
 Part 4 Software 1

Software and Security

 Part 4 Software 2

Why Software?
 Why is software as important to security

as crypto, access control and protocols?
 Virtually all of information security is

implemented in software
 If your software is subject to attack, your

security is broken
o Regardless of strength of crypto, access

control or protocols
 Software is a poor foundation for security

 Part 4 Software 3

Bad Software
 Bad software is everywhere!
 NASA Mars Lander (cost $165 million)

o Crashed into Mars
o Error in converting English and metric units of measure

 Denver airport
o Buggy baggage handling system
o Delayed airport opening by 11 months
o Cost of delay exceeded $1 million/day

 MV-22 Osprey
o Advanced military aircraft
o Lives have been lost due to faulty software

 Part 4 Software 4

Software Issues
Attackers
 Actively look for

bugs and flaws
 Like bad software…
 …and try to make it

misbehave
 Attack systems thru

bad software

“Normal” users
 Find bugs and flaws

by accident
 Hate bad software…
 …but must learn to

live with it
 Must make bad

software work

 Part 4 Software 5

Complexity
 “Complexity is the enemy of security”, Paul

Kocher, Cryptography Research, Inc.

7,000,000Boeing 777

40,000,000Windows XP

1,500,000Linux

10,000,000Space shuttle

17,000,000Netscape

system Lines of code (LOC)

 A new car contains more LOC than was required
to land the Apollo astronauts on the moon

 Part 4 Software 6

Lines of Code and Bugs
 Conservative estimate: 5 bugs/1000 LOC
 Do the math

o Typical computer: 3,000 exe’s of 100K each
o Conservative estimate of 50 bugs/exe
o About 150k bugs per computer
o 30,000 node network has 4.5 billion bugs
o Suppose that only 10% of bugs security-critical

and only 10% of those remotely exploitable
o Then “only” 4.5 million critical security flaws!

 Part 4 Software 7

Software Security Topics
 Program flaws (unintentional)

o Buffer overflow
o Incomplete mediation
o Race conditions

 Malicious software (intentional)
o Viruses
o Worms
o Other breeds of malware

 Part 4 Software 8

Program Flaws
 An error is a programming mistake

o To err is human
 An error may lead to incorrect state: fault

o A fault is internal to the program
 A fault may lead to a failure, where a

system departs from its expected behavior
o A failure is externally observable

error fault failure

 Part 4 Software 9

Example
char array[10];
for(i = 0; i < 10; ++i)

array[i] = `A`;
array[10] = `B`;

 This program has an error
 This error might cause a fault

o Incorrect internal state
 If a fault occurs, it might lead to a failure

o Program behaves incorrectly (external)
 We use the term flaw for all of the above

 Part 4 Software 10

Secure Software
 In software engineering, try to insure that

a program does what is intended
 Secure software engineering requires that

the software does what is intended…
 …and nothing more
 Absolutely secure software is impossible

o Absolute security is almost never possible!
 How can we manage the risks?

 Part 4 Software 11

Program Flaws
 Program flaws are unintentional

o But still create security risks
 We’ll consider 3 types of flaws

o Buffer overflow (smashing the stack)
o Incomplete mediation
o Race conditions

 Many other flaws can occur
 These are most common

 Part 4 Software 12

Buffer Overflow

 Part 4 Software 13

Typical Attack Scenario

 Users enter data into a Web form
 Web form is sent to server
 Server writes data to buffer, without

checking length of input data
 Data overflows from buffer
 Sometimes, overflow can enable an attack
 Web form attack could be carried out by

anyone with an Internet connection

 Part 4 Software 14

Buffer Overflow

 Q: What happens when this is executed?
 A: Depending on what resides in memory

at location “buffer[20]”
o Might overwrite user data or code
o Might overwrite system data or code

int main(){
 int buffer[10];
 buffer[20] = 37;}

 Part 4 Software 15

Simple Buffer Overflow
 Consider boolean flag for authentication
 Buffer overflow could overwrite flag

allowing anyone to authenticate!

buffer
FTF O U R S C …

Boolean flag

 In some cases, attacker need not be so
lucky as to have overflow overwrite flag

 Part 4 Software 16

Memory Organization

 Text == code
 Data == static variables
 Heap == dynamic data
 Stack == “scratch paper”

o Dynamic local variables
o Parameters to functions
o Return address

stack

heap
↓

↑

data

text

← high
 address

← low
 address

← SP

 Part 4 Software 17

Simplified Stack Example

high →

void func(int a, int b){
char buffer[10];

}
void main(){

func(1, 2);
}

:
:

buffer

ret
a
b

← return
 address

low →

← SP
← SP

← SP

← SP

 Part 4 Software 18

Smashing the Stack

high →

 What happens if
buffer overflows?

:
:

buffer

a
b

← ret…

low →

← SP
← SP

← SP

← SP

retoverflow

 Program “returns”
to wrong location

NOT!

???

 A crash is likely
overflow

 Part 4 Software 19

Smashing the Stack

high →

 Attacker has a
better idea… :

:

evil code

a
b

low →

← SP
← SP
← SP

← SP

retret

Code injection
 Attacker can run

any code on
affected system!

 Part 4 Software 20

Smashing the Stack

 Attacker may not know
o Address of evil code
o Location of ret on stack

 Solutions
o Precede evil code with

NOP “landing pad”
o Insert lots of new ret

evil code

:
:

:
:

ret

ret
:

NOP

NOP
:

ret
← ret

 Part 4 Software 21

Stack Smashing Summary
 A buffer overflow must exist in the code
 Not all buffer overflows are exploitable

o Things must line up correctly
 If exploitable, attacker can inject code
 Trial and error likely required

o Lots of help available online
o Smashing the Stack for Fun and Profit, Aleph One

 Also possible to overflow the heap
 Stack smashing is “attack of the decade”

 Part 4 Software 22

Stack Smashing Example
 Program asks for a serial number that the

attacker does not know
 Attacker also does not have source code
 Attacker does have the executable (exe)

 Program quits on incorrect serial number

 Part 4 Software 23

Example
 By trial and error, attacker discovers an

apparent buffer overflow

 Note that 0x41 is “A”
 Looks like ret overwritten by 2 bytes!

 Part 4 Software 24

Example
 Next, disassemble bo.exe to find

 The goal is to exploit buffer overflow
to jump to address 0x401034

 Part 4 Software 25

Example
 Find that 0x401034 is “@^P4” in ASCII

 Byte order is reversed? Why?
 X86 processors are “little-endian”

 Part 4 Software 26

Example
 Reverse the byte order to “4^P@” and…

 Success! We’ve bypassed serial number
check by exploiting a buffer overflow

 Overwrote the return address on the stack

 Part 4 Software 27

Example

 Attacker did not require access to
the source code

 Only tool used was a disassembler to
determine address to jump to
o Can find address by trial and error
o Necessary if attacker does not have exe
o For example, a remote attack

 Part 4 Software 28

Example

 Source code of the buffer overflow
 Flaw easily

found by
attacker

Even without
the source
code!

 Part 4 Software 29

Stack Smashing Prevention
 1st choice: employ non-executable stack

o “No execute” NX bit (if available)
o Seems like the logical thing to do, but some real

code executes on the stack! (Java does this)
 2nd choice: use safe languages (Java, C#)
 3rd choice: use safer C functions

o For unsafe functions, there are safer versions
o For example, strncpy instead of strcpy

 Part 4 Software 30

Stack Smashing Prevention

Canary
o Run-time stack check
o Push canary onto stack
o Canary value:

 Constant 0x000aff0d
 Or value depends on ret

←

high →

:
:

buffer

a
b

low →

overflowret
canaryoverflow

 Part 4 Software 31

Microsoft’s Canary
 Microsoft added buffer security check

feature to C++ with /GS compiler flag
 Uses canary (or “security cookie”)
 Q: What to do when canary dies?
 A: Check for user-supplied handler
 Handler may be subject to attack

o Claimed that attacker can specify handler code
o If so, formerly safe buffer overflows become

exploitable when /GS is used!

 Part 4 Software 32

Buffer Overflow
 The “attack of the decade” for 90’s
 Will be the attack of the decade for 00’s
 Can be prevented

o Use safe languages/safe functions
o Educate developers, use tools, etc.

 Buffer overflows will exist for a long time
o Legacy code
o Bad software development

 Part 4 Software 33

Incomplete Mediation

 Part 4 Software 34

Input Validation
 Consider: strcpy(buffer, argv[1])
 A buffer overflow occurs if
len(buffer) < len(argv[1])

 Software must validate the input by
checking the length of argv[1]

 Failure to do so is an example of a more
general problem: incomplete mediation

 Part 4 Software 35

Input Validation
 Consider web form data
 Suppose input is validated on client
 For example, the following is valid

http://www.things.com/orders/final&custID=112&
num=55A&qty=20&price=10&shipping=5&total=205

 Suppose input is not checked on server
o Why bother since input checked on client?
o Then attacker could send http message
http://www.things.com/orders/final&custID=112&
num=55A&qty=20&price=10&shipping=5&total=25

 Part 4 Software 36

Incomplete Mediation
 Linux kernel

o Research has revealed many buffer overflows
o Many of these are due to incomplete mediation

 Linux kernel is “good” software since
o Open-source
o Kernel written by coding gurus

 Tools exist to help find such problems
o But incomplete mediation errors can be subtle
o And tools useful to attackers too!

