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Abstract. In this paper we introduce Gentzen-style quantified propositional
proof systems L∗i for the theories Ri

2. We formalize the systems L∗i within the

bounded arithmetic theory R1
2 and we show that for i ≥ 1, Ri

2 can prove the
validity of a sequent derived by an L∗i -proof. This statement is formally called

i-RFN(L∗i ). We show if Ri
2 ` ∀xA(x) where A ∈ Σb

i , then for each integer
n there is a translation of the formula A into quantified propositional logic
such that Ri

2 proves there is an L∗i -proof of this translated formula. Using
the proofs of these two facts we show that L∗i is in some sense the strongest

system for which Ri
2 can prove i-RFN and we show for i ≥ j ≥ 2 that the

∀Σb
j-consequences of Ri

2 are finitely axiomatized.

1. Introduction

Propositional proof systems and bounded arithmetic are closely connected.
Cook [10] introduced the equational arithmetic theory PV of polynomial time com-
putable functions and showed PV could prove the soundness of the propositional
proof system known as extended Frege or EF . Kraj́ıček and Pudlak [15] developed
Gentzen-style quantified propositional proof systems Gi and G∗i for the well-studied
bounded arithmetic theories T i

2 and Si
2 respectively. The theories Si

2 are of espe-
cial interest to computer scientists since their Σb

i -definable functions are precisely
those functions computable in polynomial time with access to a Σp

i−1-oracle [5].
The theory S1

2 is a conservative extension of PV [5]. Kraj́ıček and Pudlak [15]
showed Si

2 could prove certain reflection principles for the quantified propositional
proof system G∗i . They also showed that Si

2 proofs can be simulated by an infinite
sequence of polynomial sized G∗i proofs. They used these results to show the ∀Σb

j-
consequences of Si

2 are finitely axiomatizable where i ≥ j ≥ 2. This result is of
interest since if the union of the theories Si

2, the theory S2, is finitely axiomatized
then the polynomial hierarchy collapses. More recently, Clote and Takeuti [9] have
introduced a weaker notion than Σb

1-definability which they call essentially sharply
bounded definable (esb-definable) and used this notion to come up with bounded
arithmetic theories for various function classes within 2

p
1. Gaisi Takeuti [19] has

shown that TNC0, a theory whose esb-definable functions are exactly the functions
in the circuit class NC1, can prove the soundness of Frege proof systems. Further
he showed translations of TNC0 proofs into propositional logic have polynomial
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sized Frege proofs. Given these relationship between proof systems and bounded
arithmetic, determining whether or not Frege can polynomially simulate extended
Frege could be important in solving whether NC1 = P .

Besides Si
2 and T i

2 another important sequence of bounded arithmetic theories
are the theories Ri

2 developed in [1], [8], [18], and [2]. These theories are of interest
to computer scientists since the Σb

1-definable functions of R1
2 correspond to functions

in the parallel computation class NC [1]. The theory R1
2 lies between the theories

TNC0 and S1
2 so a proof system for R1

2 may help shed some light on how difficult
it is to separate these two theories.

We now discuss the organization of this paper. In Section 2, we briefly intro-
duce the necessary concepts from bounded arithmetic and quantified propositional
logic for this paper. In Section 3, we discuss some functions and multifunctions that
Ri

2 has at its disposal and also show some closure properties for the Σb
i -definable

multifunctions and ∆b
i -predicates of Ri

2. Section 4 describes how to formalize quan-
tified propositional logic within Ri

2. We describe in this section a B(Σb
i )-formula

TRUi(dAe, τ) which returns the truth value of the quantified propositional for-
mula A with respect to a truth assignment τ . Section 5 explains how to translate
bounded arithmetic formulas into sequences of quantified propositional formulas.
In Section 6, we define what a quantified propositional proof system is and we in-
troduce a Gentzen-style quantified propositional proof systems L∗i for the theories
Ri

2. Proofs in the systems L∗i are tree-like, (log)2-height quantified propositional
sequent calculus proofs where formulas are restricted to the class Σq

i ∪ Πq
i and the

number of Σq
i ∪ Πq

i -cuts along any branch in a proof is restricted to be less than
(log log)2 of the size of the proof. (The exponents of 2 in the above are not es-
pecially critical since one can prove the same results we do for any fixed number
greater than 1.) We then formalize the systems L∗i within the bounded arithmetic
theory R1

2. Section 7 contains a witnessing argument used to show Ri
2 can prove

the validity of any Σq
i -formula derived by an L∗i -proof. This statement is formally

called i-RFN(L∗i ). In Section 8, we show if Ri
2 ` ∀xA(x) where A ∈ Σb

i , then for
each integer n there is a translation of the formula A into quantified propositional
logic such that Ri

2 proves there is an L∗i -proof of this translated formula. This
proof is similar to the simulation of T i

2 by Gi in Kraj́ıček and Pudlak [15] except
that we have to be a little careful because of the various bounds on L∗i . In partic-
ular, when we simulate sharply bounded quantifier rules we need to make sure our
AND or OR rules are done in a balanced fashion; otherwise, we violate the height
requirement of L∗i -proofs. Similarly, in simulating Σb

i -LLIND with cuts we must
make sure our cuts are done in a balanced fashion. Section 9 contains applications
of Section 7 and Section 8. In this section we show that L∗i is in some sense the
strongest system for which Ri

2 can prove i-RFN and we show for i ≥ j ≥ 2 that
the ∀Σb

j-consequences of Ri
2 are finitely axiomatized.

2. Preliminaries

The theories Ri
2 for i ≥ 0 are the first-order theories introduced by Gaisi Takeuti

in [18]. Equivalent theories were introduced by Allen [1]. Clote and Takeuti [8]
have a theory equivalent to R1

2. The language, L2, of Ri
2 consists of the symbols

0, S, +, .−, ·, b 1
2xc, #, |x|, MSP , ≤ and =. The intended meaning of |x| is

the function dlog2(x + 1)e. The intended meaning of x#y is 2|x||y|. The intended
meaning MSP (a, i) is ba/2ic. BASIC is a finite list of open axioms for these
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symbols. Most of these axioms can be found in Buss [5] p.30; however, what we
will call BASIC is his list of axioms extended by Takeuti [18]’s axioms for MSP
and .−.

A quantifier is said to be bounded if it is of the form (∃x ≤ t(~a)) or of the
form (∀x ≤ t(~a)) for some term t in L2. A quantifier is sharply bounded if, in
addition, t is of the form |s| for some term in L2. We write Open for the set of
open formulas. We now inductively define the sets Σb

i and Πb
i . The set Σb

0 = Πb
0

is the set of formulas all of whose quantifiers are sharply bounded. The set Σb
i is

the smallest set containing Πb
i−1 and closed under conjunction, disjunction, sharply

bounded quantification, and bounded existential quantification. The set Πb
i is the

smallest class containing Σb
i−1 and closed under conjunction, disjunction, sharply

bounded quantification, and bounded universal quantification.
We define several kinds of induction axioms:

(INDα) α(0) ∧ (∀n)(α(n) ⊃ α(S(n))) ⊃ (∀n)α(n)

(PINDα) α(0) ∧ (∀n)(α(b 1
2nc) ⊃ α(n)) ⊃ (∀n)α(n)

(LINDα) α(0) ∧ (∀n)(α(n) ⊃ α(S(n))) ⊃ (∀n)α(|n|)

(PLINDα) α(0) ∧ (∀n)(α(b 1
2nc) ⊃ α(n)) ⊃ (∀n)α(|n|)

(LLINDα) α(0) ∧ (∀n)(α(n) ⊃ α(S(n))) ⊃ (∀n)α(||n||)

For Ψ a set of formula we define the Ψ-IND axioms to be the axioms INDα for
α ∈ Ψ. We define Ψ-PIND, Ψ-LIND, Ψ-PLIND, and Ψ-LLIND similarly.

The theory T i
2 is axiomatized as BASIC+Σb

i -IND, the theory Si
2 is axioma-

tized as BASIC+Σb
i -PIND axioms, and finally the theory Ri

2 is axiomatized as
BASIC+Σb

i -PLIND axioms. The theories Si
2 and T i

2 as introduced in [5] are usu-
ally formulated over a language without .−, or MSP ; however, it turns out adding
these symbols does not increase the power of these theories [5]. The original for-
mulation of Ri

2 in [18] also had a bit extensionality axiom shown to be unnecessary
in [13].

Recall that a theory T can Σb
i -define a function f(x), if there is a Σb

i -formula
Af (x, y) for which T ` (∀x)(∃!y)Af (x, y) and N |= Af (x, f(x)). A predicate is said
to be ∆b

i with respect to a theory T if it is provably equivalent in T to both a Σb
i

and a Πb
i -formula. It is a theorem of [5] that once we can Σb

1-define a function f in a
theory we can add the function symbol to the theory without changing the Σb

i or Πb
i

-consequences of the theory i ≥ 1. A similar result holds for adding ∆b
1-predicate

symbols [5].
In concluding our preliminary discussion of Ri

2 we would like to mention that
the theory Ri

2 can also prove Σb
i -LLIND axioms, ∆b

i -PIND axioms, and ∆b
i -LIND

axioms [1], [18]. So Ri
2 contains Si−1

2 and one can also show that Si−1
2 contains

T i−2
2 [5].

Now that we have finished introducing Ri
2 we turn to quantified propositional

logic. The class of quantified propositional formulas is the least class containing the
atoms p0, p1, . . . , the constants ⊥ (false) and > (true), closed under the connectives
∧, ∨, ⊃, and ¬ and for any formula A(p) the class of quantified propositional
formulas contains the formulas ∃xA(x) and ∀xA(x) where x substitutes occurrences
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of p in A(p). The intended meaning of ∃xA(x) is A(⊥)∨A(>) and that of ∀xA(x)
is A(⊥) ∧ A(>). We define hierarchies Σq

i and Πq
i of propositional formulas in

analogous way to the first-order case. We define ∆q
i+1 to mean the class of Boolean

combinations of Σq
i -formulas.

