More Arithmetic Circuits

CS255

Chris Pollett

Feb. 27, 2006.

Outline

- Circuits for Addition

Ripple Carry Addition

- Last day on the board we considered circuits to count the number of 'on' bits in an n bit number.
- Today, we'll look at circuits for adding two n-bit numbers.
- We'll make use of a two bit full adders to do this:

- These could be chained together to do addition as follows:

Carry Lookahead Addition

- Ripple-carry addition has both size and depth $\mathrm{O}(\mathrm{n})$.
- We now look at how to reduce the depth.
- We can make a table of the carry status versus the status on the inputs to $\mathrm{FA}_{\mathrm{i}-1}$.

a_{i-1}	b_{i-1}	c_{i}	status	k - kill p - propagate g - generate
0	0	0	k	
0	1	$\mathrm{c}_{\mathrm{i}-1}$	p	
1	0	$\mathrm{c}_{\mathrm{i}-1}$	p	
1	1	1	g	

The Carry Status Operator

- Notice just from the carry status of FA_{i} and $\mathrm{FA}_{\mathrm{i}-1}$ we can determine the carry status that will be output from the combined circuit according to the following table:

table	FA_{i}			
$\mathrm{FA}_{\mathrm{i}-1}$	\otimes	k	p	g
	k	k	k	g
	p	k	p	g
	g	k	g	g

- This operation called the carry-status operator and is associative.

An Faster Algorithm

- This suggests an algorithm to do addition:

1. Compute the carry status operator of each full adder: $\mathrm{x}_{\mathrm{i}}:=\mathrm{k}$ if $\mathrm{a}_{\mathrm{i}-1}=\mathrm{b}_{\mathrm{i}-1}=0 ; \mathrm{x}_{\mathrm{i}}:=\mathrm{p}$ if $\mathrm{a}_{\mathrm{i}-1} \neq \mathrm{b}_{\mathrm{i}-1} ; \mathrm{x}_{\mathrm{i}}:=\mathrm{g}$ if $\mathrm{a}_{\mathrm{i}-}$ ${ }_{1}=b_{i-1}=1$.
2. Determine the value of $y_{i}=x_{0} \otimes x_{1} \otimes \ldots \otimes x_{i}$ for each i this is called a prefix computation.
3. Use this to determine the value of c_{i} in constant size and depth.
4. From the value of c_{i}, a_{i}, b_{i} figure out the given output bit of the circuit.

- Steps 1,3,4 can obviously be done in parallel. It turns out so can step 2. The next lemma says why step 3 is possible.

Lemma 29.1

Define x_{i} and y_{i} as above. For $\mathrm{i}=0, \ldots$, n the following conditions hold:

1. $\mathrm{y}_{\mathrm{i}}=\mathrm{k}$ implies $\mathrm{c}_{\mathrm{i}}=0$,
2. $y_{i}=\mathrm{g}$ implies $\mathrm{c}_{\mathrm{i}}=1$, and
3. $y_{i}=p$ does not occur.

Proof of Lemma 29.1

The proof is by induction on i. When $\mathrm{i}=0$, we have $y_{0}=x_{0}=k$ by definition, and so $c_{0}=0$ too. For the inductive step, assume the lemma hold for i-1. There are three possible cases:

1. $y_{i}=k$, then since $y_{i}=y_{i-1} \otimes x_{i}$, either $x_{i}=k$ or $x_{i}=p$ and $y_{i-1}=k$. If $x_{i}=k$ then $a_{i-1}=b_{i-1}=0$, so $c_{i}=0$. If $x_{i}=p$ and y_{i-} ${ }_{1}=\mathrm{k}$, then $\mathrm{a}_{\mathrm{i}-1} \neq \mathrm{b}_{\mathrm{i}-1}$ and by induction $\mathrm{c}_{\mathrm{i}-1}=0$. Thus, c_{i} $=\operatorname{majority}\left(a_{i-1}, b_{i-1}, c_{i-1}\right)=0$.
2. If $y_{i}=g$, then either we have $x_{i}=g$ or we have $x_{i}=p$ and $y_{i-1}=g$. If $x_{i}=g$, then $a_{i-1}=b_{i-1}=1$, so $c_{i}=1$. If $x_{i}=p$ and $\mathrm{y}_{\mathrm{i}-1}=\mathrm{g}$, then $\mathrm{a}_{\mathrm{i}-1} \neq \mathrm{b}_{\mathrm{i}-1}$ and by induction $\mathrm{c}_{\mathrm{i}-1}=1$. So $\mathrm{c}_{\mathrm{i}}=1$.
3. If $y_{i}=p$, then we must have $y_{i-1}=p$, but this contradicts the inductive hypothesis.

Determining the Value of y_{i}

- So to complete our description of our circuit we need to say how to compute the value of the y_{i} 's.
- Let $[i, j]=x_{i} \otimes x_{1} \otimes \ldots \otimes x_{j}$. So $y_{i}=[0, i]$
- Since the carry status operator is associative we have $[\mathrm{i}, \mathrm{k}]=[\mathrm{i}, \mathrm{j}-1] \otimes[\mathrm{j}, \mathrm{k}]$.
- The next slide give an illustrative example of the general divide and conquer circuit we'll use.

Circuit for y_{i}

The tree has log depth need to compute up and then down the tree so have twice this total depth. So overall circuit will be log depth.

Carry-Save Addition

- Suppose wanted to add three n -bit numbers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ together.
- We could do this with only constant overhead by using the full adder on three inputs to reduce the situation to the two n-bit number case.
- We make an n bit number u and an $n+1$ bit number v such that $u+v=x+y+z$.
- $\mathrm{u}_{\mathrm{i}}=\operatorname{parity}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right), \mathrm{v}_{0}=0, \mathrm{v}_{\mathrm{i}+1}=\operatorname{majority}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$
- Then u, v are added with the carry-lookahead adder.