 Part 4 Software 37

Race Conditions

 Part 4 Software 38

Race Condition
 Security processes should be atomic

o Occur “all at once”
 Race conditions can arise when security-

critical process occurs in stages
 Attacker makes change between stages

o Often, between stage that gives authorization,
but before stage that transfers ownership

 Example: Unix mkdir

 Part 4 Software 39

mkdir Race Condition
 mkdir creates new directory
 How mkdir is supposed to work

1. Allocate
 space

mkdir

2. Transfer
 ownership

 Part 4 Software 40

mkdir Attack

 Not really a “race”
o But attacker’s timing is critical

1. Allocate
 space

mkdir

3. Transfer
 ownership

2. Create link to
 password file

 The mkdir race condition

 Part 4 Software 41

Race Conditions
 Race conditions are common
 Race conditions may be more prevalent

than buffer overflows
 But race conditions harder to exploit

o Buffer overflow is “low hanging fruit” today
 To prevent race conditions, make security-

critical processes atomic
o Occur all at once, not in stages
o Not always easy to accomplish in practice

 Part 4 Software 42

Malware

 Part 4 Software 43

Malicious Software
 Malware is not new!
 Fred Cohen’s initial virus work in 1980’s

o Used viruses to break MLS systems
 Types of malware (lots of overlap)

o Virus passive propagation
o Worm active propagation
o Trojan horse unexpected functionality
o Trapdoor/backdoor unauthorized access
o Rabbit exhaust system resources

 Part 4 Software 44

Viruses/Worms
 Where do viruses live?
 Boot sector

o Take control before anything else
 Memory resident

o Stays in memory
 Applications, macros, data, etc.
 Library routines
 Compilers, debuggers, virus checker, etc.

o These are particularly nasty!

 Part 4 Software 45

Malware Timeline

 Preliminary work by Cohen (early 80’s)
 Brain virus (1986)
 Morris worm (1988)
 Code Red (2001)
 SQL Slammer (2004)
 Future of malware?

 Part 4 Software 46

Brain
❑ First appeared in 1986
❑ More annoying than harmful
❑ A prototype for later viruses
❑ Not much reaction by users
❑ What it did

1. Placed itself in boot sector (and other places)
2. Screened disk calls to avoid detection
3. Each disk read, checked boot sector to see if

boot sector infected; if not, goto 1
❑ Brain did nothing malicious

 Part 4 Software 47

Morris Worm
 First appeared in 1988
 What it tried to do

o Determine where it could spread
o Spread its infection
o Remain undiscovered

 Morris claimed it was a test gone bad
 “Flaw” in worm code it tried to re-infect

already-infected systems
o Led to resource exhaustion
o Adverse effect was like a so-called rabbit

 Part 4 Software 48

Morris Worm
 How to spread its infection?
 Tried to obtain access to machine by

o User account password guessing
o Exploited buffer overflow in fingerd
o Exploited trapdoor in sendmail

 Flaws in fingerd and sendmail were well-
known at the time, but not widely patched

 Part 4 Software 49

Morris Worm

 Once access had been obtained to machine
 “Bootstrap loader” sent to victim

o Consisted of 99 lines of C code
 Victim machine compiled and executed code
 Bootstrap loader then fetched the rest of

the worm
 Victim even authenticated the sender!

 Part 4 Software 50

Morris Worm
 How to remain undetected?
 If transmission of the worm was

interrupted, all code was deleted
 Code was encrypted when downloaded
 Downloaded code deleted after decrypting

and compiling
 When running, the worm regularly changed

its name and process identifier (PID)

 Part 4 Software 51

Result of Morris Worm

 Shocked the Internet community of 1988
 Internet designed to withstand nuclear war

o Yet it was brought down by a graduate student!
o At the time, Morris’ father worked at NSA…

 Could have been much worse not malicious
 Users who did not panic recovered quickest
 CERT began, increased security awareness

o Though limited actions to improve security

 Part 4 Software 52

Code Red Worm
 Appeared in July 2001
 Infected more than 250,000 systems in

about 15 hours
 In total, infected 750,000 out of

6,000,000 susceptible systems
 Exploited buffer overflow in Microsoft

IIS server software
 Then monitored traffic on port 80 for

other susceptible servers

 Part 4 Software 53

Code Red Worm
 What it did

o Day 1 to 19 of month: tried to spread infection
o Day 20 to 27: distributed denial of service

attack on www.whitehouse.gov
 Later versions (several variants)

o Included trapdoor for remote access
o Rebooted to flush worm, leaving only trapdoor

 Has been claimed that Code Red may have
been “beta test for information warfare”

 Part 4 Software 54

SQL Slammer

 Infected 250,000 systems in
10 minutes!

 Code Red took 15 hours to do
what Slammer did in 10 minutes

 At its peak, Slammer infections
doubled every 8.5 seconds

 Slammer spread too fast
 “Burned out” available

bandwidth

 Part 4 Software 55

SQL Slammer

 Why was Slammer so successful?
o Worm fit in one 376 byte UDP packet
o Firewalls often let small packet thru,

assuming it could do no harm by itself
o Then firewall monitors the connection
o Expectation was that much more data

would be required for an attack
o Slammer defied assumptions of “experts”

 Part 4 Software 56

Trojan Horse Example
 A trojan has unexpected function
 Prototype of trojan for the Mac
 File icon for freeMusic.mp3:
 For a real mp3, double click on icon

o iTunes opens
o Music in mp3 file plays

 But for freeMusic.mp3, unexpected
results…

 Part 4 Software 57

Trojan Example
 Double click on freeMusic.mp3

o iTunes opens (expected)
o “Wild Laugh” (probably not expected)
o Message box (unexpected)

 Part 4 Software 58

Trojan Example
 How does freeMusic.mp3 trojan work?
 This “mp3” is an application, not data!

 This trojan is harmless, but…
 Could have done anything user can do

o Delete files, download files, launch apps, etc.

 Part 4 Software 59

Malware Detection
 Three common methods

o Signature detection
o Change detection
o Anomaly detection

 We’ll briefly discuss each of these
o And consider advantages and

disadvantages of each

 Part 4 Software 60

Signature Detection
 A signature is a string of bits found in

software (or could be a hash value)
 Suppose that a virus has signature

0x23956a58bd910345
 We can search for this signature in all files
 If we find the signature are we sure we’ve

found the virus?
o No, same signature could appear in other files
o But at random, chance is very small: 1/264

o Software is not random, so probability is higher

 Part 4 Software 61

Signature Detection
 Advantages

o Effective on “traditional” malware
o Minimal burden for users/administrators

 Disadvantages
o Signature file can be large (10,000’s)…
o …making scanning slow
o Signature files must be kept up to date
o Cannot detect unknown viruses
o Cannot detect some new types of malware

 By far the most popular detection method!

 Part 4 Software 62

Change Detection
 Viruses must live somewhere on system
 If we detect that a file has changed, it

may be infected
 How to detect changes?

o Hash files and (securely) store hash values
o Recompute hashes and compare
o If hash value changes, file might be

infected

 Part 4 Software 63

Change Detection
 Advantages

o Virtually no false negatives
o Can even detect previously unknown malware

 Disadvantages
o Many files change and often
o Many false alarms (false positives)
o Heavy burden on users/administrators
o If suspicious change detected, then what?
o Might still need signature-based system

 Part 4 Software 64

Anomaly Detection
 Monitor system for anything “unusual” or

“virus-like” or potentially malicious
 What is unusual?

o Files change in some unusual way
o System misbehaves in some way
o Unusual network activity
o Unusual file access, etc., etc.

 But must first define “normal”
o And normal can change!

 Part 4 Software 65

Anomaly Detection
 Advantages

o Chance of detecting unknown malware
 Disadvantages

o Unproven in practice
o Attacker can make anomaly look normal
o Must be combined with another method (such

as signature detection)
 Also popular in intrusion detection (IDS)
 A difficult unsolved (unsolvable?) problem!

o As difficult as AI?

 Part 4 Software 66

Future of Malware

 Polymorphic and metamorphic malware
 Fast replication/Warhol worms
 Flash worms, Slow worms, etc.
 Future is bright for malware

o Good news for the bad guys…
o …bad news for the good guys

 Future of malware detection?

 Part 4 Software 67

Polymorphic Malware
 Polymorphic worm (usually) encrypted
 New key is used each time worm propagates

o The encryption is weak (repeated XOR)
o Worm body has no fixed signature
o Worm must include code to decrypt itself
o Signature detection searches for decrypt code

 Detectable by signature-based method
o Though more challenging than non-polymorphic…

 Part 4 Software 68

Metamorphic Malware
 A metamorphic worm mutates before

infecting a new system
 Such a worm can avoid signature-based

detection systems
 The mutated worm must do the same thing

as the original
 And it must be “different enough” to avoid

detection
 Detection is currently unsolved problem

 Part 4 Software 69

Metamorphic Worm
 To replicate, the worm is disassembled
 Worm is stripped to a base form
 Random variations inserted into code

o Rearrange jumps
o Insert dead code
o Many other possibilities

 Assemble the resulting code
 Result is a worm with same functionality as

original, but very different signature

 Part 4 Software 70

Warhol Worm
 “In the future everybody will be world-

famous for 15 minutes” Andy Warhol
 A Warhol Worm is designed to infect the

entire Internet in 15 minutes
 Slammer infected 250,000 systems in 10

minutes
o “Burned out” bandwidth
o Slammer could not have infected all of Internet

in 15 minutes too bandwidth intensive
 Can a worm do “better” than Slammer?

