence of global states $\Sigma^0\Sigma^1\Sigma^2$
- Σ^i is obtained from Σ^{i-1} by some process executing event e^i, or Σ^{i-1} leads to Σ^i
- denote the transitive closure of the leads-to relation by $\sim>_R$
- Σ' is reachable from Σ in run R iff $\Sigma \sim>_R \Sigma'$
Lattice of Global States

- **lattice** = set of all consistent global states, along with leads-to relation
- $\Sigma^{k_1 \ldots k_n}$ = shorthand for global state $(\sigma_1^{k_1}, \ldots, \sigma_n^{k_n})$
- $k_1 + \ldots + k_n$ = level of lattice

Figure 3. A Distributed Computation and the Lattice of its Global States
Lattice of Global States

- **path** = sequence of global states of increasing level (downwards)
- each path corresponds to a consistent run
- a possible path: \(\Sigma^00 \Sigma^01 \Sigma^11 \Sigma^21 \Sigma^31 \Sigma^32 \Sigma^42 \Sigma^43 \Sigma^44 \Sigma^54 \Sigma^64 \Sigma^65 \)

Figure 3. A Distributed Computation and the Lattice of its Global States
Observing Distributed Computations (reactive-architecture)

- processes notify monitor process p_0 whenever they execute an event
- monitor constructs observation as the sequence of events corresponding to the notification messages
- problem:
 - observation may be inconsistent due to variability in notification message delays
Observing Distributed Computations

\[R = e_1^3 e_1^1 e_2^1 e_2^1 e_3^3 e_3^1 e_3^4 e_3^4 e_1^5 e_1^5 e_3^6 e_3^6 e_2^6 e_2^6 \]

\[O_1 = e_2^1 e_1^1 e_3^1 e_3^3 e_3^4 e_2^2 e_3^1 e_2^3 e_1^4 e_1^5 \ldots \]

\[O_2 = e_1^1 e_3^1 e_2^1 e_2^2 e_3^3 e_3^4 e_3^2 e_3^5 e_3^6 \ldots \]

\[O_3 = e_3^1 e_2^1 e_1^1 e_3^2 e_3^3 e_3^4 e_3^4 e_1^2 e_2^5 e_3^6 \ldots \]
Observing Distributed Computations

- any permutation of run R is a possible observation

- we need:
 - delivery rule at monitor process to restore message order

- we have First-In-First-Out (FIFO) delivery using sequence number for all source-destination pair p_i, p_j:
 - $send_i(m) \rightarrow send_i(m') \Rightarrow deliver_j(m) \rightarrow deliver_j(m')$
Delivery Rule 1

- assume:
 - global real-time clock
 - message delays bound by δ
- process includes timestamp (real-time clock value) when notifying p_0 of local event e

DR1: At time t, deliver all received messages with timestamps up to $t - \delta$ in increasing timestamp order
Delivery Rule 1

- let $RC(e)$ denotes value of global clock when e is executed

- real-time clock satisfies **Clock Condition:**

 $e \rightarrow e' \Rightarrow RC(e) < RC(e')$

- but **logical clocks** also satisfies clock condition...
Logical Clocks

- event orderings based on increasing clock values
- $LC(e_i)$ denotes value of logical clock when e_i is executed by p_i
- each sent message m contains timestamp $TS(m)$
- update rules by p_i at occurrence of e_i:

$$LC(e_i) := \begin{cases}
LC + 1 & \text{if } e_i \text{ is an internal or send event} \\
\max\{LC, TS(m)\} + 1 & \text{if } e_i = receive(m)
\end{cases}$$
Logical Clocks

Figure 4. Logical Clocks
Delivery Rule 2

- replace real-time clock by logical clock
- need **gap-detection** property:
 - given events e, e' where $LC(e) < LC(e')$, determine if some event e'' exists such that $LC(e) < LC(e'') < LC(e')$
 - message is “**stable**” at p if no future messages with timestamps smaller than $TS(m)$ can be received by p
Delivery Rule 2

- with FIFO, when p_0 receives m from p_i with timestamp $TS(m)$, can be certain no other message m' from p_i with $TS(m') \leq TS(m)$

- message m at p_0 guaranteed stable when p_0 has received at least one message from all other processes with timestamps $> TS(m)$

DR2: Deliver all received messages that are stable at p_0 in increasing timestamp order
Strong Clock Condition