3. Functions definable in Ri
2

In this section, we describe some of the ∆b
1-predicates and Σb

1-functions avail-
able to code sequences in R1

2. These predicates and functions will enable us to
formalize the syntax of quantified propositional formulas in R1

2 and to give a truth
predicate for these formulas. We also discuss what kinds of multifunctions are
available in the theories Ri

2.
Methods in R1

2 for coding a sequence of natural numbers 〈a1, . . . , an〉 as a single
natural number have been described by both Allen [1] and Clote-Takeuti [8]. In
particular, R1

2 can prove the following functions and predicates which are useful in
manipulating sequences to be either Σb

1-definable or ∆b
1:

• Seq(w) which is true if and only if w is a natural number coding a sequence.
• β(i, w) which returns the ith element of the sequence w.
• len(w) which returns the length of the sequence w.
• Bit(i, a) which returns the ith bit of a number a.
• Subseq(i, j, w) which returns the subsequence of the ith through the jth

entry of w.
• Front(w) := Subseq(1, len(w)− 1, w) which returns all but the last element

of a sequence
• Tail(w) := Subseq(2, len(w), w) which returns all but the first element of a

sequence
• w ∗ a which if w is a sequence and a is an entry returns the concatenation

of a to w.
• w ∗∗ v which if w and v are sequences returns their concatenation.
• 2|y| which equals 1#y
• cond(x, y, z) which outputs y if x is 0 and outputs z otherwise. It allows us

give definitions by cases.
• max(x, y) which equals cond(x .− y, y, x)
• min(x, y) which equals cond(x .− y, x, y)
• dlog2 xe := cond(2 ·x .−2|x|, |x| .−1, |x|). We will frequently be lazy and write

this as log x.
• For A a ∆b

1-predicate, R1
2 can Σb

1-define the function (#x ≤ |t|)A(x) which
returns the number of values less than or equal to |t| where A(x) is true [1].

• For A a ∆b
1-predicate, R1

2 can Σb
1-define the function (µx ≤ |t|)A(x) which

returns the least value x ≤ |t| such that A(x) holds [1].

We now discuss the multifunctions available in the theories Ri
2. First, we make

precise what we mean by a multifunction.

Definition 1. A multifunction is a set f ⊆ N×N such that for all x ∈ N there
exists 〈x, y〉 ∈ f . We usually express 〈x, y〉 ∈ f as f(x) = y. We write f ◦ g for
the composition of the two multifunctions f , g and define (f ◦ g)(x) = z if there
is some y ∈ N such that f(x) = y and g(y) = z. If f is a multifunction and r is
a function, we write f(x) > r(x) if there exists y > r(x) such that f(x) = y. We
define f(x) < r(x) if there exists y < r(x) such f(x) = y.
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We say a theory T can Σb
i -define a multifunction f if there is a Σb

i -formula Af

and T can prove (∀x)(∃y)Af (x, y) and N |= f(x) = y ⇔ Af (x, y). In [16], it was
shown for i ≥ 1 that the Σb

i+1-definable functions of Ri+1
2 are precisely the mul-

tifunctions in the class FPΣp
i (wit, logO(1)), the class of multifunctions computable

in polynomial time with O(logO(1)) many queries to a Σp
i -oracle which returns wit-

nesses for the truth of its “Yes” answers. It is useful, however, to further know
that the Σb

i -definable multifunctions of Ri
2 are closed under certain kinds of re-

cursion. We now define two different kinds of weak recursion and show that the
Σb

i -definable functions of Ri
2 are closed under these operations. These recursion

schemes are slight modifications of schemes from [8] and [1].

Definition 2.
1. The Ψ-SLLIND axioms are the set of axioms SLLINDα,m defined as

α(0) ∧ (∀n)(α(n) ⊃ α(S(n))) ⊃ (∀n)α(||n||m)

where α is a formula in Ψ and m ∈ N.
2. A multifunction f is defined by SW2BPR (sped doubly weak bounded prim-

itive recursion) from multifunctions g, h, k, and r if

F (0, ~x) = g(~x)
F (n + 1, ~x) = min(h(n, ~x, F (n, ~x)), r(n, ~x))

f(n, ~x) = F (||t(n, ~x)||m, ~x)

for some L2-terms r and t, and m ∈ N.
3. A multifunction f is defined by IC (iteration of concatenation) from multi-

function g and L2-term k if

F (0, ~x) = 0
F (n + 1, ~x) = F (n, ~x) ∗ g(n + 1, ~x)

f(n, ~x) = F (|k(n, ~x)|, ~x)

If g, h, t, and r are multifunctions then f obtained by SW2BPR is the multi-
function which results by viewing each step in the above iteration as a composition
of multifunctions. Similar statements apply to the formation f by IC.

Theorem 3. (i ≥ 1)
1. The theory Ri

2 proves Σb
i -SLLIND.

2. The Σb
i -definable multifunctions of Ri

2 are closed under the operations of
composition, SW2BPR and IC.

3. If f and g are Σb
i -defined functions in Ri

2 then f = g is ∆b
i with respect to

Ri
2.

4. The predicates ∆b
i with respect to Ri

2 are closed under boolean combinations,
sharply bounded quantifications and substitutions by Σb

i -defined functions.

Proof. (Σb
i -SLLIND) It suffices to show for A(x) a Σb

i -formula and m a
fixed positive integer, that Ri

2 proves SLLINDA,m. This is proven by induction on
m. The m = 1 case follows since Ri

2 proves LLINDA. Assume SLLINDA,m−1.
Let B(j) := A(j · ||x||m−1). The result then follows using LLINDB once we can
show A(j · ||x||m−1) ⊃ A((j + 1) · ||x||m−1). This follows from LLINDC(k) on
C(k) := A(j · ||x||m−1 + k) since we have by the hypothesis of SLLINDA,m that
(∀x)(A(x) ⊃ A(Sx)).
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(Composition) See Clote-Takeuti [8] for a proof for a theory equivalent to R1
2

the same proof works in Ri
2 case.

(SW2BPR) Given that we have Σb
i -SLLIND available we can use the same

proof as in Clote-Takeuti [8] to show TNC (a theory equivalent to R1
2) is closed

under W2BPR.
(IC) A proof of this can be found in Allen [1].
(f = g) Let f(x) and g(x) be Σb

i -definable functions in Ri
2. Then Ri

2 `
(∀x)(∃!y)Af (x, y) and Ri

2 ` (∀x)(∃!y)Ag(x, y) where Af is a Σb
i -formula for the

graph of f and Ag is a Σb
i -formula of the graph of g. By Parikh’s Theorem there

are bounds tf and tg on the existential quantifiers. So f = g will be ∆b
i since

Ri
2 ` (∀y)(∀z)(Af (x, y) ∧Ag(x, z) ⊃ y = z) ⇔

(∃y)(∃z)(Af (x, y) ∧Ag(x, z) ∧ y = z).

(Boolean combinations) This is obvious from the definition of ∆b
i with respect

to a theory.
(Sharply bounded quantification) Suppose A is a ∆b

i with respect to Ri
2 and

is equivalent to the Σb
i -formula AΣ and the Πb

i -formula AΠ. Then we have (Qx ≤
|t|)AΣ where Q is either ∃ or ∀ is a Σb

i since this class is closed under sharply
bounded quantification. Similarly, (Qx ≤ |t|)AΠ is Πb

i . So (Qx ≤ |t|)A is ∆b
i with

respect to Ri
2 since Ri

2 proves (Qx ≤ |t|)AΣ ⇔ (Qx ≤ |t|)AΠ.
(Substitutions) Suppose f(x) is a Σb

i -definable function in Ri
2. Then Ri

2 `
(∀x)(∃!y)Af (x, y) where Af is a Σb

i -formula for the graph of f . By Parikh’s theorem
we can assume there is some bound t on y. Now suppose B(z) is a ∆b

i with respect
to Ri

2 and is equivalent to the Σb
i -formula Σ and the Πb

i -formula BΠ. Then B(f(x))
will be ∆b

i with respect to Ri
2 since Ri

2 proves

(∃y ≤ t)(Af (x, y) ∧BΣ(y)) ⇔ (∀y ≤ t)(Af (x, y) ⊃ BΠ(y)).

4. Arithmetizing Propositional Formulas

To formalize quantified propositional formulas in R1
2 we use trees which are

formalized as in Buss [5]. Trees in Buss’ scheme are coded using sequences of open
and closed brackets with the labels on each node occurring between the brackets.
There he was working with the theory S1

2 ; however, it is not hard to check that
all of his basic predicates and functions can be appropriately defined in R1

2. We
omit the details. To formalize quantified propositional formulas we fix some Gödel
numbering for ∧, ∨, ¬, >, ⊥, free variables pi, bound variables xi, and quantifier
symbols ∃xi. Following the usual convention we write dxi

e to denote the Gödel
number for xi. In our formalization, we view ∀xi as an abbreviation for ¬∃xi¬ and
A ⊃ B as an abbreviation for ¬A ∨B.

A formalized quantified boolean formula w is a tree with the following additional
properties: (1) Each of w’s nodes is labelled with the number for a symbol, quantifier
symbol, or a variable. (2) If i is a leaf then β(i, w), the label of this node, is a
variable, d>e, or d⊥e. (3) If a node i is labelled with a quantifier symbol or a
negation symbol it has only one child. Otherwise, all non-leaves have two children.
(4) If a leaf is labelled dxi

e then it has an ancestor labelled d∃xi
e. (5) A given

quantifier symbol can appear at most once in a formula.
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Each of these properties is ∆b
1 with respect to R1

2, so the conjunction QBF (w)
which asserts that w is a quantified Boolean formula will also be ∆b

1 with respect
to R1

2.
Once one has formalized the notion of quantified Boolean formula, it is not to

hard to give ∆b
1-predicates in R1

2 which check if a formula A is in ∆q
i , Σq

i , or Πq
i .