 Part 4 Software 71

Warhol Worm
 One approach to a Warhol worm…
 Seed worm with an initial hit list containing

a set of vulnerable IP addresses
o Depends on the particular exploit
o Tools exist for finding vulnerable systems

 Each successful initial infection would
attack selected part of IP address space

 No worm this sophisticated has yet been
seen in the wild (as of 2004)
o Slammer generated random IP addresses

 Could infect entire Internet in 15 minutes!

 Part 4 Software 72

Flash Worm
 Possible to do “better” than Warhol worm?
 Can entire Internet be attacked in < 15 min?
 Searching for vulnerable IP addresses is slow

part of any worm attack
 Searching might be bandwidth limited

o Like Slammer

 A “flash worm” is designed to infect entire
Internet almost instantly

 Part 4 Software 73

Flash Worm
 Predetermine all vulnerable IP addresses

o Depends on the particular exploit
 Embed all known vulnerable addresses in worm
 Result is a huge worm (perhaps 400KB)
 Whenever the worm replicates, it splits
 Virtually no wasted time or bandwidth!

Original worm

1st generation

2nd generation

 Part 4 Software 74

Flash Worm
 Estimated that ideal flash worm could

infect the entire Internet in 15 seconds!
 Much faster than humans could respond
 A conjectured defense against flash worms

o Deploy many “personal IDSs”
o Master IDS watches over the personal IDSs
o When master IDS detects unusual activity, lets

it proceed on a few nodes, blocks it elsewhere
o If sacrificial nodes adversely affected, attack is

prevented almost everywhere

 Part 4 Software 75

Computer Infections
 Analogies are made between computer

viruses/worms and biological diseases
 There are differences

o Computer infections are much quicker
o Ability to intervene in computer outbreak is more

limited (vaccination?)
o Bio disease models often not applicable
o “Distance” almost meaningless on Internet

 But there are some similarities…

 Part 4 Software 76

Computer Infections
 Cyber “diseases” vs biological diseases
 One similarity

o In nature, too few susceptible individuals and
disease will die out

o In the Internet, too few susceptible systems and
worm might fail to take hold

 One difference
o In nature, diseases attack more-or-less at random
o Cyber attackers select most “desirable” targets
o Cyber attacks are more focused and damaging

 Part 4 Software 77

Miscellaneous Attacks

 Part 4 Software 78

Miscellaneous Attacks
 Numerous attacks involve software
 We’ll discuss a few issues that do not

fit in previous categories
o Salami attack
o Linearization attack
o Time bomb
o Can you ever trust software?

 Part 4 Software 79

Salami Attack
 What is Salami attack?

o Programmer “slices off” money
o Slices are hard for victim to detect

 Example
o Bank calculates interest on accounts
o Programmer “slices off” any fraction of a cent

and puts it in his own account
o No customer notices missing partial cent
o Bank may not notice any problem
o Over time, programmer makes lots of money!

 Part 4 Software 80

Salami Attack
 Such attacks are possible for insiders
 Do salami attacks actually occur?
 Programmer added a few cents to every

employee payroll tax withholding
o But money credited to programmer’s tax
o Programmer got a big tax refund!

 Rent-a-car franchise in Florida inflated gas
tank capacity to overcharge customers

 Part 4 Software 81

Salami Attacks
 Employee reprogrammed Taco Bell cash

register: $2.99 item registered as $0.01
o Employee pocketed $2.98 on each such item
o A large “slice” of salami!

 In LA four men installed computer chip
that overstated amount of gas pumped
o Customer complained when they had to pay for

more gas than tank could hold!
o Hard to detect since chip programmed to give

correct amount when 5 or 10 gallons purchased
o Inspector usually asked for 5 or 10 gallons!

 Part 4 Software 82

Linearization Attack
 Program checks for

serial number
S123N456

 For efficiency,
check made one
character at a time

 Can attacker take
advantage of this?

 Part 4 Software 83

Linearization Attack
 Correct string takes longer than incorrect
 Attacker tries all 1 character strings

o Finds S takes most time

 Attacker then tries all 2 char strings S∗
o Finds S1 takes most time

 And so on…
 Attacker is able to recover serial number

one character at a time!

 Part 4 Software 84

Linearization Attack
 What is the advantage of attacking serial

number one character at a time?
 Suppose serial number is 8 characters and

each has 128 possible values
o Then 1288 = 256 possible serial numbers
o Attacker would guess the serial number in

about 255 tries a lot of work!
o Using the linearization attack, the work is

about 8∗(128/2) = 29 which is trivial!

 Part 4 Software 85

Linearization Attack
 A real-world linearization attack
 TENEX (an ancient timeshare system)

o Passwords checked one character at a time
o Careful timing was not necessary, instead…
o …could arrange for a “page fault” when next

unknown character guessed correctly
o The page fault register was user accessible
o Attack was very easy in practice

 Part 4 Software 86

Time Bomb
 In 1986 Donald Gene Burleson told employer

to stop withholding taxes from his paycheck
 His company refused
 He planned to sue his company

o He used company computer to prepare legal docs
o Company found out and fired him

 Burleson had been working on a malware…
 After being fired, his software “time bomb”

deleted important company data

 Part 4 Software 87

Time Bomb
 Company was reluctant to pursue the case
 So Burleson sued company for back pay!

o Then company finally sued Burleson
 In 1988 Burleson fined $11,800

o Took years to prosecute
o Cost thousands of dollars to prosecute
o Resulted in a slap on the wrist

 One of the first computer crime cases
 Many cases since follow a similar pattern

o Companies often reluctant to prosecute

 Part 4 Software 88

Trusting Software
 Can you ever trust software?

o See Reflections on Trusting Trust
 Consider the following thought experiment
 Suppose C compiler has a virus

o When compiling login program, virus creates
backdoor (account with known password)

o When recompiling the C compiler, virus
incorporates itself into new C compiler

 Difficult to get rid of this virus!

 Part 4 Software 89

Trusting Software
 Suppose you notice something is wrong
 So you start over from scratch
 First, you recompile the C compiler
 Then you recompile the OS

o Including login program…
o You have not gotten rid of the problem!

 In the real world
o Attackers try to hide viruses in virus scanner
o Imagine damage that would be done by attack

on virus signature updates

 Part 4 Software 90

Software Reverse
Engineering (SRE)

 Part 4 Software 91

SRE
 Software Reverse Engineering

o Also known as Reverse Code Engineering (RCE)
o Or simply “reversing”

 Can be used for good...
o Understand malware
o Understand legacy code

 …or not-so-good
o Remove usage restrictions from software
o Find and exploit flaws in software
o Cheat at games, etc.

 Part 4 Software 92

SRE
 We assume that

o Reverse engineer is an attacker
o Attacker only has exe (no source code)

 Attacker might want to
o Understand the software
o Modify the software

 SRE usually focused on Windows
 So we’ll focus on Windows

 Part 4 Software 93

SRE Tools
 Disassembler

o Converts exe to assembly as best it can
o Cannot always disassemble correctly
o Generally, it is not possible to assemble

disassembly into working exe
 Debugger

o Must step thru code to completely understand it
o Labor intensive lack of automated tools

 Hex Editor
o To “patch” (make changes to) exe file

 Regmon, Filemon, VMware, etc.

 Part 4 Software 94

SRE Tools
 IDA Pro is the top-rated disassembler

o Cost is a few hundred dollars
o Converts binary to assembly (as best it can)

 SoftICE is “alpha and omega” of debuggers
o Cost is in the $1000’s
o Kernel mode debugger
o Can debug anything, even the OS

 OllyDbg is a high quality shareware debugger
o Includes a good disassembler

 Hex editor to view/modify bits of exe
o UltraEdit is good freeware
o HIEW useful for patching exe

 Regmon, Filemon freeware

 Part 4 Software 95

Why is a Debugger Needed?
 Disassembler gives static results

o Good overview of program logic
o But need to “mentally execute” program
o Difficult to jump to specific place in the code

 Debugger is dynamic
o Can set break points
o Can treat complex code as “black box”
o Not all code disassembles correctly

 Disassembler and debugger both required
for any serious SRE task

 Part 4 Software 96

SRE Necessary Skills
 Working knowledge of target assembly code
 Experience with the tools

o IDA Pro sophisticated and complex
o SoftICE large two-volume users manual

 Knowledge of Windows Portable Executable
(PE) file format

 Boundless patience and optimism
 SRE is tedious and labor-intensive process!

 Part 4 Software 97

SRE Example
 Consider simple example
 This example only requires disassembler

(IDA Pro) and hex editor
o Trudy disassembles to understand code
o Trudy also wants to patch the code

 For most real-world code, also need a
debugger (SoftICE or OllyDbg)

 Part 4 Software 98

SRE Example
 Program requires serial number
 But Trudy doesn’t know the serial number!

 Can Trudy find the serial number?