- DR1, DR2 assume $RC(e) < RC(e')$ (or $LC(e) < LC(e')$) $\Rightarrow e \rightarrow e'$
- recall RC and LC guarantee clock condition: $e \rightarrow e' \Rightarrow RC(e) < RC(e')$
- DR1, DR2 can unnecessarily delay delivery
- want timing mechanism TC that gives Strong Clock Condition:

\[e \rightarrow e' \equiv TC(e) < TC(e') \]
Timing Mechanism 1 - Causal Histories

- **causal history** as “clock” value
 - set of all events that causally precede event e:
 \[
 \theta(e) = \{ e' \in H \mid e' \rightarrow e \} \cup \{ e \}
 \]
 - smallest consistent cut that includes e
 - **projection** of $\theta(e)$ on process p_i: $\theta_i(e) = \theta(e) \cap h_i$
Timing Mechanism 1 - Causal Histories

Figure 6. Causal History of Event e_1^4

$\theta(e_1^4) = \{e_1^1, e_1^2, e_1^3, e_1^4, e_2^1, e_2^3, e_3^1, e_3^2, e_3^3\}$
Timing Mechanism 1 - Causal Histories

To maintain causal histories:

- θ initially empty
- If e_i is an internal or send event
 - $\theta(e_i) = \{e_i\} \cup \theta(\text{previous local event of } p_i)$
- If e_i = receive of message m by p_i from p_j
 - $\theta(e_i) = \{e_i\} \cup \theta(\text{previous local event of } p_i) \cup \theta(\text{corresponding send event at } p_j)$
Timing Mechanism 1 - Causal Histories

new send event:

new receive event:

new event e_1^5

new event e_2^3
Timing Mechanism 1 - Causal Histories

- can interpret clock comparison as set inclusion:
 \[e \rightarrow e' \equiv \theta(e) \subset \theta(e') \]
 (why not set membership, \([e \rightarrow e' \equiv e \in \theta(e')]\)?)

- unfortunately, causal histories grow too rapidly
Timing Mechanism 2 - Vector Clocks

- note:
 - projection $\theta_i(e) = h_i^k$ for some unique k
 - $e_i^r \in \theta_i(e)$ for all $r < k$
 - can use single number k to represent $\theta_i(e)$
 - $\theta(e) = \theta_1(e) \cup \ldots \cup \theta_n(e)$

- represent entire causal history by n-dimensional **vector clock** $VC(e)$, where for all $1 \leq i \leq n$
 - $VC(e)[i] = k$, if and only if $\theta_i(e) = h_i^k$
Timing Mechanism 2 - Vector Clocks

Figure 7. Vector Clocks
Timing Mechanism 2 - Vector Clocks

- To maintain vector clock:
 - each process p_i initializes VC to contain all zeros
 - update rules by p_i at occurrence of e_i:

 $VC(e_i)[i] := VC[i] + 1$ if e_i is an internal or send event
 $VC(e_i) := \max\{VC, TS(m)\}$ if $e_i = receive(m)$
 $VC(e_i)[i] := VC[i] + 1$

- $VC(e_i)[i] \equiv$ number of events p_i has executed up to and including e_i
- $VC(e_i)[j] \equiv$ number of events of p_j that causally precede event e_i of p_i
Timing Mechanism 2 - Vector Clocks

causal histories

vector clocks

new send event:

new receive event:
Vector Clock Comparison

- Define “less than” relation:
 \(V < V' \equiv (V \neq V') \land (\forall 1 \leq k \leq n: V[k] \leq V'[k]) \)
Properties of Vector Clocks

1. **Strong Clock Condition:**
 \[e \rightarrow e' \equiv VC(e) < VC(e') \]

2. **Simple Strong Clock Condition:**
 Given event \(e_i \) of \(p_i \) and event \(e_j \) of \(p_j \), \(i \neq j \)
 \[e_i \rightarrow e_j \equiv VC(e_i)[i] \leq VC(e_j)[i] \]
Properties of Vector Clocks

3. Test for Concurrency: given event e_i of p_i and event e_j of p_j

 $e_i \parallel e_j \equiv (\text{VC}(e_i)[i] > \text{VC}(e_j)[i]) \land (\text{VC}(e_j)[j] > \text{VC}(e_i)[j])$

4. Pairwise Inconsistent: given event e_i of p_i and e_j of p_j, $i \neq j$

 if e_i, e_j cannot belong to the frontier of the same consistent cut

 $(\text{VC}(e_i)[i] < \text{VC}(e_j)[i]) \lor (\text{VC}(e_j)[j] < \text{VC}(e_i)[j])$
Properties of Vector Clocks