We will write these predicates as Σq
i (
dAe), Πq

i (
dAe), and ∆q

i (
dAe). These predicates

are not to be confused with, for instance, Σq
i (A) which could be viewed as the

class of Σq
i -formulas with respect to some oracle set A. A function related to these

predicates which R1
2 can Σb

1-define is the function typei(dxj
e, dAe). If there is a

subformula w of dAe beginning with d∃xj
e then typei(dxj

e, dAe) is the least number
k less than i such that w ∈ Σq

k; otherwise, typei(dxj
e, dAe) equals i + 1.

We will be working with sequent calculus proof systems. We formalize the
notion of a cedent as a sequence of formulas and a sequent Γ → ∆ as an ordered
pair of cedents.

We now want to define a predicate TRUi(dAe, τ) which is true if A ∈ Σq
i ∪ Πq

i

and τ is a satisfying truth assignment for dAe. Our definition will be a Boolean com-
bination of Σb

i -formulas (we denote this class B(Σb
i )). This is the usual complexity

for such definitions [15]. However, we go into some detail about this predicate so
that we can argue in a Section 7 that we can define the Σb

i -formula Witi(dAe, w, τ).
The formula Witi(dAe, w, τ) as we will define it checks whether replacing the vari-
ables xj in A that have typei(xj ,

dAe) = i by their value in the truth assignment w
makes τ a satisfying assignment for the resulting formula.

To begin we define a truth assignment to be a sequence of ordered pairs of
the form 〈dxi

e, d>e〉 or 〈dxi
e, d⊥e〉 where xi is the variable being assigned and d⊥e

or d>e is the value assigned. We require that a variable not appear twice in a
truth assignment. Let Assign(τ) be the ∆b

1-predicate which asserts τ is a truth
assignment.

To substitute the variables in a formula for their values in a truth assignment
we use the function Sub(dAe, τ). This function returns a sequence which is the same
as dAe except that where a variable in dAe appears in τ it is replaced by the value
that τ assigns that variable. If dAe is not a formula or τ is not a truth assignment
then Sub(dAe, τ) is 0. It is not hard to Σb

1-define Sub in R1
2 using IC.

In order to evaluate a ∆q
0-formula all of whose leaves are either d>e or d⊥e we

first define a function Evaltree0(dAe) which produces a tree shaped like A but where
the values of A’s leaves have been propagated up to the root. To be more precise let
Evaltree0(dAe) be the function with the following properties: (1) Evaltree0(dAe)
outputs either 0 or a tree y with the same structure as dAe but with different node
labels. (2) It outputs 0 if any leaf of dAe is a variable or if dAe is not a QBF -formula.
(3) Otherwise the leaves of y are labelled as in dAe. (4) If node i is labelled with
a propositional connective in dAe then i is labelled with d>e or d⊥e in y according
to the usual semantics of propositional logic from the values of its children. (5) If
node i is labelled with an d∃xj

e in dAe then i is labelled with the same label as its
son in y (we will use Evaltree0 when we define Evaltreek for Σq

k-formulas so it is
important that Evaltree0 can handle nodes labelled d∃xj

e).
Given that the Boolean Formula Value Problem (BFVP) is in NC1 [7] it should

seem plausible that we can Σb
1-define Evaltree0(dAe) in R1

2. Since R1
2 has functions

in NC at its disposal we could implement such a function using an algorithm based
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on Brent-Spira [4, 17]. As similar constructions have already been done for theories
weaker than R1

2 such as TNC0 (see [19]) we do not give the proof.
Using Theorem 3, we can now give a ∆b

1-definition of TRU0(dAe, τ).

TRU0(dAe, τ) ⇔ A ∈ ∆q
0 ∧ β(1, Evaltree0(Sub(dAe, τ))) = d>e

TRU0(dAe, τ) is true iff the truth assignment τ satisfies dAe ∈ ∆q
0. Given the

definition of Evaltree0 it is not hard to show that TRU0 respects propositional
connectives. For instance,

R1
2 ` TRU0(dA ∧Be, τ) ⇔ TRU0(dAe, τ) ∧ TRU0(dBe, τ)

We now inductively extend the definition of TRU0(dAe, τ) to a definition for
TRUi(dAe, τ) that works for A ∈ Σq

i . First, Ri
2 can Σb

i -define for i ≥ 1 the following
multifunctions:

WitTreei(dAe, w) = y ⇔ A ∈ Σq
i ∧Assign(w)∧

(∀k < len(w))(typei(β(1, β(k + 1, w)), dAe) = i) ∧
Evaltreei−1(Sub(dAe, w)) = y

Evaltree∃i (dAe) = y ⇔ (∃w ≤ (dAe)2)(WitTreei(dAe, w) = y).

Intuitively, WitTreei(dAe, w) on input A, a closed Σq
i -formula, and w a truth as-

signment for A’s outermost existential variables produces a tree shaped like A
where the values of A’s leaves have been propagated up the tree and where the
outermost existential variables of A have been evaluated according to w. It is Σb

i -
definable since we are assuming Evaltreei−1 is Σb

i -definable. The multifunction
Evaltree∃i (dAe) outputs y if there is some choice of truth assignment w for the out-
ermost existential variables of A such that WitTreei(dAe, w) = y. To show for each
Σq

i -formula dAe there is a y output by Evaltree∃, the theory Ri
2 can run WitTreei

on the assignment which assigns all the outermost existential variable of A zero.
It should be noted that the w which appears in the definition of Evaltree∃i is not
necessarily unique so Evaltree∃i is really a multifunction. Recall the Σb

1-function
Subtree(j, dAe) returns the subtree under the node j of A viewed as tree and is
defined in [5].

From the above two multifunctions Ri+1
2 can Σb

i+1-define the multifunction
Evaltreei(dAe) which extends the operations of Evaltree∃i to ∆q

i+1-formulas. We
define Evaltreei(dAe) so that: (1) Evaltreei(dAe) is either 0 or it outputs a tree y
with the same structure as dAe but with different node labels. (2) It equals 0 if any
leaf of dAe is a free variable. (3) For any node j in a Σq

i subtree,

Subtree(j, y) = Evaltree∃i (Subtree(j, dAe)).

(4) For any Σq
i−1 ∪ Πq

i−1-subtree B of A, the value of its root node j in y is > iff
TRUi−1(B, 〈〉) and is ⊥ otherwise. (5) Evaltreei(dAe) has properties (4) and (5)
of Evaltree0(dAe).

Finally, we give a B(Σb
i )-definition of the predicate TRUi(dAe, τ) as

TRUi(dAe, τ) ⇔
(A ∈ Σq

i ∧ (∃y)(Evaltree∃i (Sub(dAe, τ)) = y ∧ β(1, y) = d>e))
∨(A ∈ Πq

i ∧ ¬(∃y)(Evaltree∃i (Sub(d¬Ae, τ)) = y ∧ β(1, y) = d>e))
This predicate returns the truth value of formulas in Σq

i ∪Πq
i .
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5. Translations of Σb
i -formulas

Consider a bounded formula A(a1, . . . , ak). The functions in the language L2

are polynomial time computable, so there exists a polynomial pA(x) such that for
|n1|, . . . , |nk| ≤ m one only needs to compute numbers of length less than pA(m) to
determine the truth of A(n1, . . . , nk). Any polynomial which is larger than pA(x)
we will call a bounding polynomial [15, 10].

Given a bounding polynomial q(x) we shall make a sequence of propositional
translations of A(a1, . . . , ak), which we will call [[A]]mq(m), using the variables

~pa1 := p0
a1

, . . . , pq(m)
a1

...
...

...
...

...
~pak

:= p0
ak

, . . . , pq(m)
ak

.

We shall often write [[A]]mq(m) as [[A]] for simplicity. If A is atomic then it is of the
form:

t(a1, . . . , ak) = s(a1, . . . , ak)
or

t(a1, . . . , ak) ≤ s(a1, . . . , ak).
To translate A we construct polynomial size, log-depth formulas computing the first
q(m) bits for the terms t and s on the variables ~pa1 , . . . , ~pak

. As s and t are NC
computable (since circuits for +, ·, MSP , etc are NC1 computable) this can be
done. We substitute these two formulas into another polynomial-sized, log-depth
formula which checks if two q(m) bit numbers are equal (resp. less than or equal) to
get a polynomial-sized, log-depth formula for the atomic formula A. Given a vector
~ε = ε1, . . . , εq(m), we write [[A(a)]](~ε/~pa) to denote the substitution of the variables
εi for the variables pi

a in [[A(a)]] where 0 ≤ i ≤ q(m). We extend the propositional
translation of atomic formulas of Ri

2 to general nonatomic formulas with quantifiers
in the natural way as in [10, 15, 6]:

1. [[A ◦B]] is [[A]] ◦ [[B]] for ◦ = ∧,∨,⊃ .
2. [[¬A]] is ¬[[A]].
3. [[(∃x ≤ |t|)A(x)]] is ∨~ε∈S [[a ≤ |t| ∧A(a)]](~ε/~pa)

where S =
{
(ε0, . . . , εq(m)) ∈ {0, 1}q(m)+1

∣∣ (∀i ≥ |q(m)|)(εi = 0)
}
.

4. [[(∀x ≤ |t|)A(x)]] is ∧~ε∈S [[a ≤ |t| ∧A(a)]](~ε/~pa).
5. [[(∃y ≤ t)A(y)]] is ∃x0

y . . . ∃xq(m)
y [[a ≤ t ∧A(a)]](~xy/~pa).

6. [[(∀y ≤ t)A(y)]] is ∀x0
y . . . ∀xq(m)

y [[a ≤ t ∧A(a)]](~xy/~pa).

