
More Arithmetic Circuits

CS255
Chris Pollett

Feb. 27, 2006.

Outline

• Circuits for Addition

Ripple Carry Addition
• Last day on the board we considered circuits to count the number of

`on’ bits in an n bit number.
• Today, we’ll look at circuits for adding two n-bit numbers.
• We’ll make use of a two bit full adders to do this:

• These could be chained together to do addition as follows:

FA

s cout

in1
in2

FA0

s0

c0

a0 b0

0FA1

s1

c1

a1 b1

FA2

s2

a2 b2

FAn

sn

c2

an bn

cin

Carry Lookahead Addition
• Ripple-carry addition has both size and depth O(n).
• We now look at how to reduce the depth.
• We can make a table of the carry status versus the

status on the inputs to FAi-1.

pci-101
g111

pci-110

k000

statuscibi-1ai-1 k - kill

p - propagate

g - generate

The Carry Status Operator

• Notice just from the carry status of FAi and FAi-1
we can determine the carry status that will be
output from the combined circuit according to the
following table:

• This operation called the carry-status operator
and is associative.

ggkg
gpkp
gkkk
gpk⊗

FAi

FAi-1

An Faster Algorithm

• This suggests an algorithm to do addition:
1. Compute the carry status operator of each full adder:

xi := k if ai-1=bi-1=0; xi := p if ai-1 ≠bi-1; xi := g if ai-
1=bi-1=1.

2. Determine the value of yi = x0⊗ x1⊗...⊗ xi for each i
this is called a prefix computation.

3. Use this to determine the value of ci in constant size
and depth.

4. From the value of ci, ai, bi figure out the given output
bit of the circuit.

• Steps 1,3,4 can obviously be done in parallel. It
turns out so can step 2. The next lemma says
why step 3 is possible.

Lemma 29.1

Define xi and yi as above. For i=0,…,n the
following conditions hold:

1. yi=k implies ci=0,
2. yi=g implies ci=1, and
3. yi=p does not occur.

Proof of Lemma 29.1

The proof is by induction on i. When i=0, we have
y0=x0=k by definition, and so c0=0 too. For the
inductive step, assume the lemma hold for i-1.
There are three possible cases:

1. yi=k, then since yi= yi-1⊗ xi, either xi=k or xi=p and
yi-1 =k. If xi=k then ai-1=bi-1=0, so ci =0. If xi=p and yi-
1 =k, then ai-1≠bi-1 and by induction ci-1=0. Thus, ci
=majority(ai-1,bi-1, ,ci-1) =0.

2. If yi=g, then either we have xi=g or we have xi=p and
yi-1=g . If xi=g, then ai-1=bi-1=1, so ci =1. If xi=p and
yi-1=g, then ai-1≠bi-1 and by induction ci-1=1. So ci=1.

3. If yi=p, then we must have yi-1=p, but this contradicts
the inductive hypothesis.

Determining the Value of yi

• So to complete our description of our circuit we
need to say how to compute the value of the yi’s.

• Let [i,j] = xi⊗ x1⊗...⊗ xj. So yi = [0, i]
• Since the carry status operator is associative we

have [i,k] = [i,j-1] ⊗ [j,k].
• The next slide give an illustrative example of the

general divide and conquer circuit we’ll use.

Circuit for yi

[1,1]
[2,2] [3,3] [4,4]

[3,4]

[1,4]

[1,2]

[0,0] [0,4]

[0,0]

[0,0]
[0,1]

[0,2]

[0,2]
[0,3]

The tree has log depth need to compute up and
then down the tree so have twice this total
depth. So overall circuit will be log depth.

Carry-Save Addition

• Suppose wanted to add three n-bit numbers x,y,z
together.

• We could do this with only constant overhead by
using the full adder on three inputs to reduce the
situation to the two n-bit number case.

• We make an n bit number u and an n+1 bit
number v such that u+v = x+y+z.

• ui = parity(xi, yi, zi) , v0 =0, vi+1= majority(xi, yi, zi)
• Then u, v are added with the carry-lookahead

adder.