5. **Consistent Cut:**
 - frontier contains no pairwise inconsistent events
 \[VC(e_i^c)[i] \geq VC(e_j^c)[i], \; \forall 1 \leq i, j \leq n \]

6. **Counting # of events causally precede** \(e_i \):
 - \[#(e_i) = (\Sigma_{j=1}^{n} VC(e_i)[j]) - 1 \]
 - # events = 4+1+3-1 = 7
Properties of Vector Clocks

7. **Weak Gap-Detection**: given event e_i of p_i and e_j of p_j, if $\text{VC}(e_i)[k] < \text{VC}(e_j)[k]$ for some $k \neq j$, there exists event e_k such that $\neg(e_k \rightarrow e_i) \land (e_k \rightarrow e_j)$
Causal Delivery and Vector Clocks

- assume processes increment local component of VC only for events notified to monitor p_0
- p_0 maintains set M for messages received but not yet delivered
- suppose we have:
 - message m from p_j
 - m' = last message delivered from process p_k, $k \neq j$
Causal Delivery and Vector Clocks

To deliver m, p_0 must verify:

1. no earlier message from p_j is undelivered (i.e. $TS(m)[j] - 1$ messages have been delivered from p_j)

2. no undelivered message m'' from p_k s.t.
 $send_k(m') \rightarrow send_k(m'') \rightarrow send_j(m)$, $\forall k \neq j$
 (i.e. whether $TS(m')[k] \geq TS(m)[k]$ for all k)
Causal Delivery and Vector Clocks

- p_0 maintains array $D[1...n]$ where $D[i] = TS(m_i)[i]$, m_i being last message delivered from p_i
- e.g. on right, delivery of m is delayed until m'' is received and delivered
Delivery Rule 3

- **Causal Delivery:**
 - for all messages m, m', sending processes p_i, p_j and destination process p_k

\[
\text{send}_i(m) \rightarrow \text{send}_j(m') \Rightarrow \text{deliver}_k(m) \rightarrow \text{deliver}_k(m')
\]

- **DR3 (Causal Delivery):** Deliver message m from process p_j as soon as
 - $D[j] = TS(m)[j] - 1$, and
 - $D[k] \geq TS(m)[k], \forall k \neq j$

- p_0 set $D[j]$ to $TS(m)[j]$ after delivery of m
Causal Delivery and Hidden Channels

- should apply to closed systems
- incorrect conclusion with hidden channels (communication channel external to the system)

Figure 9. External Environment as a Hidden Channel
Active Monitoring
- Distributed Snapshots

- monitor p_0 requests states of other processes and combine into global state
- assume channels implement FIFO delivery
- **channel state** $\chi_{i,j}$ for channel p_i to p_j: messages sent by p_i not yet received by p_j
Distributed Snapshots

- notations:
 \(\text{IN}_i \) = set of processes having direct channels to \(p_i \)
 \(\text{OUT}_i \) = set of processes to which \(p_i \) has a channel

- for each execution of the snapshot protocol, process \(p_i \) record its local state \(\sigma_i \) and the states of its incoming channels (\(\chi_{j,i} \) for all \(p_j \in \text{IN}_i \))
Distributed Snapshots

- Snapshot Protocol (Chandy-Lamport)
 1. p_0 starts the protocol by sending itself a “take snapshot” message
 2. when receiving the “take snapshot” message for the first time from process p_f
 - p_i records local state σ_i and relays the “take snapshot” message along all outgoing channels
 - channel state $\chi_{f,i}$ is set to empty
 - p_i starts recording messages on other incoming channels
Distributed Snapshots

Snapshot Protocol (Chandy-Lamport)

3. when receiving the “take snapshot” message beyond the first time from process p_s:
 - p_i stops recording messages along channel from p_s
 - channel state $\chi_{s,i}$ are messages that have been recorded
Distributed Snapshots

- dash arrows indicate “take snapshot” messages
- constructed global state: Σ^{23}; $x_{1,2}$ empty; $x_{2,1} = \{m\}$

Figure 10. Application of the Chandy-Lamport Snapshot Protocol
Properties of Snapshots

- Let $\Sigma^s = \text{global state constructed}$
 $\Sigma^a = \text{global state when protocol initiated}$
 $\Sigma^f = \text{global state when protocol terminated}$
- Σ^s is guaranteed to be consistent
- actual run that the system followed may not pass through Σ^s
- but \exists a run R such that $\Sigma^a \sim_R \Sigma^s \sim_R \Sigma^f$
Properties of Snapshots