Since all of the functions in L2 are computable in NC1, it is not hard to see that
the function Im 7→ [[A]]mq(m) is Σb

1-definable in R1
2. Two important properties of the

above translation are that there is a polynomial r(x) such that |[[A]]mq(m)| ≤ r(m);
and if A ∈ Σb

i , i ≥ 0, then [[A]] ∈ Σq
i . We close this section with the following useful

lemma.

Lemma 4. (i ≥ 1) Let A(a1, . . . , ak) be a Σb
i -formula and q(x) a bounding

polynomial for A then

R1
2 ` (∀y)[(∀τ)((Assign(τ) ⊃ TRUi([[A]]|y|q(|y|), τ)) ≡

(∀x1, . . . xk)(|x1| ≤ |y| ∧ · · · ∧ |xk| ≤ |y| ⊃ A(~x))]
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Proof. This statement is proven by a straightforward induction on the com-
plexity of A. The base case, when A is atomic, is the only hard case. Let
ρ(x1, . . . , xk) be the Σb

1-defined truth assignment which for 1 ≤ i ≤ k and for
0 ≤ j ≤ q(m) assigns pj

xt
the value > if Bit(j, xt) is true and assigns pj

xt
the value

⊥ otherwise. By Theorem 3, the formula B(m) defined as

TRU0([[A]]mq(m), ρ(x1, . . . , xk)) ≡
(|x1| ≤ m ∧ . . . |xk| ≤ m ⊃ A(~x))

is a ∆b
1-predicate in R1

2 since the function Im 7→ [[A]]mq(m) and the function ρ

are Σb
1-definable in R1

2. Thus, R1
2 using ∆b

1-LIND on B(m) can prove the base
case. Since [[A]]mq(m) is ∆q

0 it is not hard to show from the definition of TRUi that
TRU0([[A]]mq(m), ρ) ⇔ TRUi([[A]]mq(m), ρ).

6. Proof Systems

We proceed with the task of defining a propositional proof system for Ri
2. We

define quantified propositional proof systems as in [15]:

Definition 5. A polynomial time computable binary relation P (d,A) is a quan-
tified propositional proof system (or just proof system) iff ∃dP (d, dAe) implies A is
a valid Σq

i ∪Πq
i -formula for some i ≥ 1.

We will often write d : P ` A instead of P (d, dAe) and call d a P -proof of A.
The proof systems we use in this paper are not only computable in polynomial time
they are also computable in NC.

Definition 6. Let Q and R be two proofs systems.
1. We say Q p-simulates R iff there is a polynomial time function r such that

for any proof d of A in R, r(d, dAe) is a proof of A in Q.
2. We say Q j-polynomially simulates R, Q ≥j R in symbols, iff there is a

polynomial function f(d, dAe) such that

(∀d,A)(Q(d, dAe) ∧A ∈ Σq
j ∪Πq

j ⊃ R(f(d, dAe), dAe)

We will mention the notion of j-polynomially simulates again in the last section
of this paper. This notion was first defined in [15].

Definition 7. For P a proof system and i ≥ 0, i-RFN(P ) is the formula:

(∀d, dAe, τ)(d : P ` A ∧A ∈ Σq
i ∧Assign(τ) ⊃ TRUi(dAe, τ))

Since TRUi is a B(Σb
i )-formula, i-RFN(P ) is a ∀Σb

i -formula.
The quantified propositional proof systems we will be working with in this

paper are formulated over the sequent calculus and will allow the following rules of
inference:

(a) structural rules, propositional rules, and the cut rule for the system LK
as defined in [14]. As we make frequent use of the cut rule and the ∧-right
rule, we list them as examples:
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(Cut rule)
Γ → ∆, A A, Γ → ∆

Γ → ∆
(∧:right)

Γ → ∆, A Γ → ∆, B

Γ → ∆, A ∧B

(b) propositional quantifier rules defined as follows:

(∀:left) A( ~B), Γ → ∆
∀~xA(~x), Γ → ∆

(∀:right)
Γ → ∆, A(~p)
Γ → ∆, ∀~xA(~x)

(∃:left) A(~p), Γ → ∆
∃~xA(~x), Γ → ∆

(∃:right)
Γ → ∆, A( ~B)
Γ → ∆, ∃~xA(~x)

The ~B in the above is a vector of quantifier-free (i.e., propositional) formulas.
The ~p in the above is a vector of distinct variables each of which must not appear
in the lower sequent of the inference in which they are involved.

Definition 8. The proof system G∗i is the tree-like proof system with initial
sequents of the form ⊥ →, → >, or A → A where A can be any Σq

i ∪ Πq
i -formula.

It has the above rules of inference and all formulas in a G∗i -proof are restricted to be
in Σq

i ∪Πq
i . (We have made inessential modifications to the definition of [15].) The

proof system L∗i is the proof system G∗i with the following additional restrictions:
An L∗i -proof P must have height less than (log(|P |))2 and P can have at most
(log log(|P |))2 cuts on Σq

i ∪Πq
i -formulas along any branch.

Recall A ⊃ B is formalized in R1
2 as ¬A ∨ B. Thus, the result of an ⊃-rule

can be achieved using ∨-rules and ¬-rules with at most a constant increase in the
height of the proof. All of our results about the proof system L∗i go through for
the proof system which consists of L∗i without these rules; however, these rules are
convenient to have for several of our proofs.

Remark 9 The exponent of 2 in the bounds on the height and number of Σq
i ∪Πq

i -
cuts in an L∗i -proof is not too critical, essentially we need a function which grows
superlinearly. We will have more to say on this after each of our main results.

We can formalize L∗i -proofs in R1
2 as a ∆b

1-predicate L∗i (d, dΓ → ∆e). To do
this we only need a predicate which checks for a sharply bounded number of nodes
that each is a initial sequent or follows from its children by one of a finite list of
inferences. We also need to check the bounds on the height of the proof and on the
number of Σq

i ∪Πq
i -cuts. These are all ∆b

1 properties.
We can similarly formalize G∗i -proofs in R1

2 as a ∆b
1-predicate G∗i (d, dΓ → ∆e).

Definition 10. Let T be a theory over the language L2. Let ∀Σb
i (T ) denote

∀Σb
i -consequences of T . If P is a proof system, P simulates ∀Σb

i (T ) iff for any
∀~xA(~x) ∈ ∀Σb

i (T ) there is a bounding polynomial p(x) of A such that:

R1
2 ` ∀y(P ` [[A]]|y|p(|y|)).

This is a slightly weaker notion of simulation than was defined in [15] where
S1

2 was used in place of R1
2. A Frege proof system is a complete propositional proof

system that uses a finite axiom schemata, and has modus ponens as its only rule of
inference. (We are requiring ⊃ to be in language. The usual definition of Frege proof
system is more general in that it does not have this condition and it allows so-called
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Frege rules (see [11, 14]) as opposed to modus ponens; however, our definition will
suit our present purpose.) A Frege proof is a sequence of propositions A1, . . . , An

where each Ai is either a substitution instance of an axiom or follows from earlier
propositions by modus ponens. An extended Frege proof system is a modification
of Frege proof systems that allows extension rules of the form p ≡ B in the proof
sequence provided p does not occur earlier in the sequence or in the final line of the
proof. A substitution Frege proof system is a modification of Frege proof systems
that allows substitution inferences. All Frege systems p-simulate each other. Any
extended Frege or substitution Frege system can p-simulate any other extended
Frege or substitution system (see [14]). It is also known that Frege systems can
simulate ∀Σb

0(BASIC) and extended Frege systems simulate ∀Σb
0(S

1
2) [6]. In fact,

Frege can simulate ∀Σb
0(TNC0), a theory for NC1 containing BASIC developed

in Takeuti [19]. The Frege system that was used to show this had only the rule
modus ponens and was over the basis ∧, ∨, ¬, and ⊃. The next lemma will allow
us to use the fact that Frege systems simulate ∀Σb

0(BASIC) in our simulation of
Ri

2 by L∗i . The basic idea of this lemma is based on techniques in Kraj́ıček [14] and
Bonet [3].

Lemma 11. Let F be a Frege System as defined above. The proof systems L∗1
p-simulates F . Further, this is provable in R1

2.

Proof. We can formalize Frege systems in R1
2 in much the same way as we

formalized L∗i . Let A1, . . . , An be a proof in F of An. Let Bj be the balanced
conjunction ∧∧j

i=1 Ai. We first derive → B1 and Bj → Bj+1 for 1 ≤ j ≤ n− 1. Now
B1 = A1 is a substitution instance of a Frege axiom and we can give an L∗1-proof of
this axiom since a substitution instance of an axiom can be simulated with an L∗1-
proof of height which is independent of the size of the substituted formula. This is
because in L∗1-proofs we allow initial sequents A → A where A can be any Σq

1 ∪Πq
1-

formula. To derive Bj → Bj+1 there are two cases to consider. In the first case,
Aj+1 is an axiom. We first derive → Aj+1 and weaken on Bj to get Bj → Aj+1.
We then derive Bj → Ai for i ≤ j with a proof of height less than 2 · log n. We
then use (∧ : right) rules in a balanced fashion to derive Bj → Bj+1. In the second
case, Aj+1 follows by modus ponens from some earlier Ak and Al := Ak ⊃ Aj+1.
In this case we derive Bj → Ak with a proof d of height less than 2 · log n. We also
do the following proof:

[d]
Bj→Ak

Ak→Ak

Ak→Ak, Aj+1

Ak→Aj+1, Ak

Aj+1→Aj+1

Ak, Aj+1→Aj+1

Aj+1, Ak→Aj+1,

Ak ⊃ Aj+1, Ak→Aj+1

Bj , Ak ⊃ Aj+1→Aj+1

Recall Ak ⊃ Aj+1 is just the formula Al. By 2 · |n| uses of (∧ : right), a weakening,
and a contraction we can derive Bj → Aj+1. From this, doing the same thing as
we did in the axiom case we can derive Bj → Bj+1. Using → B1 and Bj → Bj+1

for 1 ≤ j ≤ n− 1 and cutting in a balanced way we can derive → Bn. Cutting this
and a proof of Bn → An, we get → An. Call this new proof P . Since there are
only finitely many axiom schemes in our Frege system and each one can be derived
by some fixed height L∗1-proof, there is a fixed number m which bounds the height
of any axiom derivation in L∗1. So the height of deriving Bj → Bj+1 if Aj+1 is
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an axiom is bounded by 3 · log n + m. The height of deriving Bj → Bj+1 if Aj+1

follows from modus ponens is bounded by 5 · |n|. Finally, the end of the proof has
fewer then 2 · log n many cuts. The total height of P is bounded by 7 · log n+m. To
guarantee this is less than ||P ||2, we can add the following padding to the bottom
of our proof

→>
→>n7+m

[P ]
→An

>n7+m→An

→An

The symbol >i+1 means > ∧ >i. The idea of the above proof fragment is to use
>n7+m

to pad the proof so that it is indeed (log2) height. As there are no cuts on
Σq

1 ∪Πq
1-formula used in our construction this will be an L∗1-proof.