 Part 4 Software 99

SRE Example
 IDA Pro disassembly

 Looks like serial number is S123N456

 Part 4 Software 100

SRE Example
 Try the serial number S123N456

 It works!
 Can Trudy do better?

 Part 4 Software 101

SRE Example
 Again, IDA Pro disassembly

 And hex view…

 Part 4 Software 102

SRE Example

 test eax,eax gives AND of eax with itself
o Result is 0 only if eax is 0
o If test returns 0, then jz is true

 Trudy wants jz to always be true!
 Can Trudy patch exe so that jz always true?

 Part 4 Software 103

SRE Example

Assembly Hex
test eax,eax 85 C0 …
xor eax,eax 33 C0 …

 Can Trudy patch exe so that jz always true?

xor ← jz always true!!!

 Part 4 Software 104

SRE Example
 Edit serial.exe with hex editor

serial.exe

serialPatch.exe

 Save as serialPatch.exe

 Part 4 Software 105

SRE Example

Any “serial number” now works!
 Very convenient for Trudy!

 Part 4 Software 106

SRE Example
 Back to IDA Pro disassembly…

serial.exe

serialPatch.exe

 Part 4 Software 107

SRE Attack Mitigation
 Impossible to prevent SRE on open system
 But can make such attacks more difficult
 Anti-disassembly techniques

o To confuse static view of code
 Anti-debugging techniques

o To confuse dynamic view of code
 Tamper-resistance

o Code checks itself to detect tampering
 Code obfuscation

o Make code more difficult to understand

 Part 4 Software 108

Anti-disassembly
 Anti-disassembly methods include

o Encrypted object code
o False disassembly
o Self-modifying code
o Many others

 Encryption prevents disassembly
o But still need code to decrypt the code!
o Same problem as with polymorphic viruses

 Part 4 Software 109

Anti-disassembly Example
 Suppose actual code instructions are

 What the disassembler sees

inst 1 inst 3jmp junk inst 4 …

inst 1 inst 5inst 2 inst 3 inst 4 inst 6 …

 This is example of “false disassembly”
 Clever attacker will figure it out!

 Part 4 Software 110

Anti-debugging
 Monitor for

o Use of debug registers
o Inserted breakpoints

 Debuggers don’t handle threads well
o Interacting threads may confuse debugger

 Many other debugger-unfriendly tricks
 Undetectable debugger possible in principle

o Hardware-based debugging (HardICE) is possible

 Part 4 Software 111

Anti-debugger Example

 Suppose when program gets inst 1, it pre-
fetches inst 2, inst 3 and inst 4
o This is done to increase efficiency

 Suppose when debugger executes inst 1, it
does not pre-fetch instructions

 Can we use this difference to confuse the
debugger?

inst 1 inst 5inst 2 inst 3 inst 4 inst 6 …

 Part 4 Software 112

Anti-debugger Example

 Suppose inst 1 overwrites inst 4 in memory
 Then program (without debugger) will be OK

since it fetched inst 4 at same time as inst 1
 Debugger will be confused when it reaches

junk where inst 4 is supposed to be
 Problem for program if this segment of code

executed more than once!
 Also, code is very platform-dependent
 Again, clever attacker will figure this out!

inst 1 inst 5inst 2 inst 3 inst 4 inst 6 …junk

 Part 4 Software 113

Tamper-resistance
 Goal is to make patching more difficult
 Code can hash parts of itself
 If tampering occurs, hash check fails
 Research has shown can get good coverage

of code with small performance penalty
 But don’t want all checks to look similar

o Or else easy for attacker to remove checks
 This approach sometimes called “guards”

 Part 4 Software 114

Code Obfuscation
 Goal is to make code hard to understand
 Opposite of good software engineering!
 Simple example: spaghetti code
 Much research into more robust obfuscation

o Example: opaque predicate
int x,y

:
if((x−y)∗(x−y) > (x∗x−2∗x∗y+y∗y)){…}

o The if() conditional is always false
 Attacker will waste time analyzing dead code

 Part 4 Software 115

Code Obfuscation
 Code obfuscation sometimes promoted as a

powerful security technique
 Diffie and Hellman’s original ideas for public

key crypto were based on similar ideas!
 Recently it has been shown that obfuscation

probably cannot provide strong security
o On the (im)possibility of obfuscating programs
o Some question significance of result (Thomborson)

 Obfuscation might still have practical uses!
o Even if it can never be as strong as crypto

 Part 4 Software 116

Authentication Example
 Software used to determine authentication
 Ultimately, authentication is 1-bit decision

o Regardless of method used (pwd, biometric, …)
 Somewhere in authentication software, a

single bit determines success/failure
 If attacker can find this bit, he can force

authentication to always succeed
 Obfuscation makes it more difficult for

attacker to find this all-important bit

 Part 4 Software 117

Obfuscation
 Obfuscation forces attacker to analyze

larger amounts of code
 Method could be combined with

o Anti-disassembly techniques
o Anti-debugging techniques
o Code tamper-checking

 All of these increase work (and pain) for
attacker

 But a persistent attacker will ultimately win!

 Part 4 Software 118

Software Cloning
 Suppose we write a piece of software
 We then distribute an identical copy (or clone)

to each customers
 If an attack is found on one copy, the same

attack works on all copies
 This approach has no resistance to “break

once, break everywhere” (BOBE)
 This is the usual situation in software

development

 Part 4 Software 119

Metamorphic Software
 Metamorphism is used in malware
 Can metamorphism also be used for good?
 Suppose we write a piece of software
 Each copy we distribute is different

o This is an example of metamorphic software
 Two levels of metamorphism are possible

o All instances are functionally distinct (only possible
in certain application)

o All instances are functionally identical but differ
internally (always possible)

 We consider the latter case

 Part 4 Software 120

Metamorphic Software
 If we distribute N copies of cloned software

o One successful attack breaks all N
 If we distribute N metamorphic copies, where

each of N instances is functionally identical,
but they differ internally
o An attack on one instance does not necessarily

work against other instances
o In the best case, N times as much work is required

to break all N instances

 Part 4 Software 121

Metamorphic Software
 We cannot prevent SRE attacks
 The best we can hope for is BOBE resistance
 Metamorphism will improve BOBE resistance
 Consider the analogy to genetic diversity

o If all plants in a field are genetically identical,
one disease can kill all of the plants

o If the plants in a field are genetically diverse,
one disease can only kill some of the plants

 Part 4 Software 122

Cloning vs Metamorphism
 Spse our software has a buffer overflow
 Cloned software

o Same buffer overflow attack will work against
all cloned copies of the software

 Metamorphic software
o Unique instances all are functionally the

same, but they differ in internal structure
o Buffer overflow exists in all instances
o But a specific buffer overflow attack will only

work against some instances
o Buffer overflow attacks are delicate!

 Part 4 Software 123

Metamorphic Software
 Metamorphic software is intriguing concept
 But raises concerns regarding

o Software development
o Software upgrades, etc.

 Metamorphism does not prevent SRE, but
could make it infeasible on a large scale

 May be one of the best tools for increasing
BOBE resistance

 Metamorphism currently used in malware
 But metamorphism not just for evil!

 Part 4 Software 124

Digital Rights Management

 Part 4 Software 125

Digital Rights Management
 DRM is a good example of limitations

of doing security in software
 We’ll discuss

o What is DRM?
o A PDF document protection system
o DRM for streaming media
o DRM in P2P application
o DRM within an enterprise

 Part 4 Software 126

What is DRM?
 “Remote control” problem

o Distribute digital content
o Retain some control on its use, after delivery

 Digital book example
o Digital book sold online could have huge market
o But might only sell 1 copy!
o Trivial to make perfect digital copies
o A fundamental change from pre-digital era

 Similar comments for digital music, video, etc.

 Part 4 Software 127

Persistent Protection
 “Persistent protection” is the fundamental

problem in DRM
o How to enforce restrictions on use of content

after delivery?
 Examples of such restrictions

o No copying
o Limited number of reads/plays
o Time limits
o No forwarding, etc.

 Part 4 Software 128

What Can be Done?
 The honor system?

o Example: Stephen King’s, The Plant
 Give up?

o Internet sales? Regulatory compliance? etc.
 Lame software-based DRM?

o The standard DRM system today
 Better software-based DRM?

o MediaSnap’s goal
 Tamper-resistant hardware?

o Closed systems: Game Cube, etc.
o Open systems: TCG/NGSCB for PCs

 Part 4 Software 129

Is Crypto the Answer?

 Attacker’s goal is to recover the key
 In standard crypto scenario, attacker has

o Ciphertext, some plaintext, side-channel info, etc.

 In DRM scenario, attacker has
o Everything in the box (at least)

 Crypto was not designed for this problem!

 Part 4 Software 130

Is Crypto the Answer?

 But crypto is necessary
o To securely deliver the bits
o To prevent trivial attacks

 Then attacker will not try to directly
attack crypto

 Attacker will try to find keys in software
o DRM is “hide and seek” with keys in software!