- \(r = e_2^1 e_1^1 e_1^2 e_1^3 e_2^2 e_1^4 e_2^4 e_1^5 e_2^5 e_1^6 \)
 \(= \Sigma^{00} \Sigma^{01} \Sigma^{11} \Sigma^{21} \Sigma^{31} \Sigma^{32} \Sigma^{42} \Sigma^{43} \Sigma^{44} \Sigma^{54} \Sigma^{55} \Sigma^{65} \)

- \(\Sigma^a = \Sigma^{21} \)

- \(\Sigma^f = \Sigma^{55} \)

- \(r \) does not pass through \(\Sigma^s (= \Sigma^{23}) \)
Properties of Snapshots

- but $\Sigma^{21} \rightarrow \Sigma^{23} \rightarrow \Sigma^{55}$
Properties of Global Predicates

Now we have two methods for global predicate evaluation:

- monitor passively observing runs
- monitor actively constructing snapshots

Utility of either approach depends (in part) on properties of the predicate
Stable Predicates

- communication delays $\Rightarrow \Sigma^s$ can only reflect some past state of the system
- **stable** predicate: once become true, remain true
- e.g. deadlock, termination, loss of all tokens, unreachable storage
- if Φ is stable, then

 $$(\Phi \text{ is true in } \Sigma^s) \Rightarrow (\Phi \text{ is true in } \Sigma^f) \text{ and } (\Phi \text{ is false in } \Sigma^s) \Rightarrow (\Phi \text{ is false in } \Sigma^a)$$
Stable Predicates

- deadlock detection through snapshots (p.29, 30)

```plaintext
process p(i): 1 \leq i \leq n
var pending: queue of [message, integer] init empty;
working: boolean init false;
blocking: array [1..n] of boolean init false;

while true do
  while working or (size(pending) > 0) do
    receive m from p(i);
    case m.type of
      request:
        blocking[] := true;
        pending := pending + [m, i];
        response:
          [m, i] := NextState(m, i);
          working := (m.type = request);
          send m to p(i);
          if (m.type = response) then blocking[] := false;
          if s = 0 then
            % this is the first snapshot message
            send [type: snapshot, data: blocking] to p(0);
            send [type: snapshot] to p(1),...p(i-1),p(i+1),...p(n)
            s := (s + 1) mod n;
          esac
        end;
      od:
    while not working and (size(pending) > 0) do
      [m, i] := head(pending);
      pending := tail(pending);
      [m, i] := NextState(m, i);
      working := (m.type = request);
      send m to p(i);
      if (m.type = response) then blocking[] := false;
    od
  od
end p(i);
```

Figure 12. Deadlock Detection through Snapshots: Server Side

```plaintext
process p(0):
var wfg: array [1..n] of array [1..n] of boolean;
j, k: integer; m: message;

while true do
  wait until deadlock is suspected;
  send [type: snapshot] to p(1),...p(n);
  for k := 1 to n do
    receive m from p(i);
    wfg[i][j] := m.data;
    if (cycle in wfg) then system is deadlocked
  od
end p(0);
```

Figure 13. Deadlock Detection through Snapshots: Monitor Side
Stable Predicates

- deadlock detection using reactive protocol (p.31, 32)

```plaintext
process p(i); 1 ≤ i ≤ n

var pending: queue of [message, integer] init empty;
working: boolean init false;
m: message; j: integer;

while true do
    while working or (size(pending) > 0) do
        receive m from p(j);
        case m.type of
            request:
                send [type: requested, of: i, by: j] to p(0);
                pending := pending + [m, j];
                response:
                    [m, j] := NextState(m, j);
                    working := (m.type = request);
                    send m to p(0);
                if (m.type = response) then
                    send [type: responded, to: j, by: i] to p(0);
            esac
        while not working and (size(pending) > 0) do
            [m, j] := first(pending);
            [m, j] := NextState(m, j);
            working := (m.type = request);
            send m to p(0);
            if (m.type = response) then
                send [type: responded, to: j, by: i] to p(0)
            esac
        od
    od
end p(i);
```

```plaintext
process p(0):

var wfg: array [1..n, 1..n] of boolean init false;
m: message; j: integer;

while true do
    receive m from p(0);
    if (m.type = responded) then
        wfg[m,by, m.to] := false
    else
        wfg[m.of, m.by] := true;
    if (cycle in wfg) then
        system is deadlocked
    od
end p(0);
```