To formalize this simulation in R1
2 is not hard and we only give the barest out-

line. First, R1
2 can Σb

1-define functions using IC which take substitution instances
of axioms of F and outputs L∗1-proofs of them. Since there are only two cases we
need to consider, we can use these functions to Σb

1-define a function using IC which
given j and A1, . . . , An outputs a L∗1-proof Bj → Bj+1 for j > 1 and → B1 for
j = 1. From this function in turn we can Σb

1-define a function using IC which takes
A1, . . . , An and outputs the desired L∗1-proof.

7. Witnessing for TRUi

We would like to prove i-RFN(L∗i ) in Ri
2. Since i-RFN(L∗i ) is a ∀Σb

i -formula
trying to prove this by direct induction on, for instance, the size of subproofs of
a fixed L∗i -proof d would require induction on a Πb

i+1-formula. To avoid this we
use a version of the now familiar witnessing argument of Buss [5]. A witness in
this argument will be a truth assignment for the outermost boolean existential
quantifiers in a Σq

i -formula. We define our witness predicate as follows:

Witi(dAe, w, τ) := β(1,WitTreei(Sub(dAe, τ), w)) = d>e

The idea behind Witi(dAe, w, τ) is that it checks whether replacing the variables xj

that have typei(xj ,
dAe) = i by their values in the truth assignment w makes τ a sat-

isfying assignment for the resulting formula. Because of the definition of WitTreei,
Witi is false if A is not a Σq

i -formula. We now argue Witi is a ∆b
i -predicate in Ri

2.
From the definition of WitTreei the theory Ri

2 can prove if dAe is a Σq
i -formula and

w and τ are truth assignments then β(1,WitTreei(Sub(dAe, τ), w) outputs either
d>e or d⊥e. By property (4) of Evaltreei, the theory Ri

2 can prove for a given input
only one of these two possibilities holds. Hence, β(1,WitTreei(Sub(dAe, τ), w) is a
Σb

i -definable function in Ri
2. So by Lemma 3 Witi is a ∆b

i -predicate in Ri
2.

For Γ = (A0, .., Aj) a cedent of Σq
i -formulas we define the following two predi-

cates:
Witi∧∧(dΓe, w, τ) ⇔ (∀k < len(Γ))Witi(dAS(k)

e, β(S(k), w), τ)
and

Witi∨∨(dΓe, w, τ) ⇔ (∃k < len(Γ))Witi(dAS(k)
e, β(S(k), w), τ).

Since Witi is ∆b
i with respect to Ri

2 by Lemma 3, both these predicates are also ∆b
i

with respect to Ri
2. Before we make precise how we will use the witness predicates

to prove i-RFN(L∗i ), let us establish what Ri
2 can say about witnessing.
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Proposition 12. Let A be a Σq
i -formula and τ a truth assignment for the free

variables in A. Then:

R1
2 ` Witi(dAe, w, τ) ⊃ TRUi(dAe, τ)

Proof. From the definition of Witi, the theory R1
2 proves Witi(dAe, w, τ) im-

plies (∃y)(Evaltree∃i (dAe, τ)) = y ∧ β(1, y) = d>e). This then implies TRUi(dAe, τ).

The next result will allow us to prove i-RFN(L∗i ) in Ri
2. Before we state it,

we define the functions l(dΓ → ∆e) and r(dΓ → ∆e) which we will need because Ri
2

has only a limited ability to manipulate L∗i -proofs. For instance, given an L∗i -proof
of a sequent of Σq

i -formulas, it seems complicated to show Ri
2 can transform this

proof into one with only Σq
i -formulas.

The function l(dΓ → ∆e) produces a cedent Γ∗ which contains the Σq
i -formulas

of Γ in the order they appear in Γ followed by the negations of the Πq
i -formulas which

are not Σq
i -formulas of ∆ in the order they appear in ∆. The function r(dΓ → ∆e)

produces a cedent ∆∗ which contains the negations of the Πq
i -formulas which are

not Σq
i -formulas of Γ in the order they appear in Γ followed by the Σq

i -formulas of
∆ in the order they appear in ∆. We will usually write Γ∗ for l(dΓ → ∆e) and ∆∗

for r(dΓ → ∆e). In a slight abuse of the usual convention, we will often refer to Γ∗

as the antecedent of the sequent Γ → ∆ and refer to ∆∗ as the succedent of the
sequent Γ → ∆.

Theorem 13. (i ≥ 1) Let τ be a free variable. There is a Σb
i -definable in Ri

2

multivalued function ProofWiti such that:

Ri
2 ` ∀d(d : L∗i ` Γ → ∆ ⊃

(Witi∧∧(dΓ∗e, w, τ) ⊃ Witi∨∨(d∆∗e, P roofWiti(w, d, τ))).

Proof. ProofWiti is Σb
i -defined in Ri

2 from three Σb
i -definable multifunc-

tions InitProofi(d,w, τ), CompAnti(d′, w, τ), and CompSucci(d′, w, τ). The idea
of how ProofWiti works is that after an initialization, we iteratively apply first
the multifunction CompAnti which proceeds up a proof trying to find witnesses
for the antecedents and then apply the multifunction CompSucci which proceeds
down this proof trying to find witnesses for succedents. Cuts on Σq

i -formulas are
what force us to take more than one application of these two multifunctions. At
each stage of the computation we require that Ri

2 can prove that if the original
witness w for the antecedent of the endsequent of a proof is correct then witnesses
computed at each step by ProofWiti satisfy the desired Witi∧∧ or Witi∨∨ formulas.
We will show the bounds on the height of an L∗i -proof and on the number of Σq

i -cuts
on a branch enables Ri

2 to show ProofWiti eventually computes a witness for the
succedent of the endsequent and since Ri

2 proves ProofWiti computes witnesses
correctly at each stage this establishes the theorem.

The argument d′ which appears in CompAnti and CompSucci is supposed to
code a labelled proof. Any L∗i -proof is a labelled proof; however, a labelled proof P
when viewed as a tree is allowed to have nodes of the form

〈dΓ → ∆e, w, w′, τ〉.
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where dΓ → ∆e is a sequent, w is a purported witness for Γ∗, w′ is a purported
witness to ∆∗, and τ is a truth assignment for the free variables of Γ → ∆. We now
give more precise definitions of the three multifunctions which make up ProofWiti.

The function InitProofi(d, w, τ) is not hard to define. This function converts
an L∗i -proof d of Γ → ∆ into an L∗i labelled proof d′ where the root in d has been
replaced with

〈dΓ → ∆e, w, 0, τ〉(1)

and any cuts in d′ are on Σq
i -formulas and the only rules in d′ that eliminate free

variables are (∃:left) rules or (∀:right) rules.
We now define the multifunction CompAnti(d′). This function begins at the

root of the labelled proof d′ of the sequent Γ → ∆ where at least the root is of the
form (1). Using w in the root node for Γ∗, the multifunction CompAnti(d′) tries to
construct witnesses for all the antecedents in the proof. It outputs a new labelled
proof d′′ such that: If a node in d′ is labelled with only Γ′ → ∆′ and CompAnti
can compute a witness w′ for the (Γ′)∗ and also a truth assignment τ ′ for Γ′ → ∆′,
then this sequent is replaced with

〈dΓ′ → ∆′e, w′, 0, τ ′〉.
If a node is already labelled with a sequence or if CompAnti cannot compute a
witness and a truth assignment it leaves the node unchanged. The multifunction
CompAnti(d′) is defined from the subfunctions AntStepi(n, d′) using SW2BPR.
The multifunction AntStepi(n, d′) tries to compute witnesses for the antecedents
and truth assignments for the sequents of nodes in d′ viewed as a tree of height
n + 1 from the witnesses and truth assignments already computed in d′ for nodes
of height n. It then outputs an updated labelled d′′. If n is greater than the height
of the proof, then AntStepi(n, d′) just returns d′. Given that AntStepi can be
Σb

i -defined we define CompAnti(d′) to be

F (0, d′) = d′

F (n + 1, d′) = min(AntStepi(n, F (n, d′)), 5 · (d′#d′))
CompAnti(d′) = F (||d′||2, d′)

The ||d′||2 in the above bounds the height of the labelled proof ensuring that we have
made an attempt to find a witness for antecedents of each height. The 5 · (d′#d′)
bounds the size of the proof obtained by replacing all the unlabelled nodes with
labels. In defining AntStepi(n, d′) we will show that if (Γ′)∗ and (Γ′′)∗ are two
antecedents in d′ and AntStepi(n, d′) used witness w′ and truth assignment τ ′ for
(Γ′)∗ to compute a witness w′′ and truth assignment τ ′′ for (Γ′′)∗ then

Ri
2 ` Witi∧∧((Γ′)∗, w′, τ ′) ⊃ Witi∧∧((Γ′′)∗, w′′, τ ′′).