 Part 4 Software 131

Current State of DRM
 At best, security by obscurity

o A derogatory term in security
 Secret designs

o In violation of Kerckhoffs Principle
 Over-reliance on crypto

o “Whoever thinks his problem can be solved
using cryptography, doesn’t understand his
problem and doesn’t understand cryptography.”
 Attributed by Roger Needham and Butler Lampson to each other

 Part 4 Software 132

DRM Limitations
 The analog hole

o When content is rendered, it can be captured in
analog form

o DRM cannot prevent such an attack
 Human nature matters

o Absolute DRM security is impossible
o Want something that “works” in practice
o What works depends on context

 DRM is not strictly a technical problem!

 Part 4 Software 133

Software-based DRM
 Strong software-based DRM is impossible
 Why?

o We can’t really hide a secret in software
o We cannot prevent SRE
o User with full admin privilege can eventually

break any anti-SRE protection
 Bottom line: The killer attack on software-

based DRM is SRE

 Part 4 Software 134

DRM for PDF Documents
 Based on design of MediaSnap, Inc., a

small Silicon Valley startup company
 Developed a DRM system

o Designed to protect PDF documents
 Two parts to the system

o Server Secure Document Server (SDS)
o Client PDF Reader “plugin” software

 Part 4 Software 135

Protecting a Document

SDS BobAlice

encrypt
persistent
protection

 Alice creates PDF document
 Document encrypted and sent to SDS
 SDS applies desired “persistent protection”
 Document sent to Bob

 Part 4 Software 136

Accessing a Document

key

Request key

 Bob authenticates to SDS
 Bob requests key from SDS
 Bob can then access document, but only thru

special DRM software

SDS BobAlice

 Part 4 Software 137

Security Issues
 Server side (SDS)

o Protect keys, authentication data, etc.
o Apply persistent protection

 Client side (PDF plugin)
o Protect keys, authenticate user, etc.
o Enforce persistent protection

 Remaining discussion concerns client

 Part 4 Software 138

Security Overview

Obfuscation

Tamper-resistance

 A tamper-resistant outer layer
 Software obfuscation applied within

 Part 4 Software 139

Anti-debugger Encrypted code

Tamper-Resistance

 Encrypted code will prevent static analysis
of PDF plugin software

 Anti-debugging to prevent dynamic analysis
of PDF plugin software

 These two designed to protect each other
 But the persistent attacker will get thru!

 Part 4 Software 140

Obfuscation
 Obfuscation can be used for

o Key management
o Authentication
o Caching (keys and authentication info)
o Encryption and “scrambling”
o Key parts (data and/or code)
o Multiple keys/key parts

 Obfuscation can only slow the attacker
 The persistent attacker still wins!

 Part 4 Software 141

Other Security Features
 Code tamper checking (hashing)

o To validate all code executing on system
 Anti-screen capture

o To prevent obvious attack on digital documents
 Watermarking

o In theory, can trace stolen content
o In practice, of limited value

 Metamorphism (or individualization)
o For BOBE-resistance

 Part 4 Software 142

Security Not Implemented

 More general code obfuscation
 Code “fragilization”

o Code that hash checks itself
o Tampering should cause code to break

 OS cannot be trusted
o How to protect against “bad” OS?
o Not an easy problem!

 Part 4 Software 143

DRM for Streaming Media
 Stream digital content over Internet

o Usually audio or video
o Viewed in real time

 Want to charge money for the content
 Can we protect content from capture?

o So content can’t be redistributed
o We want to make money!

 Part 4 Software 144

Attacks on Streaming Media
 Spoof the stream between endpoints
 Man in the middle
 Replay and/or redistribute data
Capture the plaintext

o This is the threat we are concerned with
o Must prevent malicious software from

capturing plaintext stream at client end

 Part 4 Software 145

Design Features
 Scrambling algorithms

o Encryption-like algorithms
o Many distinct algorithms available
o A strong form of metamorphism!

 Negotiation of scrambling algorithm
o Server and client must both know the algorithm

 Decryption at receiver end
o To remove the strong encryption

 De-scrambling in device driver
o De-scramble just prior to rendering

 Part 4 Software 146

Scrambling Algorithms

 Server has a large set of scrambling
algorithms
o Suppose N of these numbered 1 thru N

 Each client has a subset of algorithms
o For example: LIST = {12,45,2,37,23,31}

 The LIST is stored on client, encrypted
with server’s key: E(LIST,Kserver)

 Part 4 Software 147

Server-side Scrambling
 On server side

data scrambled
data

encrypted
scrambled data

 Server must scramble data with an
algorithm the client supports

 Client must send server list of algorithms it
supports

 Server must securely communicate algorithm
choice to client

 Part 4 Software 148

Select Scrambling Algorithm

 The key K is a session key
 The LIST is unreadable by client

o Reminiscent of Kerberos TGT

Alice
(client)

Bob
(server)

E(LIST, Kserver)

E(m,K)

scramble (encrypted) data
using Alice’s m-th algorithm

 Part 4 Software 149

Client-side De-scrambling

 On client side

datascrambled
data

encrypted
scrambled data

 Try to keep plaintext away from
potential attacker

 “Proprietary” device driver
o Scrambling algorithms “baked in”
o Able to de-scramble at last moment

 Part 4 Software 150

Why Scrambling?
 Metamorphism deeply embedded in system
 If a scrambling algorithm is known to be

broken, server will not choose it
 If client has too many broken algorithms,

server can force software upgrade
 Proprietary algorithm harder for SRE
 We cannot trust crypto strength of

proprietary algorithms, so we also encrypt

 Part 4 Software 151

Why Metamorphism?
 The most serious threat is SRE
 Attacker does not need to reverse

engineer any standard crypto algorithm
o Attacker only needs to find the key

 Reverse engineering a scrambling algorithm
may be difficult

 This is just security by obscurity
 But appears to help with BOBE-resistance

 Part 4 Software 152

DRM for a P2P Application
 Today, much digital content is delivered via

peer-to-peer (P2P) networks
o P2P networks contain lots of pirated music

 Is it possible to get people to pay for digital
content on such P2P networks?

 How can this possibly work?
 A peer offering service (POS) is one idea

 Part 4 Software 153

P2P File Sharing: Query
 Suppose Alice requests “Hey Jude”
 Black arrows: query flooding
 Red arrows: positive responses

Frank

Ted Carol Pat

MarilynBobAlice Dean

Fred

 Alice can select from: Carol, Pat

Carol
Pat

 Part 4 Software 154

P2P File Sharing with POS
 Suppose Alice requests “Hey Jude”
 Black arrow: query
 Red arrow: positive response

POS

Ted Carol Pat

MarilynBobAlice Dean

Fred

 Alice selects from: Bill, Ben, Carol, Joe, Pat
 Bill, Ben, and Joe have legal content!

Bill
Ben
Joe

Carol
Pat

 Part 4 Software 155

POS
 Bill, Ben and Joe must appear normal to Alice
 If “victim” (Alice) clicks POS response

o DRM protected (legal) content downloaded
o Then small payment required to play

 Alice can choose not to pay
o But then she must download again
o Is it worth the hassle to avoid paying small fee?
o POS content can also offer extras

 Part 4 Software 156

POS Conclusions
 A very clever idea!
 Piggybacking on existing P2P networks
 Weak DRM works very well here

o Pirated content already exists
o DRM only needs to be more hassle to break

than the hassle of clicking and waiting
 Current state of POS?

o Very little interest from the music industry
o Considerable interest from the “adult” industry

 Part 4 Software 157

DRM in the Enterprise
 Why enterpise DRM?
 Health Insurance Portability and

Accountability Act (HIPAA)
o Medical records must be protected
o Fines of up to $10,000 “per incident”

 Sarbanes-Oxley Act (SOA)
o Must preserve documents of interest to SEC

 DRM-like protections needed by
corporations for regulatory compliance

 Part 4 Software 158

What’s Different in
Enterprise DRM?

 Technically, similar to e-commerce
 But motivation for DRM is different

o Regulatory compliance
o To satisfy a legal requirement
o Not to make money to avoid losing money!

 Human dimension is completely different
o Legal threats are far more plausible

 Legally, corporation is OK provided an
active attack on DRM is required

 Part 4 Software 159

Enterprise DRM
 Moderate DRM security is sufficient
 Policy management issues

o Easy to set policies for groups, roles, etc.
o Yet policies must be flexible

 Authentication issues
o Must interface with existing system
o Must prevent network authentication spoofing

(authenticate the authentication server)
 Enterprise DRM is a solvable problem!

 Part 4 Software 160

DRM Failures

 Many examples of DRM failures
o One system defeated by a felt-tip pen
o One defeated my holding down shift key
o Secure Digital Music Initiative (SDMI)

completely broken before it was finished
o Adobe eBooks
o Microsoft MS-DRM (version 2)
o Many, many others!

 Part 4 Software 161

DRM Conclusions
 DRM nicely illustrates limitations of doing

security in software
 Software in a hostile environment is

extremely vulnerable to attack
 Protection options are very limited
 Attacker has enormous advantage
 Tamper-resistant hardware and a trusted

OS can make a difference
o We’ll discuss this more later: TCG/NGSCB

 Part 4 Software 162

Secure Software
Development

 Part 4 Software 163

Penetrate and Patch
 Usual approach to software development

o Develop product as quickly as possible
o Release it without adequate testing
o Patch the code as flaws are discovered

 In security, this is “penetrate and patch”
o A bad approach to software development
o A horrible approach to secure software!