Figure 14. Deadlock Detection using Reactive Protocol: Server Side

Figure 15. Deadlock Detection using Reactive Protocol: Monitor Side
Nonstable Predicates

- e.g. debugging, checking if queue lengths exceed some thresholds
- Two problems:
 1. condition may not persist long enough for it to be true when the predicate is evaluated
 2. if a predicate Φ is found true, do not know whether Φ ever held during the actual run
Nonstable Predicates

- e.g. monitoring condition $(x = y)$
 - 7 states where $(x = y)$ holds
 - but no longer hold after state Σ^{54}

- e.g. $(y - x) = 2$
 - condition hold only in Σ^{31} and Σ^{41}
 - monitor might detect $(y - x) = 2$ even if actual run never goes through Σ^{31} or Σ^{41}

Figure 16. Global States Satisfying Predicates $(x = y)$ and $(y - x) = 2$
Nonstable Predicates

- very little value to detect nonstable predicate

Figure 16. Global States Satisfying Predicates ($x = y$) and ($y - x = 2$)
Nonstable Predicates

- With observations, can extend predicates:
- **Possibly**(Φ): There exist a consistent observation O of the computation such that Φ holds in a global state of O
- **Definitely**(Φ): For every consistent observation O of the computation, there exists a global state of O in which Φ holds
- e.g. **Possibly**($(y - x) = 2$), **Definitely**($x = y$)
Nonstable Predicates

- use of extended predicate in debugging:
 if $\Phi = \text{some erroneous state}$, then
 \textbf{Possibly}(\Phi) indicates a bug, even if it is
 not observed during an actual run

- if predicate Φ is stable, then
 \textbf{Possibly}(\Phi) $\equiv \textbf{Definitely}(\Phi)$
Detecting Possibly and Definitely Φ

- detection based on the lattice of consistent global states
- If any global state in the lattice satisfies Φ, then $\textbf{Possibly}(\Phi)$ holds
- $\textbf{Definitely}(\Phi)$ requires all possible runs to pass through a global state that satisfies Φ
Detecting Possibly and Definitely Φ

- Possibly $((y - x) = 2)$
- Definitely $y = x$ (why?)

Figure 16. Global States Satisfying Predicates $(x = y)$ and $(y - x) = 2$
Detecting Possibly and Definitely Φ

- set of global state $current$ with progressively increasing levels
- any member of $current$ satisfies Φ => Possibly(Φ) true

```plaintext
procedure Possibly($\Phi$);
    var current: set of global states;
    $\ell$: integer;
    begin
        % Synchronize processes and distribute $\Phi$
        send $\Phi$ to all processes;
        current := global state $\Sigma^{0,0}$;
        release processes;
        $\ell$ := 0;
        % Invariant: current contains all states of level $\ell$ that are reachable from $\Sigma^{0,0}$
        while (no state in current satisfies $\Phi$) do
            if current = final global state then return false
            $\ell$ := $\ell + 1$;
            current := states of level $\ell$
        od
        return true
    end
```

Figure 17. Algorithm for Detecting Possibly(Φ).
Detecting Possibly and Definitely Φ

- iteratively construct set of global states of level l without passing through a state that satisfies Φ
- set empty \Rightarrow Definitely(Φ) true
- set contains the final state $\Rightarrow \neg$Definitely(Φ) true

```plaintext
procedure Definitely(\Phi);
    var current, last: set of global states;
    $\ell$: integer;
    begin
        % Synchronize processes and distribute $\Phi$
        send $\Phi$ to all processes;
        last := global state $\Sigma^{0-0}$;
        release processes;
        remove all states in last that satisfy $\Phi$;
        $\ell$ := 1;
        % Invariant: last contains all states of level $\ell - 1$ that are reachable
        % from $\Sigma^{0-0}$ without passing through a state satisfying $\Phi$
        while (last $\neq \{ \}$) do
            current := states of level $\ell$ reachable from a state in last;
            remove all states in current that satisfy $\Phi$;
            if current = final global state then return false
            $\ell$ := $\ell + 1$;
            last := current
        od
        return true
    end;
```

Figure 18. Algorithm for Detecting Definitely(Φ).
Conclusions

- many distributed system problems require recognizing certain global conditions
- two approaches to constructing global states:
 - reactive-architecture based
 - snapshot based
- timing mechanism that captures causal precedence relation
- applying to distributed deadlock detection and debugging
- solutions can be adapted to deal with nonstable predicates, multiple observations and failures