Thus, using Σb
i -SLLIND on the height of a labelled proof d′ of Γ → ∆ one can

show if w is a witness for Γ∗ and τ is a truth assignment for Γ → ∆ and if antecedent
(Γ′)∗ in the proof is assigned a witness w′ and truth assignment τ ′ by CompAnti(d′)
then

Ri
2 ` Witi∧∧(Γ∗, w, τ) ⊃ Witi∧∧((Γ′)∗, w′, τ ′).

We now describe how AntStepi(n, d′) is defined. It is defined in Ri
2 using

IC from the multifunction AntCopyi(j, n, d′) which we will show is Σb
i -defined in

Ri
2. The multifunction AntCopyi(j, n, d′) looks at the jth element of the labelled
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proof d′ viewed as a sequence. If this element is not a sequent of height n + 1 for
which the parent of this node has a witness and truth assignment already defined
then it just outputs this element. Otherwise, if this element is a sequent of height
n + 1 for which the parent of this node has a witness and truth assignment already
defined, then what AntCopyi(j, n, d′) does breaks into cases depending on the kind
of inference involved between this element and its parent. As most of these cases
are rather straightforward, we only show the cut case and the (∃ : left) case and
omit the remaining cases.

Case (Cut) Suppose this inference is of the form

Γ′→∆′, A A, Γ′→∆′

Γ′→∆′

Because of the initialization done by InitProofi we can assume this cut is on a Σq
i -

formula. The two subcases to consider are the case where the node j is Γ′ → ∆′, A
and the case where the node j is A, Γ′ → ∆′. The basic idea is in the first case we
can use the witness for the lower antecedent as the witness for upper antecedent
and modify the truth assignment slightly. In the second case, we might need to also
use a witness for A from the succedent of the left upper sequent as well as a witness
for the lower antecedent to construct a witness for the upper right antecedent. To
be more precise in the first case, by hypothesis, we have a witness w′ for the cedent
(Γ′)∗ and a truth assignment τ ′ for the free variables in the lower sequent. By the
initialization done by InitProofi we can assume cut inferences do not eliminate
any variables. So τ ′ will be a truth assignment for Γ′ → ∆′, A. Thus, we can use
w′ as a witness for the antecedent of Γ′ → ∆′, A and τ ′ as a truth assignment for
this sequent. Obviously,

Ri
2 ` Witi∧∧(d(Γ′)∗e, w′, τ ′) ⊃ Witi∧∧(d(Γ′)∗e, w′, τ ′).

So we define AntCopyi(j, n, d′) to be the sequence 〈dΓ′ → ∆′, Ae, w′, 0, τ ′〉.
In the second case, we are trying to find a witness for A, (Γ)∗ and a truth

assignment for A, Γ′ → ∆′. The multifunction AntCopyi first checks the node
containing Γ′ → ∆′, A. If this node does not contain a witness for the cedent
(∆′)∗, A and A is Σq

i \∆q
i then AntCopyi(j, n, d, w, τ) just outputs A,Γ′ → ∆′.

Otherwise, AntCopyi(j, n, d, w, τ) computes a witness v′ for A and uses this to
compute a witness for A, (Γ)∗. In the case where A is ∆q

i and the node containing
the sequent Γ′ → ∆′, A may or may not have a witness for (∆′)∗, A the witness v′ is
just the empty assignment 〈〉. In the case where A is Σq

i \∆q
i and the node containing

the sequent Γ′ → ∆′, A does contain a witness v for (∆′)∗, A let v′ be β(len(v), v).
We then use v′ and the witness w′ for (Γ′)∗ to construct w′′ := 〈v′〉 ∗∗w′ which will
be a witness for A, (Γ)∗. As in the first subcase, we can use τ ′ as a truth assignment
for A, Γ′ → ∆′. It is not hard to see that

Ri
2 ` Witi∧∧(d(Γ′)∗e, w′, τ ′) ∧Witi(dAe, v′, τ ′) ⊃ Witi∧∧(dA, (Γ′)∗e, w′′, τ ′).

So we define AntCopyi(j, n, d′) to be the sequence 〈dA, Γ′ → ∆′e, w′′, 0, τ ′〉.

Case (∃ : left) Suppose j is the upper sequent of the inference

A(~p),Γ′→∆′

∃~xA(~x),Γ′→∆′
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The two subcases we need to consider are the case where ∃~xA is Σq
i \Πq

i -formula
and the case where ∃~xA is Σq

i−1-formula. In the first case, by hypothesis we have
a witness w′ for the cedent ∃~xA(~x), (Γ′)∗ and a truth assignment τ ′ for the free
variables in the lower sequent. Let w~y be the truth assignment obtained from
β(1, w′) by deleting the assignments for the variables ~x. So w~y is a witness for
the variables yj of A such that typei(dyj

e, dAe) = i . A witness w′′ for A, (Γ′)∗

will be just 〈w~y〉 ∗∗Tail(w′). To make a truth assignment for A, Γ′ → ∆′ let w~x

be the witness one gets by deleting the member of w~y from β(1, w′). Now replace
the variables xi’s in w~x by their corresponding pi’s to make a truth assignment τ~p.
Then we define a new truth assignment for A, Γ′ → ∆′ as τ ′′ := τ~p ∗∗ τ ′. It is not
hard to see that

Ri
2 ` Witi∧∧(d∃~xA, (Γ′)∗e, w′, τ ′) ⊃ Witi∧∧(dA, (Γ′)∗e, w′′, τ ′′).

So we define AntCopyi(j, n, d′) to be the sequence 〈dA, Γ′ → ∆′e, w′′, 0, τ ′′〉.
In the second case, since ∃~xA is a Σq

i−1-formula, we can use w′ as our witness for
A, (Γ′)∗. To modify our truth assignment we make a witness query to a Σp

i−1-oracle
to find a truth assignment τ~p such that

TRUi−1(A(~p), τ~p ∗∗ τ ′).

If no such τ~p exists then we define τ ′′ := τ ′. Otherwise, define τ ′′ := τ~p ∗∗ τ ′. It is
not hard to see that

Ri
2 ` Witi∧∧(d∃~xA, (Γ′)∗e, w′, τ ′) ⊃ Witi∧∧(dA, (Γ′)∗e, w′, τ ′′).

So we define AntCopyi(j, n, d′) to be the sequence 〈dA, Γ′ → ∆′e, w′, 0, τ ′′〉.

This completes the cases we will show in the definition of AntCopyi(j, n, d′).
As the above operations in each case are Σb

i -definable in Ri
2 the multifunction

AntCopyi(j, n, d′) is Σb
i -definable in Ri

2. As stated before AntStepi(n, d′) is defined
from AntCopyi using IC, so it too will be Σb

i -defined in Ri
2. Finally, CompAnti(d′)

will be Σb
i -defined as it is defined from AntStepi using SW2BPR.

We now define the function CompSucci(d′). This multifunction starts at the
leaves of a labelled proof d′ and works towards the root. If a node is labelled
with a witness for the antecedent but only 0 as a witness for the succedent then
CompSucci(d′) tries to compute a witness for this succedent. The multifunction
CompSucci(d′) outputs a new labelled proof that incorporates all the witnesses for
succedents it was able to find. Like CompAnti, the multifunction CompSucci(d′)
is defined from a subfunction SuccStepi(n, d′) using SW2BPR. The multifunction
SuccStepi(n, d′) tries to compute witnesses for succedents for sequents which appear
in nodes of height Height(d′) − n. Here Height(d′) is the Σb

1-definable function
which returns the height of the proof d viewed as a tree [5]. If n is greater than
Height(d′) than SuccStepi(n, d′) just outputs d′. Given that SuccStepi(n, d′) can
be Σb

i -defined we define CompSucci(d′) to be

F (0, d′) = d′

F (n + 1, d′) = min(SuccStepi(n, F (n, d′)), 5 · (d′#d′))
CompSucci(d′) = F (||d′||2, d′)

When we define SuccStepi(n, d′) we will show if Γ′ → ∆′ was inferred from Γ′′ → ∆′′

and (∆′′)∗ was given witness w′′ by SuccStepi(n, d′) and (∆′)∗ was given witness
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w′ by SuccStepi(n + 1, d′) then

Ri
2 ` Witi∨∨((∆′′)∗, w′′, τ ′′) ⊃ Witi∨∨((∆′)∗, w′, τ ′)

where τ ′′ and τ ′ are the truth assignments which were assigned to the upper and
lower sequents respectively. We will define SuccStepi so that if it encounters an
initial sequent with a witness w′ for its antecedent then it outputs w′ as a witness
for the succedent.

Thus, using Σb
i -SLLIND on the height of a L∗i -proof d of Γ → ∆ one can show

the following: If w is a witness for Γ∗ and τ is a truth assignment for Γ → ∆ and
there is a sequent Γ′ → ∆′ assigned a witness w′ for (Γ′)∗ and truth assignment τ ′

by CompAnti(InitProof(d,w, τ)) and CompSucci(d′) computes a witness w′′ for
(∆′)∗ then we have

Ri
2 ` Witi∧∧(Γ∗, w, τ) ⊃ Witi∨∨((∆′)∗, w′′, τ ′).