 Part 4 Software 164

Why Penetrate and Patch?
 First to market advantage

o First to market likely to become market leader
o Market leader has huge advantage in software
o Users find it safer to “follow the leader”
o Boss won’t complain if your system has a flaw,

as long as everybody else has the same flaw
o User can ask more people for support, etc.

 Sometimes called “network economics”

 Part 4 Software 165

Why Penetrate and Patch?
 Secure software development is hard

o Costly and time consuming development
o Costly and time consuming testing
o Easier to let customers do the work!

 No serious economic disincentive
o Even if software flaw causes major losses, the

software vendor is not liable
o Is any other product sold this way?
o Would it matter if vendors were legally liable?

 Part 4 Software 166

Penetrate and Patch Fallacy
 Fallacy: If you keep patching software,

eventually it will be secure
 Why is this a fallacy?

o Empirical evidence to the contrary
o Patches often add new flaws
o Software is a moving target due to new versions,

features, changing environment, new uses, etc.

 Part 4 Software 167

Open vs Closed Source
 Open source software

o The source code is available to user
o For example, Linux

 Closed source
o The source code is not available to user
o For example, Windows

 What are the security implications?

 Part 4 Software 168

Open Source Security
 Claimed advantages of open source is

o More eyeballs: more people looking at the code
should imply fewer flaws

o A variant on Kerchoffs Principle
 Is this valid?

o How many “eyeballs” looking for security flaws?
o How many “eyeballs” focused on boring parts?
o How many “eyeballs” belong to security experts?
o Attackers can also look for flaws!
o Evil coder might be able to insert a flaw

 Part 4 Software 169

Open Source Security
 Open source example: wu-ftp

o About 8,000 lines of code
o A security-critical application
o Was deployed and widely used
o After 10 years, serious security flaws discovered!

 More generally, open source software has
done little to reduce security flaws

 Why?
o Open source follows penetrate and patch model!

 Part 4 Software 170

Closed Source Security
 Claimed advantage of closed source

o Security flaws not as visible to attacker
o This is a form of “security by obscurity”

 Is this valid?
o Many exploits do not require source code
o Possible to analyze closed source code…
o …though it is a lot of work!
o Is “security by obscurity” real security?

 Part 4 Software 171

Open vs Closed Source
 Advocates of open source often cite the

Microsoft fallacy which states
1. Microsoft makes bad software
2. Microsoft software is closed source
3. Therefore all closed source software is bad

 Why is this a fallacy?
o Not logically correct
o More relevant is the fact that Microsoft

follows the penetrate and patch model

 Part 4 Software 172

Open vs Closed Source

 No obvious security advantage to
either open or closed source

 More significant than open vs closed
source is software development
practices

 Both open and closed source follow the
“penetrate and patch” model

 Part 4 Software 173

Open vs Closed Source
 If there is no security difference, why is

Microsoft software attacked so often?
o Microsoft is a big target!
o Attacker wants most “bang for the buck”

 Few exploits against Mac OS X
o Not because OS X is inherently more secure
o An OS X attack would do less damage
o Would bring less “glory” to attacker

 Next, we’ll consider the theoretical differences
between open and closed source
o See Ross Anderson’s paper

 Part 4 Software 174

Security and Testing
 Can be shown that probability of a security

failure after t units of testing is about
E = K/t where K is a constant

 This approximation holds over large range of t
 Then the “mean time between failures” is

MTBF = t/K
 The good news: security improves with testing
 The bad news: security only improves linearly

with testing!

 Part 4 Software 175

Security and Testing
 The “mean time between failures” is approximately

MTBF = t/K
 To have 1,000,000 hours between security failures,

must test (on the order of) 1,000,000 hours!
 Suppose open source project has MTBF = t/K
 If flaws in closed source are twice as hard to find,

do we then have MTBF = 2t/K ?
o No! Testing is only half as effective as in the open source

case, so MTBF = 2(t/2)/K = t/K

 The same result for open and closed source!

 Part 4 Software 176

Security and Testing
 Closed source advocates might argue

o Closed source has “open source” alpha testing,
where flaws found at (higher) open source rate

o Followed by closed source beta testing and use,
giving attackers the (lower) closed source rate

o Does this give closed source an advantage?
 Alpha testing is minor part of total testing

o Recall, first to market advantage
o Products rushed to market

 Probably no real advantage for closed source

 Part 4 Software 177

Security and Testing
 No security difference between open and

closed source?
 Provided that flaws are found “linearly”
 Is this valid?

o Empirical results show security improves linearly
with testing

o Conventional wisdom is that this is the case for
large and complex software systems

 Part 4 Software 178

Security and Testing
 The fundamental problem

o Good guys must find (almost) all flaws
o Bad guy only needs 1 (exploitable) flaw

 Software reliability far more
difficult in security than elsewhere

 How much more difficult?
o See the next slide…

 Part 4 Software 179

Security Testing: Do the Math
 Recall that MTBF = t/K
 Suppose 106 security flaws in some software

o Say, Windows XP

 Suppose each bug has MTBF of 109 hours
 Expect to find 1 bug for every 103 hours testing
 Good guys spend 107 hours testing: find 104 bugs

o Good guys have found 1% of all the bugs

 Bad guy spends 103 hours of testing: finds 1 bug
 Chance good guys found bad guy’s bug is only 1% !!!

 Part 4 Software 180

Software Development
 General software development model

o Specify
o Design
o Implement
o Test
o Review
o Document
o Manage
o Maintain

 Part 4 Software 181

Secure Software Development
 Goal: move away from “penetrate and patch”
 Penetrate and patch will always exist

o But if more care taken in development, then
fewer and less severe flaws to patch

 Secure software development not easy
 Much more time and effort required thru

entire development process
 Today, little economic incentive for this!

 Part 4 Software 182

Secure Software Development

 We briefly discuss the following
o Design
o Hazard analysis
o Peer review
o Testing
o Configuration management
o Postmortem for mistakes

 Part 4 Software 183

Design
 Careful initial design
 Try to avoid high-level errors

o Such errors may be impossible to correct later
o Certainly costly to correct these errors later

 Verify assumptions, protocols, etc.
 Usually informal approach is used
 Formal methods

o Possible to rigorously prove design is correct
o In practice, only works in simple cases

 Part 4 Software 184

Hazard Analysis

 Hazard analysis (or threat modeling)
o Develop hazard list
o List of what ifs
o Schneier’s “attack tree”

 Many formal approaches
o Hazard and operability studies (HAZOP)
o Failure modes and effective analysis (FMEA)
o Fault tree analysis (FTA)

 Part 4 Software 185

Peer Review

 Three levels of peer review
o Review (informal)
o Walk-through (semi-formal)
o Inspection (formal)

 Each level of review is important
 Much evidence that peer review is effective
 Though programmers might not like it!

 Part 4 Software 186

Levels of Testing
 Module testing test each small

section of code
 Component testing test

combinations of a few modules
 Unit testing combine several

components for testing
 Integration testing put everything

together and test

 Part 4 Software 187

Types of Testing

 Function testing verify that system
functions as it is supposed to

 Performance testing other requirements
such as speed, resource use, etc.

 Acceptance testing customer involved
 Installation testing test at install time
 Regression testing test after any change

 Part 4 Software 188

Other Testing Issues
 Active fault detection

o Don’t wait for system to fail
o Actively try to make it fail attackers will!

 Fault injection
o Insert faults into the process
o Even if no obvious way for such a fault to occur

 Bug injection
o Insert bugs into code
o See how many of injected bugs are found
o Can use this to estimate number of bugs
o Assumes injected bugs similar to unknown bugs

 Part 4 Software 189

Testing Case History
 In one system with 184,000 lines of code
 Flaws found

o 17.3% inspecting system design
o 19.1% inspecting component design
o 15.1% code inspection
o 29.4% integration testing
o 16.6% system and regression testing

 Conclusion: must do many kinds of testing
o Overlapping testing is necessary
o Provides a form of “defense in depth”

 Part 4 Software 190

Security Testing: The
Bottom Line

 Security testing is far more demanding
than non-security testing

 Non-security testing does system do
what it is supposed to?

 Security testing does system do what it
is supposed to and nothing more?

 Usually impossible to do exhaustive testing
 How much testing is enough?

 Part 4 Software 191

Security Testing: The
Bottom Line

 How much testing is enough?
 Recall MTBF = t/K
 Seems to imply testing is nearly hopeless!
 But there is some hope…

o If we can eliminate an entire class of flaws
then statistical model breaks down

o For example, if we have a single test (or a few
tests) to eliminate all buffer overflows

 Part 4 Software 192

Configuration Issues
 Types of changes

o Minor changes maintain daily
functioning

o Adaptive changes modifications
o Perfective changes improvements
o Preventive changes no loss of

performance

 Any change can introduce new flaws!

 Part 4 Software 193

Postmortem
 After fixing any security flaw…
 Carefully analyze the flaw
 To learn from a mistake

o Mistake must be analyzed and understood
o Must make effort to avoid repeating mistake

 In security, always learn more when things
go wrong than when they go right

 Postmortem may be the most under-used
tool in all of security engineering!

 Part 4 Software 194

Software Security
 First to market advantage

o Also known as “network economics”
o Security suffers as a result
o Little economic incentive for secure software!