We now describe how SuccStepi(n, d′) is defined. Basically, it is defined us-
ing IC from a Σb

i -defined multifunction SuccCopyi(j, n, d′). The multifunction
SuccCopyi(j, n, d′) looks at the jth element of the labelled proof d′ viewed as a
sequence. If this element is not a node of height Height(d′) − n labelled with a
sequence of the form

〈dΓ′ → ∆′e, w′, 0, τ ′〉
then it just outputs this element. Otherwise, what SuccCopyi(j, n, d′) does breaks
into cases depending on what kind of inference the element j and its children define.
In the case where jth element contains an initial sequent A → A, a witness w′ for A∗

(the formula A may be Πq
i ), a witness 0 for the succedent, and a truth assignment

τ ′ for the sequent, we define SuccCopyi(j, n, d′) to be

〈dA → Ae, w′, w′, τ ′〉.
For initial sequent of the form → > and ⊥ → we also just copy the witness for
the antecedent as the witness for the succedent, even though these witnesses are
unnecessary since these formulas are ∆q

0-sentences.

Case (Cut) Suppose the element j and its children define the inference

Γ′→∆′, A A, Γ′→∆′

Γ′→∆′

By hypothesis, we have a witness w′ for the cedent (Γ′)∗ and a truth assignment
τ ′ for the free variables in

Γ′ → ∆′.

We also have by hypothesis witnesses v′ for (∆′)∗, A and maybe also a v′′ for
(∆′)∗. Let w′′ be Front(v′) if Witi∨(d(∆′)∗e, F ront(v′), τ ′) and otherwise let w′′

be v′′ if Witi∨(d(∆′)∗e, v′′, τ ′). In these cases we define SuccCopyi(j, n, d′) to be
〈dΓ → ∆e, w′, w′′, τ ′〉. It is not hard to see in these cases that Ri

2 proves w′′ is the
desired witness. If both of these two cases do not hold than we just output the
node as is. Since Witi∨ is a ∆b

i -predicate we can Σb
i -define SuccCopyi to perform

the above tasks.

Case (∃ : right) Suppose the element j and its children define the inference
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Γ′→∆′, A( ~B)
Γ′→∆′, ∃~xA(~x).

By hypothesis, we have a witness w′ for the cedent (Γ′)∗ and a truth assignment
τ ′ for the free variables in

Γ′ → ∆′, ∃~xA(~x).

We also have by hypothesis a witness v′ for (∆′)∗, A( ~B). As we can assume that
this inference does not eliminate free variables, τ ′ will be a truth assignment for
the variables in ~B. Since ~B are ∆q

0-formulas Ri
2 can Σb

i -define a function which
computes

w′′ := v′ ∗∗〈〈〈x1, TRU ′
0(
dB1

e, τ ′)〉, . . . , 〈xk, TRU ′
0(
dBk

e, τ ′)〉〉〉
where B1, . . . , Bk are the formulas in ~B and the function TRU ′

0 output d>e if TRU0

holds and d⊥e otherwise.
It is easy to see

Ri
2 ` Witi∨(d(∆′)∗, A( ~B)e, v′, τ ′) ⊃ Witi∨(d(∆′)∗, ∃~xAe, w′′, τ ′)

So we define SuccCopyi(j, n, d′) to be 〈dΓ′ → ∆′, ∃~xAe, w′, w′′, τ ′〉.

This completes the definition of SuccCopyi(j, n, d′)
We are almost ready to define the multifunction ProofWiti. First, we define

the function

CutStepi(d′) := CompSucci(CompAnti(d′))

From this we define ProofWit using SW2BPR as follows:

F (0, d, w, τ) = InitProof(d,w, τ)
F (n + 1, d, w, τ) = min(CutStepi(F (n, d, w, τ), w, τ), `(d))

f(d,w, τ) = F (||d||3, w, τ)
ProofWiti(d,w, τ) = β(3, (β(1, f(d,w, τ))))

Here `(d) is the L2-term which is the composition of the bound used to define
CompAnti with that of CompSucci. The function f outputs a labelled proof d′

where the final node of d′ is of the form

〈dΓ → ∆e, w, w′, τ〉
where dΓ → ∆e is the endsequent of d, w is the input witness for Γ∗, w′ is the
calculated witness for ∆∗, and τ is the input truth assignment for dΓ → ∆e. The
first application of β in the definition of ProofWiti extracts this final node from
the output of f and the second application outputs the desired w′ from this node.
One thing to check is that after ||d||3 applications of CutStepi we will really have
a witness for ∆∗ if w was a witness for Γ∗. For each Σq

i ∪ Πq
i -cut c in d there is

a list of Σq
i ∪ Πq

i -cuts which need to be evaluated before c can be evaluated. Each
application of CutStepi evaluates a layer of Σq

i ∪ Πq
i -cuts which share a binary

inference other than Σq
i ∪Πq

i -cut as their least common ancestor. In the worst case,
for each Σq

i ∪Πq
i -cut above c (except the topmost layer of such cuts) there is a pair

of Σq
i ∪Πq

i -cuts which share it as a least common ancestor. Since there are at most
(log log |d|)2 such cuts along any branch in d this would yield a maximum of

Σ(log log |d|)2
j=1 2i = 2(log log |d|)2+1 − 2 < ||d||3
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steps which might need to be taken before c could be evaluated. To show Ri
2 can

prove ProofWiti(d,w, τ) computes what it is supposed to, one uses Σb
i -SLLIND

on this maximum number. For the induction step one uses the fact that we have
already shown that Ri

2 proves CompSucci and CompAnti compute what they are
supposed to.

Remark 14 Let L∗i,m denote the proof system which consists of (log)m-height G∗i
proofs where the number of Σq

i ∪Πq
i -cuts along any branch is bounded by (log log)m.

Then by just changing the bounds appropriately on each of the applications of
SW2BPR in the above proof allows us to show for m ≥ 1 that

Ri
2 ` i-RFN(L∗i,m).

If Γ is empty and ∆ is a single formula A, then Theorem 13 gives us:

Ri
2 ` ∀d(d : L∗i ` A ⊃

Witi∧∧(〈〉, 〈〉, τ)) ⊃ Witi∨∨(dAe, P roofWit(〈〉, d, τ), τ)).

This implies

Ri
2 ` ∀d(d : L∗i ` A ⊃ Witi(dAe, P roofWit(〈〉, d, τ), τ))).

By Proposition 12, we have

Ri
2 ` ∀d(d : L∗i ` A ⊃ TRUi(A, τ)).

This is just i-RFN(L∗i ), so we have the following theorem:

Theorem 15. (i ≥ 1) The theory Ri
2 proves i-RFN(L∗i ).

8. Simulating the ∀Σb
i -consequences of Ri

2

We now show L∗i can simulate the ∀Σb
i -consequences of Ri

2.

Theorem 16. For i ≥ 1, L∗i simulates ∀Σb
i (R

i
2).

Proof. Let A be a Σb
i -formula provable in Ri

2. Using some Ri
2-proof d of A,

we want to show

R1
2 ` ∀y(L∗i ` [[A]]|y|p(|y|))(2)

where p is some polynomial that bounds the size of all quantified propositional
translations of formulas in d. By cut-elimination for Ri

2 we can choose a proof
d of A such that all the formulas in d are Σb

i -formulas. It suffices to show that
we can translate d into a sequence of polynomial-size G∗i -proofs of height bounded
by hd · log(|y|) + hd and with fewer than cd · log log(|y|) + cd cuts on Σq

i ∪ Πq
i -

formulas along any branch. This is because we can always choose our bounding
polynomial p such that hd · log(|y|) + hd is dominated by (log(p(|y|)))2 and such
that cd · log log(|y|) + cd is dominated by (log log(p(|y|)))2.

To show polynomial-size G∗i -proofs of height bounded by hd · log(|y|) + hd and
number of Σq

i ∪Πq
i -cuts along a branch bounded by cd · log log(|y|)+cd, we translate

the formulas in d into quantified propositional formulas and “fill in” the gaps in the
resulting pre-proof. The proof is by induction on the number of inferences in d and
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breaks into cases depending on the last inference in d. As in [15] we abbreviate
[[· · ·]] for [[· · ·]]|y|p(|y|).

(Base Case) Here d is of the form A → A, is an equality axiom, or is a BASIC
axiom. The sequent [[A]] → [[A]] is an initial sequent of an L∗i -proof so this case
is trivial. Frege proof systems are well known to have polynomial size-proofs of
translations of equality axioms and BASIC axioms [10], [6], [14]. Since L∗1 can
p-simulate Frege, the systems L∗i where i ≥ 1 have polynomial size proofs of these
axioms. Further, the L∗1 p-simulation of Frege proofs in Lemma 11 gives L∗1-proofs,
and hence, G∗1-proofs P with height less than log(|P |) and with all cuts being on
∆q

0-formulas.

(Non-Quantifier or Induction Inferences) These are handled by the corresponding
G∗i -rule. Call the subproof of d excluding this last inference inference e. By the
induction hypothesis there is a constant he such that he · log(|y|) bounds the height
of the simulations of e and a constant ce such that ce · log log(|y|) + ce bounds the
number of Σq

i ∪ Πq
i -cuts along any branch of e. For these kinds of inferences,

(he + 1) · log(|y|) + he can be used to bound the heights of the translations of d.
The number of Σq

i ∪Πq
i -cuts will remain unchanged for all of these inferences except

a cut rule whose maximum number of Σq
i∪Πq

i -cuts along any branch can be bounded
by

ce · log log(|y|) + ce + 1 ≤ (ce + 1) · log log(|y|) + (ce + 1).

(∀:left)
B(t),Γ→∆

t ≤ s, (∀x ≤ s)B(x),Γ→∆

Call the proof of the upper sequent e. There are two cases depending on whether
or not s is sharply bounded. In both cases we can apply the induction hypothesis
to prove:

[[B(t)]], [[Γ]] → [[∆]].(3)

Assume we have G∗i -proofs of this translation which are of size polynomial in |y|,
of height bounded by he · log(|y|) + he and such the number of Σq

i ∪Πq
i -cuts along

any branch is bounded by ce · log log(|y|) + ce.
(Not Sharply Bounded) We want to derive

[[t ≤ s]], [[(∀x ≤ s)B(x)]] → [[B(t)]].(4)

So we can apply cut with the above to get the desired sequent:

[[t ≤ s]], [[(∀x ≤ s)B(x)]], [[Γ]] → [[∆]].(5)

We first derive with G∗i -proofs of height 3 the sequents

[[B(t)]], [[t ≤ s]] → [[B(t)]]

and
[[t ≤ s]] → [[B(t)]], [[t ≤ s]].

By one application of an (⊃: left) rule we then deduce:

[[t ≤ s]] ⊃ [[B(t)]], [[t ≤ s]] → [[B(t)]].
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Now if we perform a couple (exchange : left) rules and perform a (∀ : left) rule
quantifying over the ∆q

0-formulas ~At which make up the translation of t we can
derive:

[[t ≤ s]], ∀~x[[t ≤ s ⊃ B(t)]](~x/ ~At) → [[B(t)]](6)

Given our translation of bounded arithmetic formulas into quantified propositional
ones, the formulas (6) and (4) are actually the same. Hence, we are done as we can
cut (4) against (3) to derive (5). The height of these new proofs will be bounded
by (he + 7) · log(|y|) + (he + 7) and the number of Σq

i ∪Πq
i -cuts will be bounded by

(ce + 1) · log log(|y|) + (ce + 1).
(Sharply Bounded) Again, we can apply the induction hypothesis to show R1

2 proves
there are G∗i proofs of

[[B(t)]], [[Γ]] → [[∆]](7)

which are of size polynomial in |y|, of height bounded by he · log(|y|) and such
the number of Σq

i ∪ Πq
i -cuts along any branch is bounded by ce · log log(|y|). By a

weakening we can prove:

[[t ≤ s]], [[B(t)]], [[Γ]] → [[∆]].(8)

If B(a) is atomic then we have already said there are G∗1-proofs of the translation
of the equality axiom

[[t = a]], [[B(a)]] → [[B(t)]](9)

with height bounded by hB ·log(|y|) and all the cuts of ∆q
0-formulas. By induction on

the complexity of B the theory R1
2 can show there are G∗i -proofs of these sequents for

B ∈ Σq
i ∪Πq

i and where the height of these G∗i -proofs is bounded by hB ·log(|y|)+hB

and where the number of Σq
i ∪Πq

i -cuts along any branch in these proofs is bounded
by cB · log log(|y|)+ cB for some fixed constants hB and cB . Weakening on [[Γ]] and
[[∆]] to (9), performing some exchanges and then cutting the result against (8) we
derive:

[[t ≤ s]], [[t = a]], [[B(a)]], [[Γ]] → [[∆]].(10)

Applying some exchanges and using (∧ : left) rules in a balanced fashion to (10)
we arrive at:

[[t ≤ s]], [[t = a]],∧∧~ε∈S [[B(a)]](~ε/~pa), [[Γ]] → [[∆]].(11)

where S is the set used for translations of sharply bounded quantifiers in the defini-
tion of [[·]]. The height of the proofs of this step can be bounded by h∧ · log(|y|)+h∧
for some fixed constant h∧ since we applied the (∧ : left) rules in a balanced fashion
and the number of exchanges we need to perform is less than the fixed constant 3e.
We can derive (11) for any choice of truth assignment ~ρ to the vector ~pa. Choosing
~ρ from S, we derive using (∨ : left) rules in a balanced fashion

[[t ≤ s]],∨∨~ρ∈S [[t = a]](~ρ/~pa),∧∧~ε∈S [[B(a)]](~ε/~pa), [[Γ]] → [[∆]].(12)

Again, we can bound the proofs of this step by h∨ · log(|y|) + h∨ since we applied
the (∨ : left) rules in a balanced fashion.

It is not hard to see that the sequents

[[t ≤ s]] → ∨∨~ρ∈S [[t = a]](~ρ/~pa)(13)
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have polynomial size G∗1-proofs of height bounded by hS · log(|y|) and with all cuts
on ∆q

0-formulas. By cutting (12) and (13), we get the desired

[[t ≤ s]],∧∧~ε∈S [[B(a)]](~ε/~pa), [[Γ]] → [[∆]].(14)

The size of the proofs (14) are polynomial in |y|. The height of the proof of (14) is
bounded by h′ · log(|y|) + h′ for h′ := (he + 1 + hB + hS + h∨ + h∧) and the num-
ber of Σq

i ∪Πq
i -cuts on a branch is bounded by

(ce + 1) · log log(|y|) + (ce + 1).

The other quantifier cases are also not hard and we omit them.

(Σb
i -PLIND rule)

B(b 1
2ac), Γ→∆, B(a)

B(0), Γ→∆, B(|t|)
Let e be the proof of the upper sequent. Applying the induction hypothesis we

have G∗i -proofs:

[[B(b1
2
ac)]], [[Γ]] → [[∆]], [[B(a)]]

with height bounded by he · log(|y|) + he and number of cuts along any branch
bounded by ce · log log(|y|) + ce. By making an appropriate substitution of the
variables representing the bits of a for formulas computing the bits of the term |t|
we can derive formulas of the following type:

[[B(MSP (|t|, k + 1))]], [[Γ]] → [[∆]], [[B(MSP (|t|, k))]](15)

Now cutting formulas of this type against each other in a balanced fashion we can
derive the desired formula [[B(0)]], [[Γ]]→[[∆]], [[B(|t|)]]. The size of these new proofs
will be polynomial in |y|. Since we did the cuts in a balanced fashion this step will
require fewer than additional ct · log log(|y|) + ct cuts along any branch where ct is
a fixed constant. Hence, the number of cuts along any branch of the proofs of (15)
will be bounded by c′ · log log(|y|) + c′ where c′ := ce + ct.. Finally, the heights of
these new proofs is bounded by h′ · log(|y|) + h′ where h′ is he + ct.

This completes the cases we will show and the proof.

Remark 17 Notice the above proof goes through for any proof system of the form
of L∗i but with the restriction that the height of proofs be bounded by some function
which grows superlinear in log of the size of a proof and with the restriction that
the number of Σq

i ∪ Πq
i -cuts along any branch is by bounded by a function which

grows superlinear in the log of the log of the size of the proof. The point in using
L∗i was that it gives us a fixed proof system which we can verify is formalizable in
R1

2.
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9. Applications

In this section we give two applications of having a quantified propositional
proof system for Ri

2. We first show that L∗i is the strongest proof system for which
Ri

2 can prove i-reflection. We then show the ∀Σb
j-consequences of Ri

2 are finitely
axiomatized. The proofs of these statements follow the proofs of similar statements
for T i

2 and Si
2 in [14].

Theorem 18. (0 ≤ j ≤ i) Let P be a proof system which can be represented
by a ∆b

1-predicate in R1
2 and suppose Ri

2 ` j-RFN(P ). Then L∗i j-polynomial sim-
ulates P provably in R1

2. That is, R1
2 ` L∗i ≥j P.

Proof. From the hypothesis and Theorem 16, we have

Ri
2 `→

(
L∗i `

(
[[P (d,A)]]|y|q(|y|) ∧ [[A ∈ Σq

j ]]
|y|
q(|y|)∧(16)

[[Assign(τ)]]|y|q(|y|) ⊃ [[TRUj(A, τ)]]|y|q(|y|)
))

If R1
2 proves d is a P -proof of A ∈ Σq

j and τ is a truth assignment then by Theo-
rem 16, R1

2 proves

L∗i `→ [[P (d,A)]]|y|q(|y|), L∗i `→ [[A ∈ Σq
j ]]
|y|
q(|y|),(17)

and L∗i ` [[Assign(τ)]]|y|q(|y|).

Thus, R1
2 proves

L∗i `→ [[TRUj(A, τ)]]|y|q′(|y|)(18)

where q′ is a potentially bigger bounding polynomial than q that we use to absorb
the slightly added height and number of cuts needed to derive this sequent from
(16) and (17). Let wA be the formula computing the translation of the root of z in
[[(∃z)(Evaltree∃j (Sub(A), τ) = z ∧ β(1, z) = d>e)]]|y|q′(|y|). Then R1

2 proves

[[(∃z)(Evaltree∃j (Sub(A), τ) = z ∧ β(1, z) = d>e)]]|y|q′(|y|) → wA ≡ A(19)

This can be proved by induction on the number of rounds of parallel computation
of subformulas of A needed in the computation of Evaltree∃j (Sub(A), τ).

Given the definition of the statement TRUj and (19) it is not hard to see that
R1

2 proves

L∗i ` [[TRUj(A, τ)]]|y|q′′(|y|) → A

This implies R1
2 proves L∗i ` A. Hence, R1

2 ` L∗i ≥j P. As the Σb
1-definable functions

of R1
2 are in NC ⊆ P this simulation is polynomial time.

Theorem 19. (2 ≤ j ≤ i) The ∀Σb
j-consequences of Ri

2 are finitely axioma-
tized.

Proof. For i ≥ 2 the theory Ri
2 contains S1

2 . We will axiomatize the ∀Σb
j-

consequences of Ri
2 as T := S1

2+j-RFN(L∗i ) The theory S1
2 is finitely axiomatized

with ∀Σb
2-formulas [12]. As we have already stated after Definition 7, the for-

mula j-RFN(L∗i ) is a ∀Σb
j-formula. So it suffices to show if A is a Σb

j-formula
provable in Ri

2 then it is provable in T . By Theorem 16, R1
2, and hence, S1

2 proves
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(∀y)(L∗i ` [[A]]|y|q(|y|)) for some bounding polynomial q. So by Theorem 15, the theory
T proves

(∀y, τ)(Assign(τ) ⊃ TRUj([[A]]|y|q(|y|), τ))

Thus, by Lemma 4 we have T ` A.

Corollary 20. (0 ≤ j ≤ i, 1 ≤ m) R1
2 proves L∗i ≥j L∗i,m.

Proof. Follows from Remark 14 and the above theorem.
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