 Penetrate and patch
o Fix code as security flaws are found
o Fix can result in worse problems
o Mostly done after code delivered

 Proper development can reduce flaws
o But costly and time-consuming

 Part 4 Software 195

Software and Security
 Even with best development practices,

security flaws will still exist
 Absolute security is (almost) never possible
 So, it is not surprising that absolute

software security is impossible
 The goal is to minimize and manage risks of

software flaws
 Do not expect dramatic improvements in

consumer software security anytime soon!

 Part 4 Software 196

Operating Systems and
Security

 Part 4 Software 197

OS Security
 OSs are large, complex programs

o Many bugs in any such program
o We have seen that bugs can be security threats

 Here we are concerned with security
provided by OS
o Not concerned with threat of bad OS software

 Concerned with OS as security enforcer
 In this section we only scratch the surface

 Part 4 Software 198

OS Security Challenges
 Modern OS is multi-user and multi-tasking
 OS must deal with

o Memory
o I/O devices (disk, printer, etc.)
o Programs, threads
o Network issues
o Data, etc.

 OS must protect processes from other
processes and users from other users
o Whether accidental or malicious

 Part 4 Software 199

OS Security Functions
 Memory protection

o Protect memory from users/processes
 File protection

o Protect user and system resources
 Authentication

o Determines and enforce authentication results
 Authorization

o Determine and enforces access control

 Part 4 Software 200

Memory Protection
 Fundamental problem

o How to keep users/processes separate?
 Separation

o Physical separation separate devices
o Temporal separation one at a time
o Logical separation sandboxing, etc.
o Cryptographic separation make information

unintelligible to outsider
o Or any combination of the above

 Part 4 Software 201

Memory Protection

 Base/bounds register lower and upper
address limit

 Assumes contiguous space

 Fence users cannot cross a
specified address
o Static fence fixed size OS
o Dynamic fence fence register

 Part 4 Software 202

Memory Protection
 Tagging specify protection of each address

+ Extremely fine-grained protection
- High overhead can be reduced by tagging

sections instead of individual addresses
- Compatibility

 More common is segmentation and/or paging
o Protection is not as flexible
o But much more efficient

 Part 4 Software 203

Segmentation
 Divide memory into logical units, such as

o Single procedure
o Data in one array, etc.

 Can enforce different access restrictions
on different segments

 Any segment can be placed in any memory
location (if location is large enough)

 OS keeps track of actual locations

 Part 4 Software 204

Segmentation

program

memory

 Part 4 Software 205

Segmentation
 OS can place segments anywhere
 OS keeps track of segment locations

as <segment,offset>
 Segments can be moved in memory
 Segments can move out of memory
 All address references go thru OS

 Part 4 Software 206

Segmentation Advantages
 Every address reference can be checked

o Possible to achieve complete mediation

 Different protection can be applied to
different segments

 Users can share access to segments
 Specific users can be restricted to

specific segments

 Part 4 Software 207

Segmentation Disadvantages
 How to reference <segment,offset> ?

o OS must know segment size to verify access is
within segment

o But some segments can grow during execution (for
example, dynamic memory allocation)

o OS must keep track of variable segment sizes
 Memory fragmentation is also a problem

o Compacting memory changes tables
 A lot of work for the OS
 More complex ⇒ more chance for mistakes

 Part 4 Software 208

Paging
 Like segmentation, but fixed-size segments
 Access via <page,offset>
 Plusses and minuses

+ Avoids fragmentation, improved efficiency
+ OS need not keep track of variable segment sizes
- No logical unity to pages
- What protection to apply to a given page?

 Part 4 Software 209

Paging

program

memory

Page 1

Page 0

Page 2

Page 3

Page 4

Page 2

Page 1

Page 0

Page 3

Page 4

 Part 4 Software 210

Other OS Security Functions
 OS must enforce access control
 Authentication

o Passwords, biometrics
o Single sign-on, etc.

 Authorization
o ACL
o Capabilities

 These topics discussed previously
 OS is an attractive target for attack!

 Part 4 Software 211

Trusted Operating System

 Part 4 Software 212

Trusted Operating System
 An OS is trusted if we rely on it for

o Memory protection
o File protection
o Authentication
o Authorization

 Every OS does these things
 But if a trusted OS fails to provide these,

our security fails

 Part 4 Software 213

Trust vs Security
 Security is a

judgment of
effectiveness

 Judged based on
specified policy

 Security depends on
trust relationships

 Trust implies reliance
 Trust is binary
 Ideally, only trust

secure systems
 All trust relationships

should be explicit

 Note: Some authors use different terminology!

 Part 4 Software 214

Trusted Operating Systems
 Trust implies reliance
 A trusted system is relied on for security
 An untrusted system is not relied on for

security
 If all untrusted systems are compromised,

your security is unaffected
 Ironically, only a trusted system can

break your security!

 Part 4 Software 215

Trusted OS
 OS mediates interactions between

subjects (users) and objects
(resources)

 Trusted OS must decide
o Which objects to protect and how
o Which subjects are allowed to do what

 Part 4 Software 216

General Security Principles
 Least privilege like “low watermark”
 Simplicity
 Open design (Kerchoffs Principle)
 Complete mediation
 White listing (preferable to black listing)
 Separation
 Ease of use
 But commercial OSs emphasize features

o Results in complexity and poor security

 Part 4 Software 217

OS Security
 Any OS must provide some degree of

o Authentication
o Authorization (users, devices and data)
o Memory protection
o Sharing
o Fairness
o Inter-process communication/synchronization
o OS protection

 Part 4 Software 218

OS Services
users

User interface

Operating system

servic
es

Synchronization
Concurrency
Deadlock
Communication
Audit trail, etc.

allocation
Data, programs,
CPU, memory,
I/O devices, etc.

Resource

 Part 4 Software 219

Trusted OS
 A trusted OS also provides some or all of

o User authentication/authorization
o Mandatory access control (MAC)
o Discretionary access control (DAC)
o Object reuse protection
o Complete mediation access control
o Trusted path
o Audit/logs

 Part 4 Software 220

Trusted OS Services
users

User interface

Operating system

ser
vic

es

Synchronization
Concurrency
Deadlock
Communication
Audit trail, etc.

Resource
allocation Data, programs,

CPU, memory,
I/O devices, etc.

Authentication Acce
ss

con
tro

l

Access control

 Part 4 Software 221

MAC and DAC

 Mandatory Access Control (MAC)
o Access not controlled by owner of object
o Example: User does not decide who holds a

TOP SECRET clearance

 Discretionary Access Control (DAC)
o Owner of object determines access
o Example: UNIX/Windows file protection

 If DAC and MAC both apply, MAC wins

 Part 4 Software 222

Object Reuse Protection
 OS must prevent leaking of info
 Example

o User creates a file
o Space allocated on disk
o But same space previously used
o “Leftover” bits could leak information
o Magnetic remanence is a related issue

 Part 4 Software 223

Trusted Path
 Suppose you type in your password

o What happens to the password?
 Depends on the software!
 How can you be sure software is not evil?
 Trusted path problem

“I don't know how to to be confident even of a digital
signature I make on my own PC, and I've worked in
security for over fifteen years. Checking all of the
software in the critical path between the display and the
signature software is way beyond my patience. ”

 Ross Anderson

 Part 4 Software 224

Audit
 System should log security-related events
 Necessary for postmortem
 What to log?

o Everything? Who (or what) will look at it?
o Don’t want to overwhelm administrator
o Needle in haystack problem

 Should we log incorrect passwords?
o “Almost” passwords in log file?

 Logging is not a trivial matter

 Part 4 Software 225

Security Kernel
 Kernel is the lowest-level part of the OS
 Kernel is responsible for

o Synchronization
o Inter-process communication
o Message passing
o Interrupt handling

 The security kernel is the part of the
kernel that deals with security

 Security kernel contained within the kernel

 Part 4 Software 226

Security Kernel
 Why have a security kernel?
 All accesses go thru kernel

o Ideal place for access control

 Security-critical functions in one location
o Easier to analyze and test
o Easier to modify

 More difficult for attacker to get in
“below” security functions

 Part 4 Software 227

Reference Monitor
 The part of the security kernel that deals

with access control
o Mediates access of subjects to objects
o Tamper-resistant
o Analyzable (small, simple, etc.)

Objects Subjects

Reference monitor

 Part 4 Software 228

Trusted Computing Base
 TCB everything in the OS that we rely

on to enforce security
 If everything outside TCB is subverted,

trusted OS would still be trusted
 TCB protects users from each other

o Context switching between users
o Shared processes
o Memory protection for users
o I/O operations, etc.

 Part 4 Software 229

TCB Implementation
 Security may occur many places within OS
 Ideally, design security kernel first, and

build the OS around it
o Reality is usually the other way around

 Example of a trusted OS: SCOMP
o Developed by Honeywell
o Less than 10,000 LOC in SCOMP security kernel
o Win XP has 40,000,000 lines of code!

 Part 4 Software 230

Poor TCB Design

Hardware
OS kernel
Operating system
User space

Security critical activities

Problem: No clear security layer

 Part 4 Software 231

Better TCB Design

Hardware
Security kernel
Operating system
User space

Security kernel is the security layer

 Part 4 Software 232

Trusted OS Summary
 Trust implies reliance
 TCB (trusted computing

base) is everything in OS
we rely on for security

 If everything outside
TCB is subverted, we still
have trusted system

 If TCB subverted,
security is broken

OS

OS Kernel

Security Kernel

 Part 4 Software 233

NGSCB

 Part 4 Software 234

Next Generation Secure
Computing Base

 NGSCB pronounced “n scub” (the G is silent)
 Will be part of Microsoft’s Longhorn OS
 TCG (Trusted Computing Group)

o Led by Intel, TCG makes special hardware
 NGSCB is the part of Windows that will

interface with TCG hardware
 TCG/NGSCB formerly TCPA/Palladium

o Why the name changes?

 Part 4 Software 235

NGSCB
 The original motivation for TCPA/Palladium

was digital rights management (DRM)
 Today, TCG/NGSCB is promoted as general

security-enhancing technology
o DRM just one of many potential applications

 Depending on who you ask, TCG/NGSCB is
o Trusted computing
o Treacherous computing

 Part 4 Software 236

Motivation for TCG/NGSCB
 Closed systems: Game consoles, smartcards, etc.

o Good at protecting secrets (tamper resistant)
o Good at forcing people to pay
o Limited flexibility

 Open systems: PCs
o Incredible flexibility
o Poor at protecting secrets
o Very poor at defending their own software

 TCG goal is to provide closed system security
benefits on an open platform

 “A virtual set-top box inside your PC” Rivest

 Part 4 Software 237

TCG/NGSCB

 TCG provides tamper-resistant hardware
o Secure place to store cryptographic key
o Key (or other secret) secure even from a user

with full admin privileges!
 TCG hardware is in addition to ordinary

hardware, not in place of it
 PC has two OSs usual OS and special

trusted OS to deal with TCG hardware
 NGSCB is Microsoft’s trusted OS

 Part 4 Software 238

NGSCB Design Goals

 Provide high assurance
o High confidence that system behaves correctly
o Correct behavior even if system is under attack

 Provide authenticated operation
o Authenticate “things” (software, devices, etc.)

 Protection against hardware tampering is
not a design goal of NGSCB
o Hardware tampering is the domain of TCG

 Part 4 Software 239

NGSCB Disclaimer
 Specific details are sketchy
 Based on available info, Microsoft has

not resolved all of the details
 What follows: author’s best guesses
 This should all become much clearer

in the not-too-distant future

 Part 4 Software 240

NGSCB Architecture

 Nexus is the Trusted Computing Base in NGSCB
 The NCA (Nexus Computing Agents) talk to Nexus

and LHS

Left-hand side (LHS) Right-hand side (RHS)

u
n
t
r
u
s
t
e
d

t
r
u
s
t
e
d

User space

Kernel

Nexus

NCA
NCA

Regular OS

Drivers

Application

Application

 Part 4 Software 241

NGSCB
 NGSCB “feature groups”

1. Strong process isolation
o Processes do not interfere with each other

2. Sealed storage
o Data protected (tamper resistant hardware)

3. Secure path
o Data to and from I/O protected

4. Attestation
o “Things” securely authenticated
o Allows TCB to be extended via NCAs

❒ 1.,2. and 3. aimed at malicious code
❒ 4. provides for (secure) extensibility

 Part 4 Software 242

NGSCB Process Isolation
 Curtained memory
 Process isolation and the OS

o Protect trusted OS (Nexus) from untrusted OS
o Isolate trusted OS from untrusted stuff

 Process isolation and NCAs
o NCAs isolated from software they do not trust

 Trust determined by users, to an extent…
o User can disable a trusted NCA
o User cannot enable an untrusted NCA

 Part 4 Software 243

NGSCB Sealed Storage
 Sealed storage contains secret data

o If code X wants access to secret, a hash of X
must be verified (integrity check of X)

o Implemented via symmetric key cryptography

 Confidentiality of secret is protected since
only accessed by trusted software

 Integrity of secret is assured since it’s in
sealed storage

 Part 4 Software 244

NGSCB Secure Path
 Secure path for input

o From keyboard to Nexus
o From mouse to Nexus

 Secure path for output
o From Nexus to the screen

 Uses crypto
o Digital signatures

 Part 4 Software 245

NGSCB Attestation (1)
 Secure authentication of things

o Authenticate devices, services, code, etc.
o Separate from user authentication

 Public key cryptography used
o Certified key pair required
o Private key not user-accessible
o Sign and send result to remote system

 TCB extended via attestation of NCAs
o This is a major feature!

 Part 4 Software 246

NGSCB Attestation (2)
 Public key used for attestation

o However, public key reveals the user identity
o Anonymity is lost

 Trusted third party (TTP) can be used
o TTP verifies signature
o Then TTP vouches for signature to recipient
o Anonymity preserved (except to TTP)

 Support for zero knowledge proofs
o Verify knowledge of a secret without revealing it
o Anonymity “preserved unconditionally”

 Part 4 Software 247

NGSCB Compelling Apps (1)
 Type a Word document in Windows
 Move document to RHS

o Trusted area

 Read document carefully
 Digitally sign the document
 “What you see is what you sign”

o Virtually impossible to assure this on your PC!

 Part 4 Software 248

NGSCB Compelling Apps (2)
 Digital Rights Management (DRM)
 DRM problems solved by NGSCB

o Protect secret sealed storage
 Impossible without something like NGSCB

o Scraping data secure path
 Impossible to prevent without something like NGSCB

o Positively ID users
 Higher assurance with NGSCB

 Part 4 Software 249

NGSCB According to
Microsoft

 Everything in regular Windows must still work in
LHS (untrusted side) of NGSCB’ed system

 User is in charge of
o Which Nexuses will run on system
o Which NCAs will run on system
o Which NCAs allowed to identify system, etc.

 No external process can enable Nexus or NCA
 Nexus does not block, delete or censor any data

(NCA does, but NCAs must be authorized by user)
 Nexus is open source

 Part 4 Software 250

NGSCB Critics
 There are many critics we consider two
 Ross Anderson

o Perhaps the most influential critic
o One of the harshest critics

 Clark Thomborson
o Lesser-known critic
o Criticism strikes at heart of NGSCB

 Part 4 Software 251

Anderson’s NGSCB Criticism (1)
 Digital object controlled by its creator, not

user of machine where it resides: Why?
o Creator can specify the NCA
o If user does not accept NCA, access is denied
o Aside: Such control is good in, say, MLS apps

 Spse Microsoft Word encrypts all documents
with key only available to Microsoft products
o Difficult to stop using Microsoft products!

 Part 4 Software 252

Anderson’s NGSCB Criticism (2)
 Files from a compromised machine could be

blacklisted to, say, prevent music piracy
 Suppose everyone at SJSU uses same copy of

Microsoft Word
o If you stop this copy from working on all NGSCB

machines, SJSU users won’t use NGSCB
o Instead, make all NGSCB machines refuse to open

documents created with this instance of Word
o SJSU users can’t share docs with any NGSCB user!

 Part 4 Software 253

Anderson’s NGSCB Criticism (3)

 Going off the deep end?
o “The Soviet Union tried to register and

control all typewriters. NGSCB attempts
to register and control all computers.”

o “In 2010 President Clinton may have two
red buttons on her desk one that sends
missiles to China and another that turns
off all of the PCs in China…”

 Part 4 Software 254

Thomborson’s NGSCB Criticism
 NGSCB acts like a security guard
 By passive observation, NGSCB “security guard”

sees sensitive information
 How can a user know NGSCB is not spying on them?
 According to Microsoft

o Nexus software will be public
o NCAs can be debugged (required for app development)
o NGSCB is strictly “opt in”

 Loophole?
o Release version of NCA can’t be debugged and debug and

release versions have different hash values!

 Part 4 Software 255

NGSCB Bottom Line (1)
 TCG/NGCSB embeds a trusted OS within

an open platform
 Without something similar, PC may lose out

o Particularly in entertainment-related areas
o Copyright holders won’t trust PC

 With NGSCB it is often claimed that users
will lose control over their PCs

 But users must choose to “opt in”
o If user does not opt in, what has been lost?

 Part 4 Software 256

NGSCB Bottom Line (2)
 NGSCB is a trusted system
 Only trusted system can break security

o By definition, an untrusted system is not
trusted with security critical tasks

o Also by definition, a trusted system is trusted
with security critical tasks

o If untrusted system is compromised, security is
not at risk

o If trusted system is compromised (or
malfunctions), security is at risk

 Part 4 Software 257

Software Summary
 Software flaws

o Buffer overflow
o Race conditions
o Incomplete mediation

 Malware
o Viruses, worms, etc.

 Other software-based attacks

 Part 4 Software 258

Software Summary
 Software Reverse Engineering (SRE)
 Digital Rights Management (DRM)
 Secure software development

o Penetrate and patch
o Open vs closed source
o Testing

 Part 4 Software 259

Software Summary
 Operating systems and security

o How does OS enforce security?

 Trusted OS design principles
 Microsoft’s NGSCB

o A trusted OS for DRM

 Part 4 Software 260

Course Summary
 Crypto

o Symmetric key, public key, hash functions,
cryptanalysis

 Access Control
o Authentication, authorization

 Protocols
o Simple auth., SSL, IPSec, Kerberos, GSM

 Software
o Flaws, malware, SRE, Software development,

trusted OS

